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Abstract. The Colmez conjecture relates the Faltings height of an abelian variety with complex
multiplication by the ring of integers of a CM field E to logarithmic derivatives of Artin L–functions
at s = 0. In this paper, we prove that if F is any fixed totally real number field of degree [F : Q] ≥ 3,
then there are infinitely many effective, “positive density” sets of CM extensions E/F such that
E/Q is non-abelian and the Colmez conjecture is true for E. Moreover, these CM extensions are
explicitly constructed to be ramified at arbitrary prescribed sets of prime ideals of F . We also
prove that the Colmez conjecture is true for a generic class of non-abelian CM fields called Weyl
CM fields, and use this to develop an arithmetic statistics approach to the Colmez conjecture
based on counting CM fields of fixed degree and bounded discriminant. We illustrate these results
by evaluating the Faltings height of the Jacobian of a genus 2 hyperelliptic curve with complex
multiplication by a non-abelian quartic CM field in terms of the Barnes double Gamma function at
algebraic arguments. This can be viewed as an explicit non-abelian Chowla-Selberg formula. Our
results rely crucially on an averaged version of the Colmez conjecture which was recently proved
independently by Yuan-Zhang and Andreatta-Goren-Howard-Madapusi Pera.

1. Introduction

1.1. Statement of the main results. Around 25 years ago, Colmez [Col93] made a striking
conjecture which relates the Faltings height of an abelian variety with complex multiplication by
the ring of integers of a CM field E to logarithmic derivatives of Artin L–functions at s = 0 (see
Section 3 for the precise statement). This is a vast conjectural generalization of the Chowla-Selberg
formula [CS67], and can be viewed as a “higher” class number formula for Artin L–functions (see
e.g. Kontsevich and Zagier [KZ01, Section 3.6]). Colmez [Col93] proved his conjecture when E/Q
is abelian (up to addition of a rational multiple of log(2) which was eliminated by Obus [Obu13]).
Yang [Yan10a, Yan10b, Yan13] proved the Colmez conjecture for a large class of CM fields of degree
4, including the first known cases when E/Q is non-abelian. Colmez [Col93] also stated an averaged
version of his conjecture, in which the Faltings heights are averaged over the different CM types for
E. The averaged Colmez conjecture was recently proved independently by Yuan-Zhang [YZ15] and
Andreatta-Goren-Howard-Madapusi Pera [AGHM15]. The averaged Colmez conjecture will play a
crucial role in the proofs of the results in this paper (see e.g. the discussion in Section 1.4).

For the convenience of the reader, we first summarize our main result. Let F be any fixed totally
real number field of degree [F : Q] ≥ 3. Let p be a prime number which splits in the Galois closure
F c and let p be a prime ideal of F lying above p. We will prove that if we fix an arbitrary finite
set R of prime ideals of F , then there is an effective, “positive density” set of CM extensions E/F
which are ramified only at the primes in the prescribed set R∪{p} and at exactly one more prime
ideal of F (which is different for each of the extensions E/F ) such that E/Q is non-abelian and
the Colmez conjecture is true for E. Similarly, we can prescribe finite sets U1 (resp. U2) of prime
ideals of F that will be split (resp. remain inert) in the extensions E/F .

Recall that the natural density of a set S of prime ideals of a number field L is defined by

d(S) := lim
X→∞

#{q ∈ S | NL/Q(q) ≤ X}
#{q ⊂ OL | q is a prime ideal with NL/Q(q) ≤ X}

,

provided the limit exists. Then our main result is the following theorem.

1



2 ADRIAN BARQUERO-SANCHEZ AND RIAD MASRI

Theorem 1.1. Let F be a totally real number field of degree n ≥ 3. Let p ∈ Z be a prime number
which splits in the Galois closure F c and let p be a prime ideal of F lying above p. Let dF c be the
discriminant of F c and let R be a finite set of prime ideals of F not dividing pdF c. Let U1 and U2

be finite sets of prime ideals of F not dividing 2pdF c such that R, U1 and U2 are pairwise disjoint.
Then there is a set SR,p of prime ideals of F which is disjoint from R∪U1 ∪U2 ∪{p} such that the
following statements are true.

(i) SR,p has positive natural density.
(ii) For each prime ideal q ∈ SR,p, there is an element ∆q ∈ OF with prime factorization

∆qOF = pq
∏
r∈R

r.

(iii) The field Eq := F (
√

∆q) is a CM extension of F which is non-Galois over Q and is ramified
only at the prime ideals of F dividing ∆q. Moreover, each prime ideal in U1 splits in Eq

and each prime ideal in U2 remains inert in Eq.
(iv) The Colmez conjecture is true for Eq.

Remark 1.2. We emphasize that Theorem 1.1 is effective in the sense that we give an algorithm
to construct the positive density set SR,p and the associated CM fields Eq for each q ∈ SR,p. See
Algorithm 1 in Section 7.4.

Remark 1.3. The set of prime numbers p ∈ Z which split in the Galois closure F c has natural
density 1/[F c : Q].

We will also prove that the Colmez conjecture is true for a generic class of non-abelian CM fields
called Weyl CM fields (see [CO12]). Let E be a CM field of degree 2g with Galois closure Ec. The
Weyl group is defined by the wreath product W2g := (Z/2Z)g o Sg, where Sg is the symmetric
group. The Weyl group has order #W2g = 2gg!. Now, it can be shown that the Galois group
Gal(Ec/Q) is isomorphic to a subgroup of W2g. If E is a CM field such that Gal(Ec/Q) ∼= W2g,
then E is called a Weyl CM field. For a CM field to be Weyl is analogous to the classical fact that
the splitting field of a generic polynomial of degree g in Q[X] has Galois group isomorphic to Sg
(see e.g. [Gal73]).

Theorem 1.4. If E is a Weyl CM field, then the Colmez conjecture is true for E.

As remarked by Oort [Oor12, p. 5], “most CM fields are Weyl CM fields”. There are (at least)
two different ways in which “most” can be understood. In the context of Oort’s remark, “most”
refers to density results for isogeny classes of abelian varieties over finite fields. In Section 1.2, we
will give an alternative point of view based on counting CM fields of fixed degree and bounded
discriminant, and use this to develop a probabilistic approach to the Colmez conjecture.

Remark 1.5. If E is a quartic CM field, then the only possibilities for Gal(Ec/Q) are Z/2Z×Z/2Z,
Z/4Z or D4. Therefore, since D4

∼= W4, every non-abelian quartic CM field E is Weyl. Since
the Colmez conjecture is true for abelian CM fields ([Col93, Obu13]), it follows that the Colmez
conjecture is true for every quartic CM field.

Remark 1.6. Suppose that E is a Weyl CM field of degree 2g. Then

[Ec : Q] = #Gal(Ec/Q) = #W2g = 2gg! ≥ 2g = [E : Q].

It follows that any Weyl CM field of degree 2g ≥ 4 is non-Galois (hence non-abelian).

Remark 1.7. Let Eq be a CM field of degree 2n as in Theorem 1.1. In Section 7 (see e.g. Remark
7.12) we will prove that [Eq : Q] = 2n[F c : Q]. It follows that Eq is Weyl if and only if [F c : Q] = n!.
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Remark 1.8. T. Yang and H. Yin [YY16] have a very nice paper which studies the Colmez
conjecture for CM types satisfying a certain signature condition. More precisely, let F be a totally
real number field of degree n and let K = Q(

√
−D) be an imaginary quadratic field of discriminant

−D < 0. Let E be the CM field given by the compositum E = FK. Then E is of the form
E = F (

√
−D). Fix an ordering of the embeddings τi : F ↪→ C where i ∈ Z/nZ. For each subset

S ⊂ Z/nZ of order r with 0 ≤ r ≤ n, there is a unique CM type ΦS := {σi : i ∈ Z/nZ} for E such
that σi|F = τi and σi|K is the identity embedding if and only if i /∈ S. The CM type ΦS is called a
CM type of signature (n− r, r). Yang and Yin used the averaged Colmez conjecture and algebraic
methods to prove the following results:

(1) the Colmez conjecture holds for CM types for E of signature (n− 1, 1) and (1, n− 1);
(2) for any fixed 2 ≤ r ≤ n − 2, the Colmez conjecture holds for the average of the Faltings

heights over all CM types for E of signature (n− r, r).

1.2. An arithmetic statistics approach to the Colmez conjecture. In this section, we de-
velop an approach to the Colmez conjecture based on the study of certain problems of arithmetic
distribution.

1.2.1. The density of Weyl CM fields when ordered by discriminant. A natural way to count number
fields K/Q which satisfy some property is to order them by the absolute value of their discriminant
dK . Here we are interested in the problem of counting number fields (and in particular CM fields)
with a given Galois group. This problem has a long history and has been studied extensively by
many authors in recent years. See for example the excellent survey articles [CDO06, Woo16].

We start by introducing some notation. If K/Q is a number field, we denote its isomorphism
class by [K/Q]. For a permutation group G on n letters, we define the counting function

Nn(G,X) := #{[K/Q] | [K : Q] = n, Gal(Kc/Q) ∼= G and |dK | ≤ X},
which counts the number of isomorphism classes of number fields K/Q of degree [K : Q] = n such
that the Galois group of the Galois closure Kc is Gal(Kc/Q) ∼= G and such that |dK | ≤ X.

Similarly, in order to count isomorphism classes of number fields with a specific signature (r1, r2),
where n = r1 + 2r2, we define the counting function

Nr1,r2(G,X) := #{[K/Q] | [K : Q] = n, signature(K) = (r1, r2), Gal(Kc/Q) ∼= G and |dK | ≤ X}.
Now, for CM fields we define the counting functions

CMn(G,X) := #{[E/Q] | E is a CM field, [E : Q] = n, Gal(Ec/Q) ∼= G and |dE | ≤ X}
and

CMn(X) := #{[E/Q] | E is a CM field, [E : Q] = n and |dE | ≤ X}.
We want to study the density of Weyl CM fields of fixed degree 2n when ordered by discriminant,

i.e., we want to study the limit

ρWeyl(2n) := lim
X→∞

CM2n(W2n, X)

CM2n(X)
,

provided the limit exists. Conjectures of Malle [Mal02, Mal04] and various refinements (see e.g.
[Bha07, Woo16]) concerning asymptotics for the counting functions Nn(G,X) and Nr1,r2(G,X)
suggest that this limit exists and is positive. This is of great interest, for if ρWeyl(2n) > 0 then
Theorem 1.4 implies that the Colmez conjecture is true for a positive proportion of CM fields of
fixed degree 2n when ordered by discriminant.

When n = 1, a CM field of degree 2 is just an imaginary quadratic field. In this case the Weyl
group W2

∼= Z/2Z, so trivially every quadratic CM field is Weyl and hence

ρWeyl(2) = lim
X→∞

CM2(W2, X)

CM2(X)
= 1.
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When n = 2, the situation is already much more complicated. The following table can be
extracted from [Coh03, p. 376], and strongly suggests that ρWeyl(4) exists and equals 1.

X CM4(W4, X) CM4(X) CM4(W4,X)
CM4(X)

104 27 72 37.5%
105 395 613 64.4%
106 4512 5384 83.8%
107 47708 51220 93.1%
108 486531 500189 97.3%
109 4904276 4956208 98.9%
1010 49190647 49384381 99.6%
1012 4926673909 4929271179 99.9%

Table 1. Density of quartic Weyl CM fields

In fact, we will appeal to the works of Baily [Bai80], Mäki [Mäk85], and Cohen, Diaz y Diaz and
Olivier [CDO02, CDO05, CDO06] to deduce the following result.

Theorem 1.9. The density of quartic Weyl CM fields is

ρWeyl(4) = lim
X→∞

CM4(W4, X)

CM4(X)
= 1.

It follows from Theorem 1.4 and Theorem 1.9 that the Colmez conjecture is true for 100% of
quartic CM fields. On the other hand, we have already observed in Remark 1.5 that the Colmez
conjecture is true for every quartic CM field. Nonetheless, Theorem 1.9 supports our belief that
the probabilistic approach described here can be used to prove (at least in low degree) that the
Colmez conjecture is true for a positive proportion of CM fields of fixed degree. We are currently
investigating this problem for sextic CM fields.

Note Added in Proof: Since the completion of this paper in March 2016, the authors and Frank
Thorne [BS-MT17] have made substantial progress on these problems. In particular, assuming a
weak form of the upper bound in Malle’s conjecture, we proved that the Colmez conjecture is true
for 100% of CM fields of any fixed degree, when ordered by discriminant. This weak form of the
upper bound in Malle’s conjecture is known in many cases, which allowed us to produce infinitely
many density-one families of non-abelian CM fields which satisfy the Colmez conjecture.

1.2.2. Abelian varieties over finite fields and density results. We now explain how to use density
results for isogeny classes of abelian varieties over finite fields to prove probabilistic results about
the Colmez conjecture.

Let Fq be a finite field with q = pn elements. Let αA be a root of the characteristic polynomial
fA of the Frobenius endomorphism πA of an abelian variety A/Fq of dimension g. It is known that
if A/Fq and B/Fq are isogenous abelian varieties, then fA = fB.

LetAg(q) be the set of isogeny classes of abelian varietiesA/Fq of dimension g. LetKfA = Q(αA)c

be the splitting field of fA and Gal(KfA/Q) be the Galois group. Kowalski [Kow06] proved that
the proportion of isogeny classes [A] ∈ Ag(pn) which satisfy Gal(KfA/Q) ∼= W2g approaches 1 as
n→∞. We will show that if Gal(KfA/Q) ∼= W2g and g ≥ 2, then Q(αA) is a non-Galois Weyl CM
field of degree 2g ≥ 4. By combining these results with Theorem 1.4, we will establish the following
probabilistic result.

Theorem 1.10. Suppose that g ≥ 2. Then

lim
n→∞

#{[A] ∈ Ag(pn) | Q(αA) is a non-Galois CM field which satisfies the Colmez conjecture}
#Ag(pn)

= 1.
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On the other hand, let Asg(q) be the set of isogeny classes of simple abelian varieties A/Fq of
dimension g (recall that an abelian variety A over a field k is called simple if the only abelian
subvarieties of A are {0} and A). We will use work of Greaves-Odoni [GO88] and Honda-Tate (see
e.g. [Tat71]) to prove that given a CM field E of degree 2g and an integer n ≥ 2, there is a set of
prime numbers p ∈ Z with positive natural density such that E ∼= Q(πA) for some simple abelian
variety A/Fpn of dimension g. It seems likely that a modification of the methods in [Kow06] can be
used to prove that the proportion of isogeny classes [A] ∈ Asg(pn) which satisfy Gal(KfA/Q) ∼= W2g

approaches 1 as n→∞. As in Corollary 1.10, it would follow that if g ≥ 2, then

lim
n→∞

#{[A] ∈ Asg(pn) | Q(πA) is a non-Galois CM field which satisfies the Colmez conjecture}
#Asg(pn)

= 1.

1.3. A Chowla-Selberg formula for the Jacobian of a genus 2 hyperelliptic curve. The
Chowla-Selberg formula [CS67] is a remarkable identity which evaluates the Dedekind eta function
at CM points in terms of Euler’s Gamma function Γ(s) at rational arguments. Deligne [Del85] gave a
beautiful geometric reformulation of the Chowla-Selberg formula as an identity which evaluates the
Faltings height of a CM elliptic curve in terms of Γ(s) at rational arguments (see also [Gro80, Sil86]).
More precisely, let E = Q(

√
−D) be an imaginary quadratic field and XΦ be a CM elliptic curve

of type (OE ,Φ). Let hFal(XΦ) denote the stable Faltings height of XΦ, as defined in Section 3. Let
h(−D) be the class number, w(−D) be the number of units, and χ−D be the Kronecker symbol
of E, respectively. Then we have the following identity which is equivalent to the Chowla-Selberg
formula,

exp[hFal(XΦ)] =

(√
D

2π

)1/2 D∏
k=1

Γ(k/D)w(−D)χ−D(k)/4h(−D). (1.1)

Now, an important feature of the precise form of the Colmez conjecture for the CM fields ap-
pearing in Theorem 1.1 or Theorem 1.4 is that it allows us to prove explicit, higher-dimensional
analogs of the Chowla-Selberg formula (1.1) for abelian varieties with complex multiplication by
non-abelian CM fields. To explain, suppose that E is a CM field as in Theorem 1.1 or Theorem
1.4 and XΦ is a CM abelian variety of type (OE ,Φ). Then the Colmez conjecture takes the form
(see Proposition 5.1)

hFal(XΦ) = −1

2

L′(χE/F , 0)

L(χE/F , 0)
− 1

4
log

(
|dE |
dF

)
− n

2
log(2π), (1.2)

where L(χE/F , s) is the (incomplete) L–function of the Hecke character χE/F associated to the
quadratic extension E/F and dE (resp. dF ) is the discriminant of E (resp. F ). As discussed in
Section 1.2, the Colmez conjecture is predicted to take this form “most” of the time. The identity
(1.2) reduces the problem of evaluating the Faltings height to evaluating the logarithmic derivative
of L(χE/F , s) at s = 0. The authors study this problem extensively in the forthcoming papers
[BS-M17a, BS-M17b]. Here we give an example of such an evaluation for the Faltings height of the
Jacobian of a genus 2 hyperelliptic curve with complex multiplication by a non-abelian quartic CM
field.

Example 1.11. Let E = Q(
√
−5− 2

√
2). Then E is a non-abelian quartic CM field of discriminant

dE = 1088 with real quadratic subfield F = Q(
√

2) of discriminant dF = 8. Moreover, by Remark
1.5 the CM field E is Weyl, hence the Colmez conjecture is true for E.
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Now, by [BS15, Theorem 1.1 and Table 2b] with the choice [D,A,B] = [8, 10, 17], the Jacobian
JC of the genus 2 hyperelliptic curve C over Q(

√
17) given by the equation

y2 = x6 + (3 +
√

17)x5 +

(
25 + 3

√
17

2

)
x4 (1.3)

+ (3 + 5
√

17)x3 +

(
73− 9

√
17

2

)
x2 + (−24 + 8

√
17)x+ 10− 2

√
17

is a CM abelian surface defined over Q with complex multiplication by the ring of integers OE of
E.

-3 -2 -1 1 2 3

-5
-4
-3
-2
-1

1
2
3
4
5

x

y

Figure 1. The hyperelliptic curve C.

Since the Colmez conjecture is true for E, it follows from (1.2) that

hFal(JC) = −1

2

L′(χE/F , 0)

L(χE/F , 0)
− 1

4
log(136)− log(2π). (1.4)

Hence, to evaluate hFal(JC) we must evaluate the logarithmic derivative of L(χE/F , s) at s = 0.
For this we require the Barnes double Gamma function (see e.g. [Bar01, Shi77]).

Let ω = (ω1, ω2) ∈ R2
+ and z ∈ C. Then the Barnes double Gamma function is defined by

Γ2(z, ω) := F (z, ω)−1,

where

F (z, ω) := z exp

(
γ22(ω)z +

z2

2
γ21(ω)

) ∏
(m,n)

(
1 +

z

mω1 + nω2

)
exp

(
− z

mω1 + nω2
+

z2

2(mω1 + nω2)2

)
,

the product being over all pairs of integers (m,n) ∈ Z2
≥0 with (m,n) 6= (0, 0). The function F (z, ω)

is entire, and the constants γ22(ω), γ21(ω) are explicit “higher” analogs of Euler’s constant γ.
Given an element α ∈ F , let 〈α〉 = αOF and ασ be the image of α under an automorphism

σ ∈ Gal(F/Q). We also let α′ denote the image of α under the nontrivial automorphism in
Gal(F/Q). Let DE/F be the relative discriminant, hE be the class number of E, and ε > 1 be the

generator of the group O×,+F of totally positive units of F . Let B2(t) := t2 − t+ 1/6 be the second
Bernoulli polynomial.
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In [?], we use work of Shintani [Shi77] to establish the following identity

L′(χE/F , 0)

L(χE/F , 0)
= − log(NF/Q(DE/F )) (1.5)

+
[O×E : O×F ]

2hE

∑
z∈R(ε,D−1

E/F
)

χE/F
(
DE/F 〈z〉

)
log

 ∏
σ∈Gal(F/Q)

Γ2

(
zσ, (1, εσ)

)
+
ε− ε′

2
log(ε′)

[O×E : O×F ]

2hE

∑
z∈R(ε,D−1

E/F
)

z=x+yε

χE/F
(
DE/F 〈z〉

)
B2(x),

where R(ε,D−1
E/F ) is a finite subset of D−1

E/F defined by

R(ε,D−1
E/F ) :=

{
z = x+ yε ∈ D−1

E/F

∣∣∣ x, y ∈ Q, 0 < x ≤ 1, 0 ≤ y < 1, DE/F 〈z〉 coprime to DE/F

}
.

Here we have DE/F = 〈−5−2
√

2〉 and ε = 3+2
√

2. We wrote a program in SageMath to compute

the Shintani set R(ε,D−1
E/F ). This set can be visualized geometrically in R2

+ via the embedding

α 7−→ (α, α′) as a finite subset of the Shintani cone

C(ε) :=
{
t1(1, 1) + t2

(
ε, ε′

) ∣∣ t1 > 0, t2 ≥ 0
}
⊂ R2

+

generated by the vectors (1, 1) and (ε, ε′), as shown in the following figure.1

x

y

C(ε)

2 4 6 8 10

2

4

6

(1, 1)

(ε, ε′)

Figure 2. The embedding of R(ε,D−1
E/F ) into C(ε).

In order to give a uniform description of the points in R(ε,D−1
E/F ), it is convenient to express

them in terms of a Z-basis for D−1
E/F . In particular, for the Z-basis given by

D−1
E/F = Z · 1 + Z ·

(
6 +
√

2

17

)
,

1The shaded parallelogram in Figure 2 is the subset of the Shintani cone C(ε) determined by the inequalities
0 < t1 ≤ 1 and 0 ≤ t2 < 1, which correspond to the inequalities appearing in the definition of R(ε,D−1

E/F ).
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we find that

R(ε,D−1
E/F ) =

{
zm,n := −m+ (4m+ n− 1)

(
6+
√

2
17

) ∣∣∣ 0 ≤ m ≤ 8, n ∈ S(m)
}
,

where

S(m) :=



{2, 3, 4} if m = 0

{1, 2, 3, 4} if m = 1, 2, 3

{1, 3} if m = 4

{0, 1, 2, 3} if m = 5, 6, 7

{0, 1, 2} if m = 8.

We also wrote a program in SageMath to compute the character values

cm,n := χE/F (DE/F 〈zm,n〉) ∈ {±1},

which are given in the following table.

Values of cm,n

n
m 0 1 2 3 4 5 6 7 8

0 1 −1 −1 1

1 1 1 −1 1 −1 −1 −1 −1

2 1 −1 1 1 1 1 −1 1

3 1 −1 −1 −1 1 −1 1 1

4 −1 −1 −1 1

Table 2. The character values cm,n := χE/F (DE/F 〈zm,n〉).

Since [O×E : O×F ] = 1 and hE = 1, the preceding calculations yield the following explicit version
of (1.5),

L′(χE/F , 0)

L(χE/F , 0)
= − log(17) +

1

2

∑
0≤m≤8
n∈S(m)

cm,n log

 ∏
σ∈Gal(F/Q)

Γ2

(
zσm,n, (1, ε

σ)
)− 4

√
2

17
log(ε). (1.6)

Finally, by combining (1.4) and (1.6) we get the following two-dimensional analog of the Chowla-
Selberg formula (1.1) for the Faltings height of the Jacobian JC .

Theorem 1.12. Let C be the genus 2 hyperelliptic curve over Q(
√

17) defined by (1.3). The
Jacobian JC is a CM abelian surface defined over Q with complex multiplication by the ring of

integers OE of the non-abelian quartic CM field E = Q(
√
−5− 2

√
2) with real quadratic subfield

F = Q(
√

2). The Faltings height of JC is given by

exp[hFal(JC)] =
ε2
√

2/17(17
8 )1/4

2π

∏
0≤m≤8
n∈S(m)

∏
σ∈Gal(F/Q)

Γ2

(
zσm,n, (1, ε

σ)
)−cm,n/4,

where zm,n = −m+ (4m+ n− 1)(6+
√

2
17 ), ε = 3 + 2

√
2, and the numbers cm,n ∈ {±1} are given in

Table 2.
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1.4. Outline of the proofs. We conclude the introduction by briefly outlining the proofs of
Theorems 1.1 and 1.4.

Let E be a CM field of degree 2n and Φ(E) be the set of CM types for E. Let QCM be the
compositum of all CM fields. Using a careful study of the action of the Galois group GCM :=
Gal(QCM/Q) on Φ(E) and a deep theorem of Colmez [Col93, Théoreme 0.3] which relates the
Faltings height of a CM abelian variety XΦ of type (OE ,Φ) to the “height” of a certain locally
constant function on GCM constructed from the CM pair (E,Φ), we will prove that the Faltings
height of XΦ depends only on the GCM-orbit of Φ. Given this fact we will show that if the action
of GCM on Φ(E) is transitive, then the averaged Colmez conjecture, which was recently proved
independently in the remarkable works of Andreatta-Goren-Howard-Madapusi Pera [AGHM15] and
Yuan-Zhang [YZ15], implies the Colmez conjecture for E.

Now, let Φ be a CM type for E and EΦ be the associated reflex field. Then the reflex degree
satisfies the bound [EΦ : Q] ≤ 2n. We will prove that the action of GCM on Φ(E) is transitive if
and only if [EΦ : Q] = 2n, that is, the reflex degree is maximal. Then by the results discussed in
the previous paragraph, if [EΦ : Q] = 2n then the Colmez conjecture is true for E. This leads us
to the problem of constructing CM fields with reflex fields of maximal degree.

Roughly speaking, Theorem 1.1 and Theorem 1.4 comprise two different ways of constructing
infinite families of CM fields with reflex fields of maximal degree. Our approach to Theorem 1.1
is as follows. Let F be a fixed totally real number field of degree n ≥ 3. Based on an idea
of Shimura [Shi70], in Section 7 we explicitly construct infinite families of CM extensions E/F
such that E/Q is non-Galois and the reflex fields EΦ have maximal degree. This construction is
elaborate, and consists of two main parts (for a summary of this construction, see Algorithm 1 in
Section 7.4). First, in Proposition 7.1 we explicitly construct infinite families of CM extensions
E/F with arbitrary prescribed ramification. Second, in Theorem 7.6 we prove that if E/F is a CM
extension satisfying a certain mild ramification condition, then the reflex fields EΦ have maximal
degree, and moreover, if n ≥ 3 then E/Q is non-Galois. By combining these two results, we will
prove Theorem 1.1. On the other hand, to prove Theorem 1.4 we will show that the reflex fields of
a Weyl CM field have maximal degree.

2. CM types and their equivalence

In this section we prove some important facts that we will need regarding CM types and their
equivalence.

Let QCM be the compositum of all CM fields. Then QCM/Q is a Galois extension of infinite
degree, and the Galois group GCM := Gal(QCM/Q) is a profinite group with the Krull topology.
Recall that the open sets of GCM with the Krull topology are the empty set ∅ and the arbitrary
unions ⋃

i∈I
σi Gal(QCM/Ei),

where for every i ∈ I we have σi ∈ GCM and Q ⊆ Ei ⊆ QCM with [Ei : Q] < ∞ and Ei/Q
a Galois extension. The group GCM is Hausdorff, compact, and totally disconnected (see e.g.
[Mor96, Chapter IV]). A function f : GCM → Q is locally constant if for each g ∈ GCM, there is a
neighborhood Ng of g such that f is constant on Ng.

Let c ∈ GCM denote complex conjugation.

Definition 2.1. Let E be a CM field of degree 2n. A CM type for E is a set ΦE consisting of
embeddings E ↪→ Q such that Hom(E,Q) = ΦE

⋃
· cΦE . We denote the set of all CM types for E

by Φ(E). The Galois group GCM acts on Φ(E) as follows. For ΦE := {σ1, . . . , σn} ∈ Φ(E) and
τ ∈ GCM let

τ · ΦE = τΦE := {τσ1, . . . , τσn} ∈ Φ(E).
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Two CM types ΦE ,Φ
′
E ∈ Φ(E) are said to be equivalent if they lie in the same orbit under the

action of GCM, i.e., if there is an element τ ∈ GCM such that ΦE = τ · Φ′E .

We also have the following alternative definition.

Definition 2.2. A CM type is a locally constant function Φ : GCM −→ Q such that Φ(g) ∈ {0, 1}
and Φ(g) + Φ(cg) = 1 for every g ∈ GCM. We let

CM := {Φ : GCM −→ Q | Φ is a CM type}

be the set of all CM types. The Galois group GCM acts on CM as follows. For Φ ∈ CM and
τ ∈ GCM, let τ · Φ ∈ CM be the CM type defined by

(τ · Φ)(g) := Φ(τ−1g) for every g ∈ GCM.

Two CM types Φ,Φ
′ ∈ CM are said to be equivalent if they lie in the same orbit under the action

of GCM, i.e., if there is an element τ ∈ GCM such that Φ(g) = Φ
′
(τ−1g) for every g ∈ GCM.

The following proposition gives a dictionary relating the two notions of a CM type and their
equivalence.

Proposition 2.3. The following statements are true.

(i) Let E be a CM field and ΦE ∈ Φ(E). Define the function Φ : GCM −→ Q by

Φ(g) := χΦE (g|E), g ∈ GCM

where χΦE denotes the characteristic function of the set ΦE and g|E is the restriction of g
to E. Then Φ ∈ CM. Moreover, if Φ′E ∈ Φ(E) is equivalent to ΦE and τ ∈ GCM is such
that ΦE = τ · Φ′E, then Φ′ is equivalent to Φ with Φ = τ · Φ′.

(ii) Let Φ ∈ CM. Then there exists a Galois CM field E such that for every g ∈ GCM and
every h ∈ Gal(QCM/E), we have Φ(gh) = Φ(g). Moreover, if [g] := gGal(QCM/E) and we
define

ΦE := {σ ∈ Hom(E,Q) | there exists g ∈ GCM with σ = g|E and Φ([g]) = {1}},

then ΦE ∈ Φ(E). Finally, if Φ′ ∈ CM is equivalent to Φ and τ ∈ GCM is such that
Φ = τ · Φ′, then for every g ∈ GCM and every h ∈ Gal(QCM/E), we have Φ′(gh) = Φ′(g),
and Φ′E is equivalent to ΦE with ΦE = τ · Φ′E.

For clarity we divide the proof of Proposition 2.3 into the following two subsections.

2.1. Proof of Proposition 2.3 (i). Let E be a CM field and ΦE ∈ Φ(E) be a CM type for E.
Define the function Φ : GCM −→ {0, 1} by

Φ(g) := χΦE (g|E), g ∈ GCM

where χΦE is the characteristic function of the set ΦE and g|E ∈ Hom(E,Q) is the restriction of g
to E. We now prove that Φ ∈ CM.

Let g ∈ GCM. Since Hom(E,Q) = ΦE
⋃
· cΦE , we either have g|E ∈ ΦE or g|E ∈ cΦE , or

equivalently, g|E ∈ ΦE or (cg)|E ∈ ΦE . This proves that Φ(g) + Φ(cg) = 1. It remains to prove
that Φ is locally constant. Let Ec be the Galois closure of E. Then Ec is also a CM field (see e.g.
[Shi94, Proposition 5.12]), and it follows that gGal(QCM/Ec) is an open set containing g. Now,
observe that for any h ∈ Gal(QCM/Ec), we have h|E = idE , so that (gh)|E = g|E . Therefore

Φ(gh) = χΦE ((gh)|E) = χΦE (g|E) = Φ(g),

which implies that Φ is constant on gGal(QCM/Ec). It follows that Φ is locally constant, and
hence Φ ∈ CM.
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Now, suppose that ΦE and Φ
′
E are equivalent CM types for E. Let τ ∈ GCM be such ΦE = τΦ

′
E .

Then for an arbitrary element g ∈ GCM, the corresponding CM types Φ,Φ
′ ∈ CM satisfy

Φ(g) = χΦE (g|E) = χ
τΦ
′
E

(g|E) = χ
Φ
′
E

((τ−1g)|E) = Φ
′
(τ−1g).

Therefore, Φ is equivalent to Φ′ with Φ = τ ·Φ′. This completes the proof of Proposition 2.3 (i). �

2.2. Proof of Proposition 2.3 (ii). The first assertion of Proposition 2.3 (ii) is proved in the
following lemma.

Lemma 2.4. Let Φ ∈ CM be a CM type. Then there exists a Galois CM field E such that for
every g ∈ GCM and every h ∈ Gal(QCM/E) we have Φ(gh) = Φ(g).

Proof. Let g ∈ GCM. Since Φ is locally constant, there exists an open set Ug containing g such
that Φ is constant on Ug. Now, by definition of the Krull topology we have

Ug =
⋃
i∈I

gi Gal(QCM/Ei),

where for every i ∈ I we have gi ∈ GCM and Q ⊆ Ei ⊆ QCM with [Ei : Q] < ∞ and Ei/Q a
Galois extension. Since g ∈ Ug, we have g ∈ gi0 Gal(QCM/Ei0) for some i0 ∈ I. It follows that
gGal(QCM/Ei0) ⊆ gi0 Gal(QCM/Ei0). Let Eg be any Galois CM field containing Ei0 . Then

gGal(QCM/Eg) ⊆ gGal(QCM/Ei0) ⊆ gi0 Gal(QCM/Ei0) ⊆ Ug.

From the preceding facts, we conclude that

{gGal(QCM/Eg) | g ∈ GCM}

is an open cover of GCM such that Φ is constant on each of the sets gGal(QCM/Eg).
Now, since GCM is compact, there exists a finite subcover

{gj Gal(QCM/Egj )}rj=1

for some elements gj ∈ GCM. Let E := Eg1 · · ·Egr be the compositum of the Galois CM fields Egj .
Then E is a Galois CM field (see e.g. [Shi94, Proposition 5.12]). To complete the proof, we will
show that Φ is constant on gGal(QCM/E) for every g ∈ GCM.

Since Φ is constant on each gj Gal(QCM/Egj ), it suffices to show that there exists an integer

j ∈ {1, . . . , r} such that gGal(QCM/E) ⊂ gj Gal(QCM/Egj ). Since

{gj Gal(QCM/Egj )}rj=1

covers GCM, there exists an integer j ∈ {1, . . . , r} such that g ∈ gj Gal(QCM/Egj ). This implies

that g = gjhj for some hj ∈ Gal(QCM/Egj ). Let σ ∈ gGal(QCM/E). Then σ = gh for some h ∈
Gal(QCM/E), hence σ = gjhjh. Moreover, since Gal(QCM/E) ⊂ Gal(QCM/Egi), we have hjh ∈
Gal(QCM/Egj ). It follows that σ ∈ gj Gal(QCM/Egj ), and so gGal(QCM/E) ⊂ gj Gal(QCM/Egj ),
as desired. �

We now prove the second assertion of Proposition 2.3 (ii). Let Φ ∈ CM be a CM type. By
Lemma 2.4, there exists a Galois CM field E such that Φ is constant on gGal(QCM/E) for every
g ∈ GCM. For notational convenience, we define [g] := gGal(QCM/E). Since E/Q is Galois, we
have Hom(E,Q) = Gal(E/Q), and

GCM

Gal(QCM/E)
∼= Hom(E,Q). (2.1)
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Define the set

ΦE := {σ ∈ Hom(E,Q) | there exists g ∈ GCM with σ = g|E and Φ([g]) = {1}}.

We now show that ΦE ∈ Φ(E).
By (2.1), given an element σ ∈ Hom(E,Q), there is a unique coset [g] ∈ GCM/Gal(QCM/E)

such that σ = g|E . Since Φ is constant on each coset [g], it follows that either Φ([g]) = {0} or
Φ([g]) = {1}. Suppose that σ 6∈ ΦE . Then Φ([g]) = {0}, so that Φ([cg]) = {1}. Moreover, we
have cσ = (cg)|E , and thus cσ ∈ ΦE , or equivalently, σ ∈ cΦE . A short calculation shows that
ΦE ∩ cΦE = ∅. Hence Hom(E,Q) = ΦE

⋃
· cΦE , and we conclude that ΦE ∈ Φ(E).

Finally, we prove the third assertion of Proposition 2.3 (ii). Suppose that Φ
′ ∈ CM is equivalent

to Φ. Let τ ∈ GCM be such that Φ = τ · Φ′, i.e. Φ(g) = Φ
′
(τ−1g) for every g ∈ GCM. Since Φ is

constant on τgGal(QCM/E), it follows that for every g ∈ GCM and every h ∈ Gal(QCM/E), we
have

Φ
′
(gh) = Φ(τgh) = Φ(τg) = Φ

′
(g).

Let

Φ
′
E := {σ′ ∈ Hom(E,Q) | there exists g′ ∈ GCM with σ = g′|E and Φ

′
([g′]) = {1}}.

We will prove that ΦE = τΦ
′
E . We need only prove the containment ΦE ⊆ τΦ

′
E , since the reverse

containment can be proved mutatis mutandis. Let σ ∈ ΦE and let g ∈ GCM be such that σ = g|E
and Φ(g) = 1. Then this implies that Φ

′
(τ−1g) = 1. Finally, let σ′ := (τ−1g)|E . Then σ′ ∈ Φ

′
E , and

moreover σ = τσ′, so that σ ∈ τΦ
′
E . Hence ΦE ⊆ τΦ

′
E . This completes the proof of Proposition

2.3 (ii). �

Important Remark. In light of Proposition 2.3, from here forward we will use the two dif-
ferent notions of CM type and equivalence of CM types interchangeably, leaving it to the reader to
distinguish which notion is being used from the context.

3. Faltings heights and the Colmez conjecture

In this section we review the statement of the Colmez conjecture, following closely the discussion
in [Col98] and [Yan10b].

We begin by recalling the definition of the Faltings height of a CM abelian variety. A very
nice treatment of the definition of the Faltings height of an abelian variety is given in [Mil08,
Section IV.6]. Let F be a totally real number field of degree n. Let E/F be a CM extension of F
and Φ ∈ Φ(E) be a CM type for E. Let XΦ be an abelian variety defined over Q with complex
multiplication by OE and CM type Φ. We call XΦ a CM abelian variety of type (OE ,Φ). Let
K ⊆ Q be a number field over which XΦ has everywhere good reduction and choose a Néron
differential ω ∈ H0(XΦ,Ω

n
XΦ

). Then the Faltings height of XΦ is defined by

hFal(XΦ) := − 1

2[K : Q]

∑
σ:K↪→C

log

∣∣∣∣∣
∫
Xσ

Φ(C)
ωσ ∧ ωσ

∣∣∣∣∣ .
The Faltings height does not depend on the choice of K or ω. Moreover, Colmez [Col93] proved
that if XΦ and YΦ are CM abelian varieties of type (OE ,Φ), then hFal(XΦ) = hFal(YΦ), i.e., the
Faltings height depends on the CM type Φ, but does not depend on the choice of CM abelian
variety XΦ.

Let H(GCM,Q) be the Hecke algebra of Schwartz functions on the Galois group GCM which
take values in Q (see e.g. [Win89]). This is the Q-algebra of locally constant, compactly supported
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functions f : GCM −→ Q with multiplication of functions f1, f2 ∈ H(GCM,Q) given by the
convolution

(f1 ∗ f2)(g) :=

∫
GCM

f1(h)f2(h−1g) dµ(h).

Here µ is the left-invariant Haar measure on GCM, normalized so that

Vol(GCM) =

∫
GCM

dµ(g) = 1.

The Hecke algebra H(GCM,Q) is an associative algebra with no identity element. For a function

f ∈ H(GCM,Q), the reflex function f∨ ∈ H(GCM,Q) is defined by f∨(g) := f(g−1). We define a
Hermitian inner product on H(GCM,Q) by

〈f1, f2〉 :=

∫
GCM

f1(h)f2(h) dµ(h).

Let H0(GCM,Q) be the Q-subalgebra of H(GCM,Q) of class functions, i.e., the Q-subalgebra
of functions f ∈ H(GCM,Q) satisfying f(hgh−1) = f(g) for all h, g ∈ GCM. It is known that an
orthonormal basis for H0(GCM,Q) is given by the set

{χπ | π an irreducible representation of GCM}

of Artin characters χπ associated to the irreducible representations π of GCM (see e.g. [Col98]).
There is a projection map

H(GCM,Q) −→ H0(GCM,Q)

f 7−→ f0

defined by

f0(g) :=

∫
GCM

f(hgh−1) dµ(h).

As a map of Q-vector spaces, it corresponds to the orthogonal projection of H(GCM,Q) onto
H0(GCM,Q). In particular, one has

f0 =
∑
χπ

〈f, χπ〉χπ.

Define the functions

Z(f0, s) :=
∑
χπ

〈f, χπ〉
L′(χπ, s)

L(χπ, s)
and µArt(f

0) :=
∑
χπ

〈f, χπ〉 log(fχπ),

where L(χπ, s) is the (incomplete) Artin L–function of χπ and fχπ is the analytic Artin conductor
of χπ.

If Φ ∈ CM is a CM type, we define the function AΦ ∈ H(GCM,Q) by

AΦ := Φ ∗ Φ∨.

Colmez [Col93] made the following conjecture.

Conjecture 3.1 (Colmez [Col93]). Let E be a CM field, Φ be a CM type for E, and XΦ be a CM
abelian variety of type (OE ,Φ). Let AE,Φ := [E : Q]AΦ. Then

hFal(XΦ) = −Z(A0
E,Φ, 0)− 1

2
µArt(A

0
E,Φ).
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As discussed in the introduction, Colmez [Col93] proved Conjecture 3.1 when E/Q is abelian,
up to addition of a rational multiple of log(2) which was eliminated by Obus [Obu13]. Yang
[Yan10a, Yan10b, Yan13] proved Conjecture 3.1 for a large class of non-biquadratic quartic CM
fields, including the first known cases of the Colmez conjecture when E/Q is non-abelian.

4. The averaged Colmez conjecture

Let F be a totally real number field of degree n. Let E/F be a CM extension of F and Φ(E)
be the set of CM types for E. There are 2n CM types Φ ∈ Φ(E). By averaging both sides of
Conjecture 3.1 over Φ(E), one gets the conjectural identity

1

2n

∑
Φ∈Φ(E)

hFal(XΦ) =
1

2n

∑
Φ∈Φ(E)

(−Z(A0
E,Φ, 0)− 1

2
µArt(A

0
E,Φ)). (4.1)

The average on the right hand side of (4.1) can be simplified. Namely, by [AGHM15, Proposition
8.4.1] we have

1

2n

∑
Φ∈Φ(E)

(−Z(A0
E,Φ, 0)− 1

2
µArt(A

0
E,Φ)) = −1

2

L′(χE/F , 0)

L(χE/F , 0)
− 1

4
log

(
|dE |
dF

)
− n

2
log(2π), (4.2)

where L(χE/F , s) is the (incomplete) L–function of the Hecke character χE/F associated to the
quadratic extension E/F and dE (resp. dF ) is the discriminant of E (resp. F ).

These identities yield the following averaged version of the Colmez conjecture.

Conjecture 4.1 (The Averaged Colmez Conjecture). Let F be a totally real number field of degree
n. Let E/F be a CM extension of F , and for each CM type Φ ∈ Φ(E), let XΦ be a CM abelian
variety of type (OE ,Φ). Then

1

2n

∑
Φ∈Φ(E)

hFal(XΦ) = −1

2

L′(χE/F , 0)

L(χE/F , 0)
− 1

4
log

(
|dE |
dF

)
− n

2
log(2π). (4.3)

Conjecture 4.1 was recently proved independently by Yuan-Zhang [YZ15] and Andreatta-Goren-
Howard-Madapusi Pera [AGHM15].

Theorem 4.2 ([YZ15], [AGHM15]). Conjecture 4.1 is true.

Remark 4.3. Interest in the averaged Colmez conjecture is motivated in part by work of Tsimer-
man [Tsi15], who proved that it implies the André-Oort conjecture for the moduli space of princi-
pally polarized abelian varieties of dimension g.

5. The action of GCM on Φ(E) and the Colmez conjecture

In this section we prove the following result.

Proposition 5.1. Let F be a totally real number field of degree n. Let E/F be a CM extension
of F and Φ(E) be the set of CM types for E. If the action of GCM on Φ(E) is transitive, then
Conjecture 3.1 is true. In particular, if Φ ∈ Φ(E) and XΦ is a CM abelian variety of type (OE ,Φ),
then

hFal(XΦ) = −1

2

L′(χE/F , 0)

L(χE/F , 0)
− 1

4
log

(
|dE |
dF

)
− n

2
log(2π). (5.1)

We will need the following two crucial lemmas.

Lemma 5.2. If Φ1,Φ2 ∈ CM are equivalent CM types, then A0
Φ1

= A0
Φ2

.



ON THE COLMEZ CONJECTURE FOR NON-ABELIAN CM FIELDS 15

Proof. Since the CM types Φ1 and Φ2 are equivalent, there is an element τ−1 ∈ GCM such that
Φ1(g) = Φ2(τg) for every g ∈ GCM. Then we have

A0
Φ1

(g) =

∫
GCM

AΦ1(hgh−1) dµ(h)

=

∫
GCM

∫
GCM

Φ1(t)Φ∨1 (t−1hgh−1) dµ(t)dµ(h)

=

∫
GCM

∫
GCM

Φ1(t)Φ1(hg−1h−1t) dµ(h)dµ(t)

=

∫
GCM

∫
GCM

Φ2(τt)Φ2(τhg−1h−1t) dµ(h)dµ(t)

=

∫
GCM

Φ2(τt)

(∫
GCM

Φ2(τhg−1h−1τ−1τt) dµ(h)

)
dµ(t), (5.2)

where the complex conjugates are omitted since all functions involved are real valued (the CM
types Φ1 and Φ2 take values in {0, 1}). Next, define the function fg,τ,t(h) := Φ2(hg−1h−1τt). Then
the inner integral in (5.2) can be written as∫

GCM
Φ2(τhg−1h−1τ−1τt) dµ(h) =

∫
GCM

fg,τ,t(τh) dµ(h)

=

∫
GCM

fg,τ,t(h) dµ(h)

=

∫
GCM

Φ2(hg−1h−1τt) dµ(h), (5.3)

where in the second equality we used the left-invariance of the Haar measure. We substitute the
identity (5.3) for the inner integral in (5.2) and continue the calculation to get

A0
Φ1

(g) =

∫
GCM

Φ2(τt)

(∫
GCM

Φ2(hg−1h−1τt) dµ(h)

)
dµ(t)

=

∫
GCM

(∫
GCM

Φ2(τt)Φ2(hg−1h−1τt) dµ(t)

)
dµ(h)

=

∫
GCM

(∫
GCM

Φ2(t)Φ2(hg−1h−1t) dµ(t)

)
dµ(h)

=

∫
GCM

(∫
GCM

Φ2(t)Φ∨2 (t−1hgh−1) dµ(t)

)
dµ(h)

=

∫
GCM

AΦ2(hgh−1) dµ(h)

= A0
Φ2

(g),

where in the third equality we again used the left-invariance of the Haar measure. �

Lemma 5.3. Let E be a CM field, let Φ1 and Φ2 be CM types for E, and let XΦ1 and XΦ2 be CM
abelian varieties of types (OE ,Φ1) and (OE ,Φ2), respectively. If Φ1 and Φ2 are equivalent, then

hFal(XΦ1) = hFal(XΦ2).

Proof. Let XΦ be a CM abelian variety of type (OE ,Φ). Then by Colmez [Col93, Théoreme 0.3],
there is a unique Q-linear height function ht : H0(GCM,Q)→ R such that

hFal(XΦ) = −ht(A0
E,Φ)− 1

2
µArt(A

0
E,Φ). (5.4)
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Since Φ1 and Φ2 are equivalent, by Lemma 5.2 we have A0
Φ1

= A0
Φ2

, so that

A0
E,Φ1

= [E : Q]A0
Φ1

= [E : Q]A0
Φ2

= A0
E,Φ2

.

It follows from (5.4) that hFal(XΦ1) = hFal(XΦ2). �

Proof of Proposition 5.1. Fix a CM type Φ0 ∈ Φ(E), and let XΦ0 be a CM abelian variety
of type (OE ,Φ0). Since the action of GCM on Φ(E) is transitive, we have

hFal(XΦ0) =
1

2n

∑
Φ∈Φ(E)

hFal(XΦ)

=
1

2n

∑
Φ∈Φ(E)

(−Z(A0
E,Φ, 0)− 1

2
µArt(A

0
E,Φ)) (5.5)

= −Z(A0
E,Φ0

, 0)− 1

2
µArt(A

0
E,Φ0

),

where the first equality follows from Lemma 5.3, the second equality is the identity (4.1) (which is
equivalent to Theorem 4.2), and the third equality follows from Lemma 5.2. Since Φ0 was arbitrary,
this proves Conjecture 3.1. The identity (5.1) for the Faltings height then follows from (5.5) and
(4.2). �

6. The action of GCM on Φ(E) and the reflex degree

In this section we relate the action of GCM on Φ(E) to the degree of the reflex field of a CM pair
(E,Φ).

Let GQ := Gal(Q/Q) be the absolute Galois group. The following result can be found, for
example, in [Mil06, Proposition 1.16] and [Shi98, Proposition 28].

Proposition 6.1. Let E be a CM field and Φ be a CM type for E. Then the following conditions
on a subfield EΦ of Q are equivalent.

(i) We have

{σ ∈ GQ | σ fixes EΦ} = {σ ∈ GQ | σΦ = Φ},

that is, Gal(Q/EΦ) = StabGQ(Φ).

(ii) EΦ = Q ({TrΦ(a) | a ∈ E}), where TrΦ(a) :=
∑
φ∈Φ

φ(a) is the type trace of a ∈ E.

Definition 6.2. The field EΦ satisfying the equivalent conditions in Proposition 6.1 is called the
reflex field of the CM pair (E,Φ).

Let Ec denote the Galois closure of E.

Proposition 6.3. Let E be a CM field of degree 2n and Φ be a CM type for E. Then

[EΦ : Q] = #(Gal(Ec/Q) · Φ),

where Gal(Ec/Q) · Φ is the orbit of Φ under the action of Gal(Ec/Q). In particular, this implies
that [EΦ : Q] ≤ 2n.

Proof. By Proposition 6.1 (ii) we have EΦ ⊆ Ec, hence one can replace Q with Ec and GQ with
Gal(Ec/Q) in Proposition 6.1 (i) to conclude that

Gal(Ec/EΦ) = StabGal(Ec/Q)(Φ). (6.1)

Then using the fundamental theorem of Galois theory, identity (6.1), and the orbit-stabilizer the-
orem, we have

[EΦ : Q] = [Gal(Ec/Q) : Gal(Ec/EΦ)] = [Gal(Ec/Q) : StabGal(Ec/Q)(Φ)] = #(Gal(Ec/Q) · Φ).
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Finally, since Gal(Ec/Q) · Φ ⊆ Φ(E) and #Φ(E) = 2n, it follows that [EΦ : Q] ≤ 2n. �

Corollary 6.4. The action of GCM on Φ(E) is transitive if and only if [EΦ : Q] = 2n for some
CM type Φ ∈ Φ(E).

Proof. Since Ec is a CM field (see [Shi94, Proposition 5.12]), we have

Gal(Ec/Q) · Φ = GCM · Φ.
The result now follows from Proposition 6.3 and the fact that #Φ(E) = 2n. �

7. CM fields with reflex fields of maximal degree

Let F be a totally real number field of degree n. In the paragraph following [Shi70, (1.10.1)],
Shimura briefly sketched the construction of a CM extension E/F with reflex fields of maximal
degree. Based on this idea, we undertake an extensive study of the problem of constructing CM
fields with reflex fields of maximal degree and explicitly construct infinite families of CM extensions
E/F with this property. When n ≥ 3 these CM fields E are non-Galois over Q.

We begin with the following facts and notation which will be needed for the results in this section.

7.1. Multiplicative congruences, ray class groups, and higher unit groups. Let K be a
number field. For a prime ideal P of K, let vP : K −→ Z ∪ {∞} be the discrete valuation defined
by vP(x) := ordP(x). Also, let KP be the completion of K with respect to the P-adic absolute
value | · |P induced by the valuation vP. We denote the ring of P-adic integers by OP. The unique

maximal ideal of OP is P̂ := POP.

Let U := O×P be the group of units of OP. For any n ≥ 1, there is a subgroup of U defined by

U (n) := 1 + PnOP,

called the n-th higher unit group. The higher unit groups form a decreasing filtration

U ⊇ U (1) ⊇ U (2) ⊇ · · · ⊇ U (n) ⊇ · · · .

For elements α, β ∈ K×, we define the multiplicative congruence by

α
×≡ β (mod Pn) ⇐⇒ α ∈ β(1 + PnOP).

Thus we see that equivalently

α
×≡ β (mod Pn) ⇐⇒ α

β
∈ U (n) ⇐⇒ vP

(
α

β
− 1

)
≥ n.

Let m0 be an integral ideal of K and m∞ be the formal product of all the real infinite primes
corresponding to the embeddings in Hom(K,R). Define the modulus m := m0m∞. Then we extend
the multiplicative congruence by setting

α
×≡ β (mod m) ⇐⇒

α
×≡ β (mod PvP(m0)) for all P|m0, and

σ(α)

σ(β)
> 0 for all σ ∈ Hom(K,R).

The multiplicative congruence is indeed multiplicative, i.e., if

α1
×≡ β1 (mod m) and α2

×≡ β2 (mod m),

then

α1α2
×≡ β1β2 (mod m).

Let IK(m0) be the group of all fractional ideals of K that are relatively prime to m0. Let

Km,1 := {x ∈ K× | xOK is relatively prime to m0 and x
×≡ 1 (mod m)}
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be the ray modulo m and PK(m) be the subgroup of IK(m0) of principal fractional ideals xOK
generated by elements x ∈ Km,1. Then the ray class group of K modulo m is the quotient group

RK(m) := IK(m0)/PK(m).

A coset in the ray class group is called a ray class modulo m.

7.2. Constructing CM extensions with prescribed ramification. In the following proposi-
tion we explicitly construct infinite families of CM extensions with “arbitrary” prescribed ram-
ification. This is a variation on [Shi67, Lemma 1.5], adapted to the particular setting we will
consider.

Proposition 7.1. Let F be a totally real number field. Let p ∈ Z be a prime number and m ≥ 1 be
a positive integer. Let p be a prime ideal of F lying above p. Let R be a finite set of prime ideals
of F not dividing pm. Let U1 and U2 be finite sets of prime ideals of F not dividing 2pm such that
R,U1 and U2 are pairwise disjoint. Then there is a set SR,p of prime ideals of F which is disjoint
from R∪ U1 ∪ U2 ∪ {p} such that the following statements are true.

(i) SR,p has positive natural density.
(ii) Each prime ideal q ∈ SR,p is relatively prime to pm.

(iii) For each prime ideal q ∈ SR,p, there is an element ∆q ∈ OF with prime factorization

∆qOF = pq
∏
r∈R

r.

(iv) The field Eq := F (
√

∆q) is a CM extension of F which is ramified only at the prime ideals
of F dividing ∆q. Moreover, each prime ideal in U1 splits in Eq and each prime ideal in U2

is inert in Eq.

Remark 7.2. Note that if q1, q2 ∈ SR,p with q1 6= q2, then the associated CM extensions Eq1/F
and Eq2/F are distinct since they are ramified only at the primes in the sets R ∪ {p, q1} and
R∪ {p, q2}, respectively.

In order to prove Proposition 7.1 we will need the following two lemmas.

Lemma 7.3. Let S be a set of prime ideals of F and suppose that e ∈ Z satisfies

e ≥ 2 max{vP(2) | P ∈ S}+ 1.

Then for any prime ideal P ∈ S, if α ∈ F× and α
×≡ 1 (mod Pe) then FP(

√
α) = FP.

Proof. Let P ∈ S. Observe that FP(
√
α) = FP if and only if α is a perfect square in FP. Let OP

be the ring of integers of FP and U (n) := 1 +PnOP be the n-th higher unit group. Let vP : F −→
Z ∪ {∞} be the discrete valuation given by vP(x) := ordP(x). By [Wei98, Proposition 3-1-6, p.

79], if m, i ∈ Z are integers with m ≥ 1 and i ≥ vP(m) + 1, then the map φm : U (i) −→ U (i+vP(m))

given by φm(x) := xm is an isomorphism. In particular, when m = 2 the surjectivity of the map

φ2 implies that every element of U (i+vP(2)) is a perfect square.
Now, let i := max{vP(2) | P ∈ S}+ 1. Then because i ≥ vP(2) + 1, every element of U (i+vP(2))

is a perfect square. On the other hand, if e ∈ Z satisfies

e ≥ 2 max{vP(2) | P ∈ S}+ 1,

then e ≥ i+ vP(2). Since the higher unit groups form a decreasing filtration, it follows that

U (e) ⊆ U (i+vP(2)).

In particular, every element of U (e) is a perfect square. Finally, since α
×≡ 1 (mod Pe) implies that

α ∈ U (e), the proof is complete. �
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Lemma 7.4. For each prime ideal P of F , there exists an element αP ∈ OF such that FP(
√
αP)

is an unramified quadratic extension of FP.

Proof. Up to isomorphism, there is a unique unramified quadratic extension of FP, and moreover,
it can be obtained by adjoining to FP a lifting of a primitive element for the unique quadratic
extension of the finite field

OP/POP

(see e.g. [Chi09, Theorem 1.2.2, p. 14] or [KKS11, Proposition 6.54]). Thus, let

f̂(x) := x2 + â1x+ â0 ∈ OP/POP[x]

be an irreducible quadratic polynomial. It is known that the homomorphism

φ : OF −→ OP/POP

α 7−→ α+ POP

has kernel P and is surjective (see e.g. [Neu99, Propositions II.4.3 and II.2.4] or [FT93, Theorem
11(c)]). Thus every coset of OP/POP has a representative in OF . Let a0, a1 ∈ OF be such that
â0 = a0 + POP and â1 = a1 + POP. Then define the polynomial

f(x) := x2 + a1x+ a0 ∈ OF [x] ⊂ FP[x].

It follows that f(x) is irreducible in FP[x], and moreover by the quadratic formula its roots have
the form

−a1 ±
√
a2

1 − 4a0

2
.

Hence by taking αP := a2
1 − 4a0 ∈ OF , we see that FP(

√
αP) is an unramified quadratic extension

of FP. �

Proof of Proposition 7.1. Define the following disjoint sets of prime ideals of F .

T1 := (U1 ∪ {P ⊂ OF | P divides pm}) r {p},
T2 := (U2 ∪ {P ⊂ OF | P divides 2}) r (T1 ∪R ∪ {p}).

Now, fix an integer e ∈ Z satisfying

e ≥ 2 max{vP(2) | P ∈ T1 ∪ T2}+ 1.

Then by Lemma 7.3, for any prime ideal P ∈ T1 ∪ T2, if α ∈ F× and α
×≡ 1 (mod Pe) then

FP(
√
α) = FP. Also, as in Lemma 7.4, for each prime ideal P ∈ T2, let αP ∈ OF be such that

FP(
√
αP) is an unramified quadratic extension of FP.

Let m∞ be the formal product of all the real infinite primes corresponding to the embeddings
in Hom(F,R). By an application of the Approximation Theorem (see e.g. [Jan96, pp. 137-139]),
there exists an element a ∈ F× satisfying the following congruences.

(1) a
×≡ −1 (mod m∞).

(2) a
×≡ 1 (mod Pe) for every P ∈ T1.

(3) a
×≡ αP (mod Pe) for every P ∈ T2.

Define the integral ideal

m0 :=
∏

P∈T1∪T2

Pe



20 ADRIAN BARQUERO-SANCHEZ AND RIAD MASRI

and the modulus m := m0m∞. Let RF (m) be the ray class group modulo m. Observe that the
fractional ideal

n := ap−1
∏
r∈R

r−1 (7.1)

is relatively prime to m0. Then we can define the set of prime ideals

S(n) := {q ⊂ OF | q is a prime ideal and [q] = [n] in RF (m)}.
Also, define the set of prime ideals

SR,p := S(n) r (T1 ∪ T2 ∪R ∪ {p}).
To prove Proposition 7.1 (i), we first note that by Heilbronn [Hei67, Theorem 3] we have the

asymptotic formula

#{q ⊂ OF | q is a prime ideal with NF/Q(q) ≤ X} =
∑

NF/Q(q)≤X

1 =
X

logX
(1 + o(1)).

Also, by [Hei67, Theorem 4] with the choice of ray class C = [n] modulo m, we have

#{q ∈ S(n) | NF/Q(q) ≤ X} =
∑

NF/Q(q)≤X
q∈[n]

1 ∼ 1

#RF (m)

X

logX
.

Here we observe that in Heilbronn’s notation #RF (m) = hm (see e.g. [Hei67, p. 209]). Therefore,
combining the two previous asymptotic formulas we see that S(n) has natural density

d(S(n)) := lim
X→∞

#{q ∈ S(n) | NF/Q(q) ≤ X}
#{q ⊂ OF | q is a prime ideal with NF/Q(q) ≤ X}

=
1

#RF (m)
.

Since the set T1 ∪ T2 ∪R ∪ {p} is finite, we also have

d(SR,p) =
1

#RF (m)
.

To prove Proposition 7.1 (ii), note that if q ∈ SR,p then q 6∈ T1 ∪ {p}, hence q is relatively prime
to pm.

To prove Proposition 7.1 (iii), let q ∈ SR,p. Since [q] = [n] in RF (m), there exists an element
bq ∈ F× such that

bq
×≡ 1 (mod m) and q = bqn. (7.2)

By (7.1) and (7.2) we have

q = abqp
−1
∏
r∈R

r−1.

Define ∆q := abq. Then

∆qOF = abqOF = pq
∏
r∈R

r. (7.3)

Note that this also proves that ∆q ∈ OF .

Finally, define the field Eq := F (
√

∆q). Then Proposition 7.1 (iv) is a consequence of the
following lemma.

Lemma 7.5. Let a ∈ F× be an element satisfying (1)− (3) and bq ∈ F× be an element satisfying

(7.2). Let ∆q := abq ∈ OF . Then the field Eq := F (
√

∆q) is a CM extension of F which satisfies
the following properties.

(i) Eq is ramified only at the prime ideals of F dividing ∆q.
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(ii) Each prime ideal in U1 splits in Eq and each prime ideal in U2 is inert in Eq.

Proof. Since the prime ideals p, q and r ∈ R are all distinct, the identity (7.3) shows that ∆q is not

a perfect square in F . Also, by (1) and (7.2) we have ∆q = abq
×≡ −1 (mod m∞), or equivalently

∆q � 0. These facts imply that Eq is a totally imaginary quadratic extension of F , hence a CM
field.

Now, since ∆q ∈ OF we have
√

∆q ∈ OEq . Then by (7.3) we have

pOEqqOEq

∏
r∈R

rOEq = ∆qOEq =
(√

∆qOEq

)2
.

This implies that each of the prime ideals of F dividing ∆q is ramified in Eq. Thus, to prove (i), it
remains to show that if P is a prime ideal of F not dividing ∆q, then P is unramified in Eq.

It is known that if K is a number field and α is a root of the polynomial

f(x) := x2 − β ∈ OK [x],

then any nonzero prime ideal P of K such that P does not divide 2β is unramified in L := K(α)
(see e.g. [KKS11, Example 6.40, p. 59]). Therefore if P is a prime ideal of F such that P does not
divide 2∆q, then P is unramified in Eq. Thus it suffices to prove that if P is a prime ideal of F
such that P divides 2 and P does not divide ∆q, then P is unramified in Eq.

By (7.3) we know that the prime ideals of F that divide ∆q are the primes in the set R∪{p, q}.
Therefore from the definitions of T1 and T2 we see that the set of prime ideals P of F such that P
divides 2 and P 6∈ R ∪ {p, q} is a subset of T1 ∪ T2. Hence, in the remainder of the proof we will
show that the prime ideals in T1 ∪ T2 are unramified in Eq. In fact, we will show that the prime
ideals in T1 split in Eq and the prime ideals in T2 remain inert in Eq. Since U1 ⊂ T1 and U2 ⊂ T2,
this will also complete the proof of (ii).

Thus let P ∈ T1 ∪ T2 and let Q be a prime ideal of Eq lying above P. Also, let P̂ and Q̂
denote the unique prime ideals in the completions FP and Eq,Q, respectively. It is known that the
ramification indices are the same, i.e., we have

e(Q|P) = e(Q̂|P̂).

We will show that e(Q|P) = e(Q̂|P̂) = 1.
The minimal polynomial of the primitive element

√
∆q of Eq over F is

m∆q(x) := x2 −∆q ∈ OF [x].

It is known that the primes of Eq lying above P are in one to one correspondence with the irreducible
factors of m∆q(x) when considered as a polynomial in FP[x] and moreover, if Q corresponds to an
irreducible factor mi(x), then the completion of Eq at Q satisfies

Eq,Q
∼=

FP[x]

〈mi(x)〉
(see for example [Jan96, Theorem II.6.1, p. 115]).

We have two cases to consider.

Case 1: P ∈ T1. In this case the congruences (2) and (7.2) satisfied by a and bq imply that

∆q = abq
×≡ 1 (mod Pe). Hence by Lemma 7.3 we conclude that FP(

√
∆q) = FP. This implies

that there is an element c ∈ FP such that ∆q = c2. Therefore the polynomial m∆q(x) factors as

m∆q(x) = x2 − c2 = (x− c)(x+ c)

in FP[x]. Since the prime ideals of Eq lying over P are in one to one correspondence with the
irreducible factors x − c and x + c, and since Eq/F is a quadratic extension, we see that P splits
in Eq, so that e(Q|P) = 1.
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Case 2: P ∈ T2. In this case the congruences (3) and (7.2) satisfied by a and bq imply that

∆q = abq
×≡ αP (mod Pe), or equivalently,

∆q

αP

×≡ 1 (mod Pe).

Hence by Lemma 7.3, we have ∆q = c2αP for some c ∈ F×P , which implies that

FP(
√

∆q) = FP(
√
αP).

On the other hand, by Lemma 7.4 we have that FP(
√
αP) is an unramified quadratic extension

of FP. It follows that m∆q(x) is irreducible in FP[x]. Thus Q is the only prime ideal of Eq lying

above P and it corresponds to m∆q(x) = x2 −∆q. Therefore we have

Eq,Q
∼=

FP[x]

〈m∆q(x)〉
∼= FP(

√
∆q).

This implies that Eq,Q is an unramified quadratic extension of FP, hence e(Q̂|P̂) = 1. Therefore
e(Q|P) = 1, and in particular P remains inert in Eq. �

This completes the proof of Proposition 7.1. �

7.3. Constructing non-abelian CM fields with reflex fields of maximal degree. In the
following theorem we prove that if E/F is a CM extension satisfying a certain mild ramification
condition, then the reflex fields EΦ have maximal degree, and moreover, if n ≥ 3 then E/Q is
non-Galois.

Theorem 7.6. Let F be a totally real number field of degree n. Let p ∈ Z be a prime number
that splits in the Galois closure F c and let p be a prime ideal of F lying above p. Let dF c be the
discriminant of F c and L be a finite set of prime ideals of F not dividing pdF c. Then if E/F is a
CM extension which is ramified only at the prime ideals of F in the set L ∪ {p}, the reflex degree
[EΦ : Q] = 2n for every CM type Φ ∈ Φ(E). Moreover, if n ≥ 3 then E/Q is non-Galois (hence
non-abelian).

We will prove Theorem 7.6 using a sequence of five lemmas which are now proved in succession.

Lemma 7.7. Let F be a totally real number field of degree n. Let E/F be a CM extension and
Φ = {σ1, . . . , σn} ∈ Φ(E) be a CM type for E. Let EΦ be the reflex field of the CM pair (E,Φ).
Then

EΦF
c = Eσ1 · · ·Eσn = Ec.

Proof. We first prove that

Eσ1 · · ·Eσn ⊆ EΦF
c.

It suffices to show that σj(γ) ∈ EΦF
c for all γ ∈ E and j = 1, . . . , n. Let α1, . . . , αn be an integral

basis for F . By Proposition 6.1 (ii), the reflex field of the CM pair (E,Φ) is given by

EΦ = Q ({TrΦ(a) | a ∈ E}) ,

where TrΦ(a) =
n∑
j=1

σj(a). Then for all γ ∈ E and i = 1, . . . , n, we have

TrΦ(γαi) =
n∑
j=1

σj(γαi) =
n∑
j=1

σj(αi)σj(γ) ∈ EΦ.
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In particular, there are elements βi ∈ EΦ such that
n∑
j=1

σj(αi)σj(γ) = βi

for i = 1, . . . , n. This yields the linear system
σ1(α1) σ2(α1) · · · σn(α1)
σ1(α2) σ2(α2) · · · σn(α2)

...
...

. . .
...

σ1(αn) σ2(αn) · · · σn(αn)



σ1(γ)
σ2(γ)

...
σn(γ)

 =


β1

β2
...
βn

 .
The matrix [σj(αi)] ∈ Mn×n(F c), and it is invertible since det [σj(αi)]

2 = dF 6= 0. It follows from
Cramer’s rule that

σj(γ) =

det

σ1(α1) · · · σj−1(α1) β1 σj+1(α1) · · · σn(α1)
...

...
...

...
...

σ1(αn) · · · σj−1(αn) βn σj+1(αn) · · · σn(αn)


det

σ1(α1) · · · σn(α1)
...

. . .
...

σ1(αn) · · · σn(αn)


(7.4)

for j = 1, . . . , n. Since σj(αi) ∈ F c and βi ∈ EΦ for i, j = 1, . . . , n, the denominator in (7.4) is in
F c and the numerator is in EΦF

c. Therefore, σj(γ) ∈ EΦF
c for all γ ∈ E and j = 1, . . . , n, which

implies that

Eσ1 · · ·Eσn ⊆ EΦF
c.

On the other hand, since the compositum of all the conjugate fields of a number field is equal to its
Galois closure, and since complex conjugation is an automorphism of E that commutes with every
embedding (see [Shi94, Proposition 5.11]), we have Eσ1 · · ·Eσn = Ec. Therefore, since EΦF

c ⊆ Ec,
we conclude that

EΦF
c = Eσ1 · · ·Eσn = Ec.

�

Lemma 7.8. Let F be a totally real number field of degree n. Let p ∈ Z be a prime number that
splits in the Galois closure F c and let p be a prime ideal of F lying above p. Let E/F be a CM
extension and Φ = {σ1, . . . , σn} ∈ Φ(E) be a CM type for E. Then the ideals pσ1OF c , . . . , pσnOF c
are pairwise relatively prime.

Proof. Suppose that P is a prime of F c lying above p. Thus P also lies above p ∈ Z. Since F c/Q
is Galois, we have

pOF c =
∏

σ∈Gal(F c/Q)

σ(P). (7.5)

Moreover, since p splits in F c, it follows that σ(P) 6= τ(P) for any σ, τ ∈ Gal(F c/Q) with σ 6= τ .
Now, let Gi := Gal(F c/F σi) for i = 1, . . . , n. For each i = 1, . . . , n we have that pσi is a prime

ideal of F σi lying above p. Hence pσi also splits in F c. Let σ̃i ∈ Gal(F c/Q) be an extension of
the embedding σi|F : F ↪→ F c, i.e. σ̃i|F = σi|F . It follows that σ̃i(P) lies above pσi , and since the
extension F c/F σi is Galois, we have

pσiOF c =
∏
σ∈Gi

σ(σ̃i(P)) =
∏

τ∈Giσ̃i

τ(P).
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Since Giσ̃i ⊆ Gal(F c/Q) for i = 1, . . . , n and σ(P) 6= τ(P) for any σ, τ ∈ Gal(F c/Q) with σ 6= τ ,
it suffices to prove that Giσ̃i ∩Gj σ̃j = ∅ for i 6= j.

Suppose for contradiction that there exists an element σ ∈ Giσ̃i∩Gj σ̃j for i 6= j. Then there are
elements τi ∈ Gi and τj ∈ Gj such that σ = τiσ̃i and σ = τj σ̃j . Since {σ1, . . . , σn} is a CM type for

E, then Hom(F,Q) = {σ1|F , . . . , σn|F } and therefore the embeddings σi|F and σj |F are different.
Hence there is an element x ∈ F such that σi(x) 6= σj(x). Since σi(x) ∈ F σi and τi|Fσi = idFσi , it
follows that

σi(x) = σ̃i(x) = τi(σ̃i(x)) = τj(σ̃j(x)) = σ̃j(x) = σj(x),

which is a contradiction. Thus for i 6= j, we have Giσ̃i ∩ Gj σ̃j = ∅, which shows that the ideals
pσiOF c and pσjOF c are relatively prime. �

For an extension of number fields L/K, let D(L/K) be the relative different, which is an integral
ideal of L. Recall that if P is a prime ideal of L and p := P ∩OK is the unique prime lying below
P in K, then P divides the relative different D(L/K) if and only if p ramifies in the extension L/K
(see e.g. [Neu99, Theorem III.2.6]).

Lemma 7.9. Let F be a totally real number field. Let p ∈ Z be a prime number that splits in the
Galois closure F c and let p be a prime ideal of F lying above p. Let L be a finite set of prime ideals
of F not dividing pdF c. Let E/F be a CM extension which is ramified only at the prime ideals of
F in the set L ∪ {p}. Then

D(EF c/F c) = D(E/F )OEF c .

Proof. We have the following towers of fields.

EF c

F c E

F

Since the relative different is multiplicative in towers, we have the identity

D(EF c/F c)D(F c/F ) = D(EF c/E)D(E/F ). (7.6)

We will prove that D(EF c/F c) and D(EF c/E) are relatively prime, and that D(F c/F ) and
D(E/F ) are relatively prime as ideals in OEF c . Then (7.6) would imply that

D(EF c/F c) = D(E/F )OEF c . (7.7)

First, we prove that D(F c/F ) and D(E/F ) are relatively prime as ideals in OEF c . To see this,
suppose for contradiction that there is a prime ideal PEF c of OEF c such that

PEF c |D(F c/F )OEF c and PEF c |D(E/F )OEF c .
Define the prime ideals PF := PEF c ∩OF , PF c := PEF c ∩OF c and PE := PEF c ∩OE . Then PF c

is a prime in F c that divides D(F c/F ) and hence PF = PF c ∩OF ramifies in the extension F c/F .
Similarly, PE is a prime ideal of E that divides D(E/F ) and hence PF = PE ∩OF ramifies in the
extension E/F .

Now, since the only primes of F that ramify in E are the primes in the set L ∪ {p}, it follows
that PF = p or PF = l for some l ∈ L. We will see now that each of these two possibilities leads
to a contradiction. If PF = p, then p would be ramified in F c. But this would contradict the fact
that p splits in F c, since p lies above p. On the other hand, if PF = l for some l ∈ L, then l would
be ramified in F c. Hence the rational prime ` such that `Z = l∩Z would be ramified in F c, which
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implies that ` divides dF c and hence that l divides dF c . However, this is a contradiction since we
assumed that the prime ideals in the set L do not divide pdF c . Thus D(F c/F ) and D(E/F ) are
relatively prime as ideals in OEF c , as claimed.

Next, we prove that D(EF c/F c) and D(EF c/E) are relatively prime. By [Rib01, Section 13.2,
U. (1), p. 253], we have that D(EF c/F c)|D(E/F )OEF c and D(EF c/E)|D(F c/F )OEF c . Since we
proved that D(E/F )OEF c and D(F c/F )OEF c are relatively prime, it follows that D(EF c/F c) and
D(EF c/E) are relatively prime. This completes the proof of the lemma.

�

For an extension of number fields L/K, let d(L/K) be the relative discriminant, which is an
integral ideal of K.

Lemma 7.10. Let F be a totally real number field of degree n. Let p ∈ Z be a prime number that
splits in the Galois closure F c and let p be a prime ideal of F lying above p. Let L be a finite set
of prime ideals of F not dividing pdF c. Let E/F be a CM extension which is ramified only at the
prime ideals of F in the set L ∪ {p}. Let Φ = {σ1, . . . , σn} ∈ Φ(E) be a CM type for E. Then the
relative discriminant d(EσiF c/F c) is divisible by pσiOF c, but relatively prime to pσjOF c for j 6= i.

Proof. We first prove the following claim.

Claim. The relative different D(E/F )OEF c is divisible by the primes of EF c lying above the
primes in the set L ∪ {p}, and by no other primes of EF c.

Proof of the Claim. Since the primes in the set L∪{p} are the only primes of F which ramify
in E, we have

d(E/F ) = pap
∏
l∈L

lal

for some positive integers ap and al for l ∈ L. Moreover, since E/F is quadratic, there is a prime
ideal P of E such that pOE = P2 and a set of prime ideals {Pl | l ∈ L} of E such that lOE = P2

l
for each l ∈ L. Therefore, the relative different factors as

D(E/F ) = PuP
∏
l∈L

Pul
l

for some positive integers uP and ul for l ∈ L. By extending the relative different to EF c, we see that
D(E/F )OEF c is divisible by the primes of EF c lying above the primes in the set {P}∪{Pl | l ∈ L},
and by no other primes of EF c. It follows that D(E/F )OEF c is divisible by the primes of EF c

lying above the primes in the set L∪{p}, and by no other primes of EF c. This completes the proof
of the claim. �

Now, since p splits in F c, it follows that p also splits in F c. Hence

pOF c = p1 · · · pg, (7.8)

where g = [F c : F ] and the pk are distinct prime ideals of F c. For k = 1, . . . , g, we have

pkOEF c =

ak∏
t=1

P
bk,t
k,t

for distinct prime ideals Pk,t of EF c and some positive integers ak and bk,t. Thus

pOEF c =

g∏
k=1

ak∏
t=1

P
bk,t
k,t .

The prime ideals Pk,t are the primes of EF c lying above p. Hence by the Claim, we see that Pk,t

divides D(E/F )OEF c . However, by Lemma 7.9,

D(EF c/F c) = D(E/F )OEF c , (7.9)
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hence Pk,t divides D(EF c/F c). It follows that pk = Pk,t∩OF c divides d(EF c/F c) for k = 1, . . . , g.
Similarly, for a prime ideal l ∈ L, starting with the factorization

lOF c = P
r(l,1)
l,1 · · ·Pr(l,gl)

l,gl

for distinct prime ideals Pl,k of F c and some positive integers r(l, k) for k = 1, . . . , gl, an analogous
argument shows that Pl,k divides d(EF c/F c) for k = 1, . . . , gl.

By the Claim and the identity (7.9), the primes of EF c lying above the primes in the set

{pk | k = 1, . . . , g} ∪
⋃
l∈L
{Pl,k | k = 1, . . . , gl}

are the only primes of EF c which divide D(EF c/F c). Hence, the relative discriminant factors as

d(EF c/F c) = pc11 · · · p
cg
g

∏
l∈L

gl∏
k=1

P
d(l,k)
l,k (7.10)

for some positive integers c1, . . . , cg and d(l, k) for l ∈ L and k = 1, . . . , gl.
Now, for each embedding σi ∈ Φ, let σ̃i be an extension of σi to EF c. Then since F c/Q is Galois,

we have σ̃i(F
c) = F c, and therefore conjugating by σ̃i in equation (7.10) yields

d(EσiF c/F c) = σ̃i(p1)c1 · · · σ̃i(pg)cg
∏
l∈L

gl∏
k=1

σ̃i (Pl,k)
d(l,k) . (7.11)

It follows from (7.8) and (7.11) that

pσiOF c = σ̃i(p1) · · · σ̃i(pg) (7.12)

divides d(EσiF c/F c). This proves the first part of the lemma.
It remains to prove that pσjOF c is relatively prime to d(EσiF c/F c) for j 6= i. By Lemma 7.8, the

ideal pσjOF c is relatively prime to pσiOF c for j 6= i, and hence relatively prime to σ̃i(p1)c1 · · · σ̃i(pg)cg
by equation (7.12). Thus, by (7.11) it suffices to prove that pσjOF c is relatively prime to σ̃i (Pl,k)
for each l ∈ L and k = 1, . . . , gl. To see this, recall that the prime ideal l does not divide pdF c ,
hence l lies above a rational prime ` ∈ Z with ` 6= p. Since σ̃i (Pl,k) lies above `, and each of the
prime factors of pσjOF c lies above p, it follows that pσjOF c must be relatively prime to σ̃i (Pl,k).
This proves the second part of the lemma. �

Lemma 7.11. Let F be a totally real number field of degree n. Let p ∈ Z be a prime number that
splits in the Galois closure F c and let p be a prime ideal of F lying above p. Let L be a finite set
of prime ideals of F not dividing pdF c. Let E/F be a CM extension which is ramified only at the
prime ideals of F in the set L ∪ {p}. Let Φ = {σ1, . . . , σn} ∈ Φ(E) be a CM type for E and EΦ be
the reflex field of the CM pair (E,Φ). Then [EΦF

c : F c] = 2n and [Ec : Q] = 2n[F c : Q].

Proof. By Lemma 7.7 we have EΦF
c = Eσ1 · · ·EσnF c = Ec. Hence, to prove that [EΦF

c : F c] = 2n,
we will show that in the tower of extensions

F c ⊆ Eσ1F c ⊆ Eσ1Eσ2F c ⊆ · · · ⊆ Eσ1 · · ·EσnF c,
each successive extension

Eσ1 · · ·Eσi−1EσiF c

Eσ1 · · ·Eσi−1F c

is quadratic. First, observe that there is an element ∆ ∈ OF with ∆ � 0 and E = F (
√

∆).

Therefore EσiF c = F c(
√
σi(∆)), and hence for each i = 1, . . . , n we have

Eσ1 · · ·EσiF c = F c(
√
σ1(∆), . . . ,

√
σi(∆)).



ON THE COLMEZ CONJECTURE FOR NON-ABELIAN CM FIELDS 27

This implies that

[Eσ1 · · ·Eσi−1EσiF c : Eσ1 · · ·Eσi−1F c] ≤ 2.

Now, for each i = 1, . . . , n, let pi be a prime ideal of F c dividing the ideal pσiOF c . Then for
i 6= j, Lemma 7.8 implies that pi 6= pj , and moreover, by Lemma 7.10, the relative discriminant
d(EσiF c/F c) is divisible by pi, but not by pj . This implies that pi is ramified in EσiF c, but pj is
unramified in EσiF c.

By the preceding paragraph, for each i = 1, . . . , n, the prime ideal pi is unramified in the exten-
sions Eσ1F c, . . . , Eσi−1F c. Now, it is known that if a prime ideal of a number field M is unramified
in the extensions K/M and L/M , then it is unramified in their compositum KL/M (see e.g [Koc00,
Proposition 4.9.2]). Therefore, it follows that pi is unramified in the compositum Eσ1 · · ·Eσi−1F c.
On the other hand, since pi is ramified in EσiF c/F c, it is ramified in Eσ1 · · ·Eσi−1EσiF c/F c.

Let P be a ramified prime ideal of Eσ1 · · ·Eσi−1EσiF c lying above pi. Then Q := P∩OEσ1 ···Eσi−1F c

is an unramified prime ideal of Eσ1 · · ·Eσi−1F c lying above pi. In terms of ramification indices, we
have e(P|pi) ≥ 2 and e(Q|pi) = 1. Then by multiplicativity of the ramification index, we have

e(P|pi) = e(P|Q)e(Q|pi) = e(P|Q).

Hence

[Eσ1 · · ·Eσi−1EσiF c : Eσ1 · · ·Eσi−1F c] ≥ e(P|Q) = e(P|pi) ≥ 2.

We conclude that

[Eσ1 · · ·Eσi−1EσiF c : Eσ1 · · ·Eσi−1F c] = 2.

This completes the proof that [EΦF
c : F c] = 2n.

Finally, since Ec = EΦF
c and [EΦF

c : F c] = 2n, it follows that

[Ec : Q] = [Ec : F c][F c : Q] = 2n[F c : Q].

�

Proof of Theorem 7.6. We have the following towers of fields.

EΦF
c

EΦ F c

Q

Therefore,

[EΦF
c : EΦ][EΦ : Q] = [EΦF

c : F c][F c : Q],

hence by Lemma 7.11 we have

[EΦ : Q] = 2n
[F c : Q]

[EΦF c : EΦ]
.

Now, it is known that if K/M is a finite Galois extension and L/M is an arbitrary extension, then
[KL : L] divides [K : M ] (see e.g. [Lan02, Corollary VI.1.13]). Since F c/Q is Galois, we have that
[EΦF

c : EΦ] divides [F c : Q]. This implies that [EΦ : Q] ≥ 2n. On the other hand, by Proposition
6.3, we also know that [EΦ : Q] ≤ 2n, thus we conclude that [EΦ : Q] = 2n, as desired.

Finally, since Q ⊆ EΦ ⊆ Ec, it follows that [EΦ : Q] = 2n divides [Ec : Q]. Then if n ≥ 3 we have
[Ec : Q] ≥ 2n > 2n = [E : Q], which proves that the field extension E/Q is non-Galois, therefore
non-abelian. �
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Remark 7.12. Let E/F be a CM extension as in Lemma 7.11. Then since [Ec : Q] = 2n[F c : Q],
the CM field E is a Weyl CM field if and only if [F c : Q] = n!.

7.4. Algorithm for constructing CM fields with reflex fields of maximal degree. By
combining (the proof of) Proposition 7.1 with the choice m = dF c and Theorem 7.6 with the choice
L = R∪ {q}, we obtain the following algorithm for constructing infinite families of CM extensions
which are non-Galois over Q and with reflex fields of maximal degree.

Algorithm 1 CM fields with reflex fields of maximal degree

Input: A tuple (F, p, p,R,U1,U2) consisting of a totally real number field F of degree n, a
rational prime p ∈ Z that splits in F c, a prime ideal p of F lying above p, a finite set R of
prime ideals of F not dividing pdF c , and finite sets U1 and U2 of prime ideals of F not dividing
2pdF c such that R, U1 and U2 are pairwise disjoint.

Output: A pair (q,∆q) where q is a prime ideal of F not dividing pdF c , and ∆q is an element
of OF with prime factorization

∆qOF = pq
∏
r∈R

r.

The field Eq := F (
√

∆q) is a CM extension of F ramified only at the prime ideals of F dividing
∆q with reflex fields of maximal degree 2n. Moreover, each prime ideal in U1 splits in Eq and
each prime ideal in U2 remains inert in Eq. If n ≥ 3 then Eq/Q is non-Galois.

1: Set T1 := (U1 ∪ {P ⊂ OF | P divides pdF c}) r {p}.
2: Set T2 := (U2 ∪ {P ⊂ OF | P divides 2}) r (T1 ∪R ∪ {p}).
3: Choose an integer e ∈ Z satisfying e ≥ 2 max{vP(2) | P ∈ T1 ∪ T2}+ 1.
4: Set m∞ to be the formal product of all the embeddings in Hom(F,R).
5: Set

m0 :=
∏

P∈T1∪T2

Pe

and m := m0m∞.
6: For each P ∈ T2 find an element αP ∈ OF such that FP(

√
αP) is an unramified quadratic

extension of FP.
7: Find an element a ∈ F× satisfying the following congruences.

(i) a
×≡ −1 (mod m∞).

(ii) a
×≡ 1 (mod Pe) for every P ∈ T1.

(iii) a
×≡ αP (mod Pe) for every P ∈ T2.

8: Set
n := ap−1

∏
r∈R

r−1.

9: Choose a prime ideal q ⊂ OF lying in the ray class of n modulo m such that q 6∈ T1∪T2∪R∪{p}.
10: Find an element bq ∈ F× such that bq

×≡ 1 (mod m) and q = bqn.
11: Set ∆q := abq.
12: Return: (q,∆q).

Remark 7.13. For steps 3 and 6 in the algorithm, see Lemmas 7.3 and 7.4, respectively.

Remark 7.14. The congruences in steps 7 and 9 of the algorithm are chosen to force the given
prime ideal P ∈ T1 ∪ T2 to be unramified in the extension Eq. In fact, as was shown in the proof



ON THE COLMEZ CONJECTURE FOR NON-ABELIAN CM FIELDS 29

of Lemma 7.5, the congruence 7 (ii) forces P to split in Eq, while the congruence 7 (iii) forces P
to remain inert in Eq.

Remark 7.15. Recall from the proof of Proposition 7.1 that SR,p := S(n) r (T1 ∪ T2 ∪ R ∪ {p}),
where

S(n) := {q ⊂ OF | q is a prime ideal and [q] = [n] in RF (m)}.
Also, as was shown in the proof of Proposition 7.1, the set SR,p has natural density d(SR,p) =
1/#RF (m).

8. Proof of Theorem 1.1

Let F be a totally real number field of degree n ≥ 3. Let p ∈ Z be a prime number which splits
in the Galois closure F c and let p be a prime ideal of F lying above p. Let R be a finite set of prime
ideals of F not dividing pdF c . Let U1 and U2 be finite sets of prime ideals of F not dividing 2pdF c
such that R,U1 and U2 are pairwise disjoint. Then by Proposition 7.1 with the choice m = dF c ,
there is a set SR,p of prime ideals of F which is disjoint from R ∪ U1 ∪ U2 ∪ {p} such that the
following statements are true.

(i) SR,p has positive natural density.
(ii) Each prime ideal q ∈ SR,p is relatively prime to pdF c .

(iii) For each prime ideal q ∈ SR,p, there is an element ∆q ∈ OF with prime factorization

∆qOF = pq
∏
r∈R

r.

(iv) The field Eq := F (
√

∆q) is a CM extension of F which is ramified only at the prime ideals
of F dividing ∆q. Moreover, each prime ideal in U1 splits in Eq and each prime ideal in U2

is inert in Eq.

It follows from Theorem 7.6 with the choice L = R ∪ {q} that for each prime ideal q ∈ SR,p, the
degree of the reflex field Eq,Φ is [Eq,Φ : Q] = 2n for every CM type Φ ∈ Φ(Eq), and moreover, since
n ≥ 3 then Eq/Q is non-Galois.

Now, by Proposition 5.1 and Corollary 6.4, if E is a CM field and there exists a CM type
Φ ∈ Φ(E) such that the degree of the reflex field EΦ is [EΦ : Q] = 2n, then Conjecture 3.1 is true
for E. It then follows from the previous paragraph that for each prime ideal q ∈ SR,p, Conjecture
3.1 is true for Eq. �

9. Weyl CM fields and the proof of Theorem 1.4

Let E = Q(α) be a CM field of degree 2g. Let mα(X) be the minimal polynomial of α and
denote its roots by α1 = α, α1, . . . , αg, αg. Let

a2`−1 := α` and a2` := α` (9.1)

for ` = 1, . . . , g. Then Ec = Q(a1, . . . , a2g) is the Galois closure of E. Let S2g be the symmetric
group on the elements {a1, . . . , a2g} and W2g be the subgroup of S2g consisting of permutations
which map any pair of the form {a2j−1, a2j} to a pair {a2k−1, a2k}. The group W2g is called the
Weyl group. It can be shown that #W2g = 2gg! and that W2g fits into an exact sequence

1 −→ (Z/2Z)g −→W2g −→ Sg −→ 1.

Proposition 9.1. The Galois group Gal(Ec/Q) is isomorphic to a subgroup of W2g.

Proof. There is an injective group homomorphism φ : Gal(Ec/Q) −→ S2g given by restriction σ 7−→
σ|{a1,...,a2g}. Hence Gal(Ec/Q) ∼= φ(Gal(Ec/Q)) < S2g, so it suffices to prove that φ(Gal(Ec/Q)) ⊆
W2g, or equivalently, that given σ ∈ Gal(Ec/Q) and a pair {a2j−1, a2j}, we have σ({a2j−1, a2j}) =
{a2k−1, a2k}. Since σ permutes the elements {a1, . . . , a2g}, we have σ(a2j−1) = a2k−1 or σ(a2j−1) =
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a2k for some k. Now, since E is a CM field, given any b ∈ E, we have σ(b) = σ(b) for all
σ ∈ Gal(Ec/Q). Moreover, from (9.1), we have a2`−1 = a2` and a2` = a2`−1. Combining these facts
yields

σ(a2j) = σ(a2j−1) = a2k−1 = a2k or σ(a2j) = σ(a2j−1) = a2k = a2k−1.

This completes the proof. �

Definition 9.2. If E is a CM field such that Gal(Ec/Q) ∼= W2g, then E is called a Weyl CM field.

Remark 9.3. Observe that if g ≥ 2 and E is a Weyl CM field of degree 2g, then E/Q is non-Galois
since #Gal(Ec/Q) = 2gg! > 2g = [E : Q]. In particular, any Weyl CM field of degree 2g ≥ 4 is
non-abelian.

Proof of Theorem 1.4. Let E be a Weyl CM field. Then by Proposition 5.1 and Corollary
6.4, it suffices to prove that there exists a CM type Φ for E such that the reflex field EΦ has degree
[EΦ : Q] = 2g. For i = 1, . . . , g let τi : E ↪→ C be the embedding defined by τi(α1) = αi, where
α1 = α. Then Hom(E,C) = {τ1, τ1, . . . , τg, τg}. Note that τi(a1) = a2i−1 for i = 1, . . . , g. Fix the
choice of CM type Φ = {τ1, . . . , τg}. We will prove that [EΦ : Q] = 2g.

Since E is a Weyl CM field, we have Gal(Ec/Q) ∼= W2g, and thus #Gal(Ec/Q) = 2gg!. Moreover,
the calculations in the proof of Lemma 6.3 yield

[EΦ : Q] =
# Gal(Ec/Q)

# StabGal(Ec/Q)(Φ)
=

2gg!

# StabGal(Ec/Q)(Φ)
.

Hence it suffices to prove that # StabGal(Ec/Q)(Φ) = g!.

Let Sodd
2g be the symmetric group on the odd-indexed elements {a1, a3, . . . , a2g−1}. Then

σ ∈ StabGal(Ec/Q)(Φ) ⇐⇒ σΦ = Φ

⇐⇒ for all i, there exists a j such that στi(a1) = τj(a1)

⇐⇒ for all i, there exists a j such that σ(a2i−1) = a2j−1

⇐⇒ σ|{a1,a3,...,a2g−1} ∈ S
odd
2g .

Thus we have a map φ̃ : StabGal(Ec/Q)(Φ) −→ Sodd
2g given by restriction σ 7−→ σ|{a1,a3,...,a2g−1}. We

will prove that φ̃ is bijective.

Surjectivity: Let π ∈ Sodd
2g . Then for all i, there exists a j such that π(a2i−1) = a2j−1.

There is a unique lift π̃ of π to W2g given by π̃(a2i−1) = a2j−1 and π̃(a2i) = a2j . Since E is
a Weyl CM field, we have an isomorphism Gal(Ec/Q) ∼= φ(Gal(Ec/Q)) = W2g, where φ is the
restriction map σ 7−→ σ|{a1,...,a2g} in the proof of Proposition 9.1. Hence there exists a unique

element σ ∈ Gal(Ec/Q) such that φ(σ) = π̃. Observe that

σ|{a1,a3,...,a2g−1} = π̃|{a1,a3,...,a2g−1} = π ∈ Sodd
2g .

It follows that σ ∈ StabGal(Ec/Q)(Φ) with φ̃(σ) = π. This proves that φ̃ is surjective.

Injectivity: Let σ1, σ2 ∈ StabGal(Ec/Q)(Φ) with φ̃(σ1) = φ̃(σ2). Then

σ1|{a1,a3,...,a2g−1} = σ2|{a1,a3,...,a2g−1},

i.e., σ1(a2i−1) = σ2(a2i−1) for i = 1, . . . , g. On the other hand, arguing as in the proof of Proposition
9.1, we have

σ1(a2i) = σ1(a2i−1) = σ1(a2i−1) = σ2(a2i−1) = σ2(a2i−1) = σ2(a2i)

for i = 1, . . . , g. Thus, σ1 = σ2. This proves that φ̃ is injective.

Since φ̃ is bijective, we have # StabGal(Ec/Q)(Φ) = #Sodd
2g = g!. This completes the proof. �
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10. Proof of Theorem 1.9

As mentioned in Remark 1.5, if E is a quartic CM field then the only possible Galois groups of its
Galois closure are C4 := Z/4Z, V4 := Z/2Z× Z/2Z and D4. Moreover, the Weyl group W4

∼= D4.
It is known that if a quartic number field K has Galois group Gal(Kc/Q) ∼= C4 or V4, then K
contains a unique real quadratic subfield. Hence for the signature (0, 2) (which corresponds to the
quartic totally complex case) we have

CM4(C4, X) = N0,2(C4, X) and CM4(V4, X) = N0,2(V4, X). (10.1)

When Gal(Kc/Q) ∼= D4, then K can either contain a real quadratic subfield or an imaginary
quadratic subfield. Thus in that case one can define a refined counting function N+

0,2(D4, X) which

counts only isomorphism classes of quartic number fields K/Q with signature (0, 2) containing a
real quadratic subfield, and such that Gal(Kc/Q) ∼= D4 and |dK | ≤ X (see [CDO02]). With this
notation we then have

CM4(W4, X) = CM4(D4, X) = N+
0,2(D4, X). (10.2)

By Cohen, Diaz y Diaz and Olivier [CDO05, Corollary 4.5 (2), p. 501] (which refines earlier
work of Baily [Bai80] and Mäki [Mäk85]) we have

N0,2(C4, X) = c(C4)X
1
2 +O(X

1
3

+ε), (10.3)

for some explicit positive constant c(C4) and any ε > 0. Similarly, in [CDO06, p. 582] we find the
asymptotic formula

N0,2(V4, X) = c(V4)X
1
2 log2X +O(X

1
2 logX), (10.4)

for some explicit positive constant c(V4). Finally, in [CDO02, Proposition 6.2, p. 88] we find the
asymptotic formula

N+
0,2(D4, X) = c(D4)+X +O(X

3
4

+ε), (10.5)

where again c(D4)+ is an explicit positive constant.
Since

CM4(X) = CM4(D4, X) + CM4(C4, X) + CM4(V4, X),

it follows from equations (10.1)–(10.5) that

CM4(X) = c(D4)+X +O(X
3
4

+ε).

Because this is the same asymptotic formula satisfied by the counting function CM4(W4, X), we
conclude that the density of quartic Weyl CM fields is

ρWeyl(4) = lim
X→∞

CM4(W4, X)

CM4(X)
= 1.

�

11. Abelian varieties over finite fields, Weil q-numbers, and density results

We first review some facts concerning Weil q-numbers and abelian varieties over finite fields.
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11.1. Weil q-numbers and abelian varieties over Fq. Let q = pn where p is a prime number
and n is a positive integer. A Weil q-number is an algebraic integer π such that for every embedding
σ : Q(π) ↪→ C we have |σ(π)| = q1/2. Let W (q) denote the set of Weil q-numbers. Two Weil q-
numbers π1 and π2 are conjugate if there exists an isomorphism Q(π1)→ Q(π2) which maps π1 to
π2. In this case, we write π1 ∼ π2.

We have the following facts about Weil q-numbers (see e.g. [GO88, p. 1 and Corollary 2.1]).

Lemma 11.1. Let q = pn and π ∈W (q).

(i) If σ(π) ∈ R for some embedding σ : Q(π) ↪→ C, then Q(π) = Q if n is even and Q(π) =
Q(
√
p) if n is odd.

(ii) If σ(π) ∈ C r R for all embeddings σ : Q(π) ↪→ C, then Q(π) is a CM field with maximal
totally real subfield Q(π + q/π).

Let Fq be a finite field of characteristic p with q = pn elements. Let A/Fq be an abelian variety
of dimension g defined over Fq and let πA ∈ End(A) be the Frobenius endomorphism of A. Let fA
be the characteristic polynomial of A, which is a monic polynomial of degree 2g with coefficients
in Z. Let Q[πA] be the Q-subalgebra of End(A)⊗Z Q generated by πA. It is known that Q[πA] is
a field if and only if A/Fq is simple.

Weil proved that the roots of fA are Weil q-numbers. Moreover, if A/Fq is simple, then the image
of πA under any homomorphism φ : Q[πA] → C is a Weil q-number. Any such homomorphism φ
maps πA to a root αA of fA. From here forward, we identify πA with φ(πA) for some choice of φ.
This choice does not matter, since we will only consider Weil q-numbers up to conjugacy.

If A/Fq and B/Fq are isogenous simple abelian varieties, then fA = fB. In particular, πA ∼ πB.
This gives a well-defined map A 7→ πA between the set of isogeny classes of simple abelian varieties
A/Fq and Weil q-numbers up to conjugacy. A celebrated theorem of Honda and Tate (see e.g.
[Tat71]) asserts that this map is a bijection.

11.2. Density results and the proof of Theorem 1.10. Let A/Fq be an abelian variety and
αA be a root of fA. Let KfA = Q(αA)c be the splitting field of fA and GfA = Gal(KfA/Q). Define
the sets

Ag(q) := {isogeny classes of abelian varieties A/Fq with dim(A) = g},
Bg(q) := {isogeny classes of abelian varieties A/Fq with dim(A) = g and GfA

∼= W2g}.

Kowalski [Kow06, Proposition 8] proved the following density result.

Theorem 11.2. With notation as above, one has

lim
n→∞

#Bg(pn)

#Ag(pn)
= 1.

On the other hand, we have the following result.

Proposition 11.3. Let A/Fq be an abelian variety of dimension g ≥ 2. If GfA
∼= W2g, then Q(αA)

is a non-Galois Weyl CM field of degree 2g.

Proof. Let m := [Q(αA) : Q]. Since αA is a root of fA and fA ∈ Z[x] is monic of degree 2g, then
αA is an algebraic integer of degree m where m|2g. Suppose by contradiction that m < 2g. Since
m is a proper divisor of 2g, we have m ≤ g. Hence the Galois closure KfA = Q(αA)c has degree
[KfA : Q] ≤ m! ≤ g!. However, #W2g = 2gg!, which contradicts the assumption that GfA

∼= W2g.
Thus m = 2g ≥ 4, and so it follows from Lemma 11.1 that Q(αA) is a CM field. Finally, since
2g ≥ 4, we conclude that Q(αA) is a non-Galois Weyl CM field of degree 2g. �
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Proof of Theorem 1.10. By Theorem 11.2 and Proposition 11.3, if g ≥ 2 then the proportion
of isogeny classes [A] ∈ Ag(pn) for which Q(αA) is a non-Galois Weyl CM field approaches 1 as
n→∞. Theorem 1.10 now follows from Theorem 1.4. �

We next show that any CM field E is isomorphic to a CM field of the form Q(πA) for a simple
abelian variety A/Fq.

The following result is a consequence of [GO88, Theorems 1 and 2 (i)].

Theorem 11.4. Let E be a CM field. Then for each integer n ≥ 2, there exists a prime number
p = p(E,n) such that E = Q(πp) for some Weil pn-number πp ∈W (pn).

Greaves and Odoni used the Chebotarev density theorem to deduce the following corollary.

Corollary 11.5. There exists an integer a(E,n) ≥ 1 such that

#{p = p(E,n) : 2 ≤ p ≤ X, E = Q(πp), πp ∈W (pn)} =

a(E,n)

[H(Ec) : Q]
Li(X) +OE,n

(
X exp

(
−c(E,n)

√
log(X)

))
as X →∞, where H(Ec) denotes the Hilbert class field of Ec, Li(X) :=

∫ X
2 dt/ log(t), and c(E,n) >

0.

We have the following corollary.

Corollary 11.6. Let E be a CM field. Then for each integer n ≥ 2, there is a set of prime
numbers p = p(E,n) with positive natural density such that E ∼= Q(πA) for some simple abelian
variety A/Fpn.

Proof. Let E be a CM field. Then by Corollary 11.5, for each integer n ≥ 2 there is a set of prime
numbers p = p(E,n) with positive natural density such that E = Q(πp) for some πp ∈W (pn). On
the other hand, by the Honda-Tate theorem, for each such prime number p, there exists a simple
abelian variety A/Fpn such that πA ∼ πp. Therefore, Q(πA) ∼= Q(πp) = E. �

Given Corollary 11.6, it is natural to ask whether a density result analogous to Theorem 11.2
holds for simple abelian varieties. Define the sets

Asg(q) := {isogeny classes of simple abelian varieties A/Fq with dim(A) = g},
Bsg(q) := {isogeny classes of simple abelian varieties A/Fq with dim(A) = g and GfA

∼= W2g}.

It seems likely that a modification of the methods in [Kow06] can be used to prove that

lim
n→∞

#Bsg(pn)

#Asg(pn)
= 1.

If true, then arguing as in the proof of Theorem 1.10, it would follow that if g ≥ 2, then the
proportion of isogeny classes [A] ∈ Asg(pn) for which Q(πA) is a CM field that satisfies the Colmez
conjecture approaches 1 as n→∞.
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[Col93] P. Colmez, Périodes des variétés abéliennes à multiplication complexe. Ann. of Math. 138 (1993), 625–683.
[Col98] P. Colmez, Sur la hauteur de Faltings des variétés abéliennes à multiplication complexe. (French) [On the
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E-mail address: adrian.barquero s@ucr.ac.cr

Department of Mathematics, Mailstop 3368, Texas A&M University, College Station, TX 77843-
3368

E-mail address: masri@math.tamu.edu


