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Abstract

In this paper, two parametric families of functions, the so-called Complementary Fresnel
Integral and the Lommel type, which are of generalized Fresnel integral type, are considered.
We review the problems of existence and uniqueness of their zeros in certain determined
intervals, called location intervals, which improve previous results of other authors. For the
approximation error obtained, bounds, monotonicity as well as the asymptotic behavior are
analyzed. The study uses results from the theory of �xed point of real functions, introducing
the concept of ��xed point sequential problem� (FPSP) and the properties of certain special
functions.

1 Introduction

It is considered in this work several families of functions of real variable depending on a real
parameter: the family called Complementary Fresnel Integral (CFI), and a certain type of
functions of the Lommel type whose precise de�nitions will be given later. If fα, α ∈ J , for J in
an interval of R, is one of these families, the associated zeros are studied �nding �rst numerable
families of disjoint intervals In,α, n ∈ N (location intervals ), each interval containing one and
only one zero of the function fα, and each zero of fα belonging to only one of them. Then, if
an,α, bn,α de�ne the lower end (respectively upper) of In,α and zn,α is the only zero of fα in that
interval we look for bounds of the successions of errors |an,α − zn,α|, |bn,α − zn,α|, n ∈ N, α ∈ J
been �xed. We establish the monotonicity of these sequences of errors and �nd asymptotic
equivalents of them, whenever they converge to zero.

Our study constitutes a revision and at the same time an extension of the work done on the CFI
family in [10] and those of the Lommel family carried out by S. Koumandos and M. Lamprecht in
[7]. To carry out a joint study of the two mentioned families, we introduce in a preliminary section
a basic theory of the so-called �xed point sequential problem (FPSP), where we enunciate the
existence and uniqueness of �xed-point of the real variable. In other sections we study several
families of auxiliary parametric functions de�ned by integrals, in several aspects: analytical
properties with respect to the variable, basic identities and inequalities. All this provides a
common basis for a uni�ed approach in the study of the zeros of these families.
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Background and basic de�nitions

The CFI family is the pair cα, sα of functions de�ned in R+ by:

cα(t) + isα(t) =

∫
(t,∞)

t−αeitdt

for α > 0. The Lommel family (LF) considered is the one denoted by sµ−1/2,1/2(t) = t−1/2Fµ(t),
where:

Fµ(t) =

∫
(0,t)

uµ−1 sin(t− u)du, t ∈ R+, µ ∈ (0, 1).

For each µ the zeros of this function coincide then with those of Fµ.

Regarding the CFI family, we review the following results, contained in Theorem 2.1 of [10]:

Quote 1.1. : The intervals (nπ/2, (n+ 1)π/2), n even (respectively n odd) are location intervals
of the zeros of cα,( resp. of sα ).

Let zn,α be zero in the interval (nπ/2, (n+ 1)π/2), de�ned in the previous quote, then

Quote 1.2. : The sequence n → zn,α − nπ/2 is strictly decreasing and converging to zero with
zn,α − nπ/2 ∼ 2α

nπ .

Quote 1.3. : The �xed point Tn,α of z → nπ/2 + α
z in (nπ/2, (n + 1)π/2) exists for n large

enough, and it is an upper bound of the zero in this interval with Tn,α − zn,α = o
(

1
n

)
, n→∞.

In the previous results we used a multiplicative decomposition lemma, which will be used later
and which is stated as follows (the proof can be found in lemma 3.1 in [10]):

Lemma 1.4. For α > 0, t > 0 we have:

cα(t) + isα(t) = eit(gα(t) + ifα(t)),

where

gα(t) =
1

Γ(α)

∫ ∞
0

exp(−ty)yα

1 + y2
dy, fα(t) =

1

Γ(α)

∫ ∞
0

exp(−ty)yα−1

1 + y2
dy. (1.1)

For the Lommel family we have the next results (see [7]):

Quote 1.5. (theorem 1.1 in [7]): the intervals

I2n−1(µ) = ((2n− 1 + µ/2)π, (2n− 1 + µ)π], I2n(µ) = (2nπ, (2n+ µ/2)π)

are location intervals of the zeros of Fµ,

Quote 1.6. (theorem 1.2 in [7]): If zn,µ is zero de�ned in 1.5 belonging to In(µ), the subse-
quence of (zn,µ−nπ−µ/2π)n∈N associated to even n (resp. odd n ) converges to 0 and is strictly
increasing (resp converges to zero and is strictly decreasing),
i.e. [z2k,µ − (2k)π − µ/2π]↗ 0 and [z2k+1,µ − (2k + 1)π − µ/2π]↘ 0
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Plan of the article

In the sections 2, 3 of preliminaries we expose the results of �xed point problems and auxiliary
functions respectively. The concept of FPSP exposed in the section 2 is original and allows to
translate the concept of the zero of a function into a concept of �xed point of a function, as it is
explained in the respective sections. Some of the functions addressed in the section 3 appear more
or less explicitly in the literature that deals with the problem of the asymptotic development
of functions de�ned by integrals. However, the analytical study undertaken here seems original
and has its own interest. The theory of probability is used (theory of gamma distribution for
example) and in a certain way it extends the results of L. Gordon on the probabilistic approach
of the gamma function (see [5]).

In sections 4, 5 we develop the theory about zeros properly. The property of zeroes of the CFI
family is translated in �xed point problem by a geometric argument that di�ers from the one
used in [10] and that seems more natural. The theorem 4.1 also o�ers an error bound for Tn,α
whereby a problem raised in [10] about the asymptotic behavior of this error is solved (see section
6 in [10]).
The equivalence of zeros for the Lommel family is more direct by the decomposition lemma 1.4,
and leads to two di�erent FPSP that must be treated separately. We deduce from this translation
not only the results of the quote 1.5 and 1.6, but also new location intervals (theorem 5.5) and
their respective errors (theorem 5.6).

2 The �xed point sequential problem

For the study of the zeros proposed in the Introduction, we develop here a topic related to �xed
point problems of real variable functions, whose interest will be revealed in later sections. We
consider a general situation as the following: let In = [an, bn]n∈N a sequence of intervals of R+

which is increasing: bn < an+1 for all n, and such that the sequence (an)n∈N diverges to in�nity.

Let U be an interval of +∞, J an open interval of R+ and Gα : U → R+, function that depends
on the parameter α ∈ J .

It de�nes the sequence of functions:

Gn,α(t) ≡ an +Gα(t), t ∈ In.

Su�cient conditions are sought to guarantee the existence of a single �xed point gn,α in each In
for each Gn,α(·), as well as the most relevant properties of the sequence (gn,α)n∈N under di�erent
conditions. We call this ��xed point sequential problem� and, that we abbreviated by FPSP. We
say that an FPSP has �unique solution� if for all n there is a single �xed point of Gn,α on In.
We �rst consider the particular problem of �xed points for functions de�ned in a single bounded
interval of the real line. Thereafter, I is a closed and bounded interval [a, b] of the real line.

Proposition 2.1. (existence and uniqueness) Given a continuous function G : [a, b] → (a, b).
Then G has a single �xed point in I in the following cases:

� case 1): G is strictly decreasing

� case 2): G is strictly concave or convex in all I.

3



Proof

The hypotheses about the domain and the codomain imply that the function Id − G changes
sign at the ends of I and joint to the continuity property the existence of at least one �xed point
in I is guaranteed in all cases.
In case 1) the uniqueness is derived from the fact that Id −G is strictly increasing.
In case 2) the conditions ensure that Id − G is either strictly monotonic in I or unimodal in
I with global extreme inside I; in both cases there can only be one zero of that function in I.
QED

Proposition 2.2. (comparison of �xed points): in a given interval I = [a, b], let F,G,H con-
tinuous functions de�ned in I and with values in int(I), that meet: F < G < H and that have a
single �xed point in I, denoted f, g, h respectively. So:

� F (h) < g < h if F,G,H satisfy the conditions of case 1) (of proposition 2.1).

� g < h if G,H satisfy the conditions of case 2) (of proposition 2.1).

Proof

In case 1) g < h must be ful�lled because otherwise, using the strict decrease of G, we would
have g = G(g) 6 G(h) < H(h) = h, that is contradictory. The relation g < h implies that
F (h) < F (g) < G(g) = g, the second relation in this case.

In case 2) it is easy to verify that x > g ⇔ x − G(x) > 0, x > h ⇔ x −H(x) > 0. And since
G(h) < H(h) = h it is concluded in this case. QED

We will consider the FPSP de�ned by (In)n∈N, an increasing sequence of intervals U , with
In = [an, bn], and by a continuous parametric function Gα : U → R+.

In certain cases we can assure that this problem has a unique solution, for example:

Corolary 2.3. Let ln the lengths of the intervals In that satisfy L = inf
n∈N
{ln} > 0. We assume

that the codomain of Gα is included in (0, L). If Gα is strictly decreasing or it is concave or
convex in all its domain, the associated FPSP has a unique solution.

Proof

It is enough to observe that under the conditions of the proposition all the functions Gn,α de�ned
in each In have codomain within int(In). On the other hand, the other conditions imply that
each Gn,α satis�es case 1) or case 2) of the proposition 2.1. The result is then derived from 2.1.
QED

It will be assumed in the rest of this subsection that the FPSP problem has a unique solution: for
all n there exists a real only gn,α which is the only �xed point of Gn,α in In. Since the intervals
In �grow�, meaning sup In < inf In+1, the sequence (gn,α)n∈N is strictly increasing and diverges
to in�nity. We will suppose further that the intervals In are of constant length c > 0 and that
the sequence (an)n∈N is arithmetic of common di�erence A > 0 (arithmetic conditions).

Also consider the condition that we call
LIM : Gα is strictly decreasing in all U and converges to 0 in ∞ for all α ∈ J .

We de�ne a special class of functions:
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De�nition 2.4. A funtion f : R+ → R satis�es condition @ if there are real K,β such that:

f(t) ∼ Kt−β (t→∞),

"· ∼ · (t→∞)" denotes the relation of asymptotic equivalence in in�nity.

The subindex α is omitted from now on to simplify the notation.
The following result follows from the de�nition of �xed point itself:

Proposition 2.5. (monotony of the distance to extremes): Let a FPSP of unique solution with
arithmetic conditions, of constants A, c.
Then it holds that:

� If G satis�es condition LIM the sequence (gn − an)n∈N converges to 0 and is strictly de-
creasing and

� If c−G satis�es the condition LIM the sequence (gn−bn)n∈N converges to 0 and is strictly
increasing.

If in the �rst case G meets the property @ then gn − an ∼ G(an), n → ∞ and if in the second
case it is met by G− c then gn − bn ∼ (G(an)− c), n→∞.

Proof

Writing gn − an = G(gn) in the �rst case and gn − bn = G(gn) − c in the second and taking
into account that limn→∞ gn =∞ and that (gn)n∈N is strictly increasing, the conclusions follow
directly from the conditions of the LIM condition.

The proof of the second part is almost immediate from the relation gn = an +G(gn) and in the
�rst case that property @ implies that G(an) ∼ G(gn), n → ∞, given that an ∼ gn, n → ∞ by
the arithmetic conditions. Analogously the second case is dealt with. QED

3 Auxiliary functions and gamma distribution

We study here the parametric functions fα, gα, introduced in Lemma 1.4 of introduction. To do
this, we introduce certain special functions denoted Jα, whose de�nition is given in terms of the
gamma probability distribution of the parameter α, denoted by (γα, α > 0) and de�ned by

γα(dx ) =
1

Γ(α)
e−xxα−1dx .

Remember also the bi-parametric gamma family (γα,t, α, t > 0) that is de�ned by:

γα,t(dx ) =
1

Γ(α)
tαe−txxα−1dx .

por lo tanto γα = γα,1.

The parametric function:

Jα(t) ≡ Eα
(

1

1 + (tX )2

)
=

∫
1

1 + (tx )2
dγα(x),
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is well de�ned for all positive t, Eα denoting expectation operator with respect to the gamma
law of parameter α.

Note that the functions fα, gα de�ned in the introduction can be rede�ned as:

fα(t) = t−α Jα(t−1), gα(t) = αfα+1(t), donde t ∈ R∗+.

This notation is the same one that is used in [13].

We de�ne for a α ∈ R+ : (α)2 ≡ a(a+ 1) [in general (α)n ≡ (α)(α+ 1)...(α+n− 1), Pochammer
symbol].

We can �nd the asymptotic development of order 2 of Jα at 0:

Jα(x) = 1− (α)2 x
2 + o(x2) (3.1)

from the classical theory of asymptotic developments for parametric integrals (see Watson's
lemma, for example in section 4.1 of [3]).
We study some properties of variable functions t , Jα(t), fα(t), with t positive real, and α positive
positive:

� For �xed α, the function

t→ Jα(t) is decreasing in R+ and range (0, 1) . (3.2)

This is veri�ed, as the quantity Jα(t) being the expectation with respect to γα of the
function h(x) = (1 + (tx )2)−1, it su�ces to use the fact that h is bounded and decreasing
with respect to t, convergent to the constant function 1 when t → 0, and to the constant
0 when t→∞ and then we use the classic convergence theorems.

� For all α > 0 the function

t→ gα
fα

(t) is strictly decreasing (3.3)

This is proved in lemma 3.4 of[10].

� We have:
gα
fα

(t) <
α

t
y

t−α

1 + (α)2t−2
< fα(t) < t−α. (3.4)

The �rst inequality was demonstrated in Lemma 3.4 of [10], using Harris's inequality (see
[9] Theorem 5.13, chap 4). For the second one we can use Jensen's inequality by writing

1

1 + (tx)2
= h(1 + (tx)2), where h(x) = 1/x,

using the convexity of h and then applying the formula for the second moment of the
gamma distribution, that is (α)2.

� The funtion fα is derivable in its domain, with

f ′α(t) = −gα(t), g′α(t) = fα(t)− t−α, (3.5)

It is enough to use the Lebesgue theorem of derivation of parametric integrals, observing
that integrand functions have derivatives with respect to t, which are integrable in R+.
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� We have:
fα(t) ∼ t−α, t→∞. (3.6)

Just use the relation fα(t) = t−α Jα(t−1) and the property cited in(3.2).

� For all t ∈ R+, µ ∈ (0, 1) it is ful�lled:

f1−µ(t) < Γ(µ) sin(µπ/2), (3.7)

g1−µ(t) < Γ(µ) cos(µπ/2), (3.8)

Indeed, according to the lemma 1.4 the amounts f1−µ(0), g1−µ(0) exists and it is ful�lled:

f1−µ(0) = s1−µ(0) = Γ(µ) sin(µπ/2),

g1−µ(0) = c1−µ(0) = Γ(µ) cos(µπ/2),

by applying the known identity:
∫∞

0 tµ−1eitdt = Γ(µ)eiµπ/2 (see [14], page 52).

We now use the fact that the functions t→ f1−µ(t) and t→ g1−µ(t) are strictly decreasing
in R+ and we conclude (3.7) and (3.8).

4 Zeros of the CFI family

In this section we develop several of the problems raised for the family cα, sα, de�ned as CFI, in
the introduction of the article. In the �rst subsection we identify the zeros of the CFI family as
the solution set of an FPSP, then deducting from the results of the sections 3, 2 the results 1.3,
1.1 of the Introduction. In the subsection 4.2 we establish the existence of a new lower bound,
de�ned from the theoretical upper bound Tn,α mentioned in the introduction, and a bound of
the error of the new location interval.

4.1 Zeros of the CFI family as �xed points of problems FPSP with unique

solution

The result quote 1.1 of the introduction refers to the existence and uniqueness of the zeros of
the functions of this family and their location in intervals of the real line. We can establish this
by means of the theory of the section 2, about the problems called FPSP. Indeed, thanks to

the identity of the representation lemma 1.4 it can be taken t → t + π/2 − arctan
(
gα(t)
fα(t)

)
as

a parameterized function of the angular measure of the curve t → cα(t) + isα(t). Therefore in
the case of the function cα for example, since a real t is one of its zeros if and only the angular
measure in the value t is an odd multiple of π/2, it follows from the above that t is a �xed point
of the function kπ/2 + arctan( gαfα ) for an even value of the integer k. The result is analogous
for sα taking k as an odd integer. Which is the content of corollary 3.3 in [10], where a di�erent
reasoning was followed.
Then the zeros of cα and sα are exactly the �xed points of the FPSP, in the sense of the

section 2, de�ning Gα(t) = arctan

(
gα
fα

)
(t), the intervals In = [nπ/2, (n+1)π/2]n∈N and taking

U = J = R∗+.
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Then in this case an = nπ/2 y bn = an+1. The existence and uniqueness of the �xed points
within each In is guaranteed by the corollary 2.3 since case 1) is ful�lled (the functions Gα are
all decreasing as mentioned in the property 3.3).

In the rest of the section we denote zn,α the zero of the CFI belonging to the interval In and
de�ned by the value α of the parameter.

The result of the quote 1.3, except for the asymptotic result, it is obtained from the proposition
2.2, since the function z → nπ/2 + α

z is bounded above by Gn,α (see �rst inequality of (3.4)) and
it satis�es in each In the conditions of that proposition with condition 1) as stated above.

The results enunciated in the quote 1.2 come from the proposition 2.5. In e�ect, according to
what has been said above, the FPSP associated with this problem has a unique solution with
arithmetic conditions (A = c = π/2 in this case). The function G satis�es in this case the
LIM condition, according to what has been said above about the decrease of the G and its
convergence to 0 at in�nity using for example the inequality in 3.4. The asymptotic behavior
of (zn,α − nπ/2)n∈N is deduced from this same proposition since G ful�lls the property @ with
K = α, β = −1, in virtue of the property (3.6).

It should be noted that a formulation of a FPSP like the one above appears in Macleod [12] for
the case of c1 for α = 1.

4.2 A theoretical lower bound and a bound of the error, CFI case

We now look for theoretical lower bounds of the zeros of the CFI family, which improve the
theoretical levels an, n ∈ N established in the previous subsection. The analysis of the error
associated with these bounds allows to deduce a stronger version than that of the quote 1.3.
We de�ne

Fα(t) ≡ arctan

(
α

t

1

1 + (α+ 1)2/t2

)
. (4.1)

Theorem 4.1. For n large enough, (α+ 2 < an), nπ/2 + Fα(Tn,α) is a lower bound of zn,α in
In. Also an estimate of the error is

|(nπ/2 + Fα(Tn,α))− Tn,α| < Kαa
−3
n , (4.2)

where Kα = α3/3 + α(α+ 1)(α+ 2)

Proof

Thanks to the inequalities in (3.4) and the relationship gαfα (t) = αfα+1(t)
fα(t) we deduce the inequality:

Fα(t) < Gα(t), for all t ∈ U .

It is veri�ed without di�culty that Fα satis�es the conditions of the corollary 2.3 because its
codomain lies in (0, π/2) and it is strict decreasing for t > α+ 2. Then case 1) of the proposition
2.2 is ful�lled in In if α + 2 < an, and therefore of the double inequality of this proposition we
deduce that nπ/2 + Fα(Tn,α) is a lower bound of zero zn,α.

Given that Tn,α is a �x point of z → nπ/2 + α
z , it is obtained

|nπ/2 + Fα(Tn,α)− Tn,α| =

∣∣∣∣Fα(Tn,α)− α

Tn,α

∣∣∣∣ .
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Expressing now Fα(Tn,α) as arctan(x) and using inequality arctan(x) > x− x3/3 for |x| < 1, we
�nd that for α+ 2 < an : ∣∣∣∣Fα(Tn,α)− α

Tn,α

∣∣∣∣ < α(α+ 1)2T −3
n,α + x3/3 (4.3)

But in this last expression α(α+ 1)2 = (α)3 on the one hand while on the other x <
α

Tn,α
from

where we conclude. QED

Note: A similar previous analysis applied to the �xed point of t → nπ/2 + arctan(α/t) en In,
that we denote again Tn,α, shows that this is an upper bound of zn,α and also an error bound is
given as that of theorem 4.1 taking Kα = (α)3.
According to the theorem 4.1 the asymptotic relation |zn,α − Tn,α| = o(1/n2) is in particular
ful�lled, responding in this way to the conjecture of [10] formulated in the conclusions taking
p = 2 and also �nding an upper bound of the approximation error (4.2).

5 Zeros of the Lommel family

As we explained in the introduction the zeros of the Lommel family are same of the family
(Fµ)µ∈J . The results of this section consist �rst of all in the characterization of the problem
of the zeroes of this last family as several �xed point sequential problems FPSP, as de�ned in
the section 2. Once identi�ed intervals and functions for each �xed point problem we turn to
the theory developed in the previous sections to establish the results 1.5 and 1.6. We show
then the existence of new theoretical bounds of the zeros and the proposition 2.2 studying the
approximation error. In other sections we present the asymptotic results that result from the
application of the proposition 2.5.

From the lemma 1.4 an additive decomposition is revealed for the family of functions (Fµ)µ∈J :

Fµ(z) = Γ(µ) sin(z − µπ/2) + f1−µ(z). (5.1)

In e�ect, considering the function H : z →
∫ z

0 t
µ−1ei(z−t)dt . We factor in H(z) the factor eiz

and express the other factor as the complex conjugate of
∫ z

0 t
µ−1eitdt which in turn we express

as
∫∞

0 tµ−1eitdt −
∫∞
z tµ−1eitdt . Using

∫∞
0 tµ−1eitdt = Γ(µ)eiµπ/2 we get the expression:

H(z) = eiz
(∫ ∞

0
tµ−1e−itdt − (c1−µ(z)− is1−µ(z))

)
.

By the integral formula for c1−µ(z) + is1−µ(z) from lemma 1.4, and matching the imaginary
parts of both members of the last expression we get (5.1).

Note: The formula cited above:
∫∞

0 tµ−1eitdt = Γ(µ)eiµπ/2 admits a proof based on the identity
of the lemma 1.4 (see [11]).

By virtue of the decomposition (5.1) the zeros of Fµ are the solutions of the equations

Γ(µ) sin(t− µπ/2) = −f1−µ(t) (5.2)
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5.1 The zeros as FPSP problems

We will denote from now on an = nπ/2, and for Jn the interval(an, an+1).

We translate the equation (5.2) in terms of �xed point sequential problems as it was proposed in
section 2. For this we need to de�ne the sequence of intervals (In)n∈N and the function associated
with each of the FPSP. We need the following de�nitions of intervals and functions, for an integer
n:

In =


(an, an+2) if n = 2 mod 4,

(an−1, an+1) if n = 0 mod 4, n 6= 0
(a0, a1) if n = 0,

(5.3)

and the functions

G(1)
µ (t) = µπ/2 + arcsin

(
f1−µ(t)

Γ(µ)

)
, G(2)

µ (t) = µπ/2 + arccos

(
f1−µ(t)

Γ(µ)

)
, (5.4)

whose common domains and codomains are R+ and (0, π) respectively.

Lemma 5.1.

1) The zeros of Fµ are the �xed points of the following FPSP's:

a) that of the intervals (I4n+2)n∈N and function G
(1)
µ ,

b) that of the intervals (I4n)n∈N and function G
(2)
µ .

where in both cases U = R+, J = (0, 1), with notations of section 2.

Note: in this case the intervals (I4n+k)n∈N, k = 0, 2, correspond, in each case, to the intervals
(In)n∈N from the section 2.

Proof

It is a matter of studying the equation (5.2). As the right member of this equation is negative, a
zero z of this equation must satisfy sin(z − µπ/2) 6 0. So we restrict the discussion to the real
t satisfying t− µπ/2 ∈ In, n = 2 mod (4).
Since sin(an+1) = cos(an) = −1 we have sin(t− µπ/2) = − sin(t− µπ/2− an) y sin(t− µπ/2) =
− cos(t− µπ/2− an+1), so that:

t− µπ/2 ∈ Jn : t ful�lls (5.2) ⇐⇒ t = an +G(1)
µ (t) (5.5)

t− µπ/2 ∈ Jn+1 : t ful�lls (5.2) ⇐⇒ t = an+1 +G(2)
µ (t) (5.6)

since the sine and cosine functions are invertible in each subinterval Jn. Expressions of the right
member both in (5.5) as in (5.6) are well de�ned in all µπ/2+In for all integers n as the quantity
f1−µ(t)

Γ(µ)
is positive and less than 1. Indeed, it is enough to use inequality

f1−µ(t)
Γ(µ) < sin(µπ/2) (

see relationship (3.7) ).

Now, it have µπ/2 + Jn ⊂ In , µπ/2 + Jn+1 ⊂ In+2 on the one hand, while on the other a �xed

�xed point of an + G
(1)
µ in In must be on µπ/2 + Jn ,and a �xed point of an+1 + G

(2)
µ in In+2

must be on µπ/2 + Jn+1. Whence we conclude. QED
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Lemma 5.2.

a) The codomains of G
(1)
µ , G

(2)
µ are included in (0, π).

b) i) The function G
(1)
µ is strictly decreasing and convex.

ii) The function G
(2)
µ is strictly increasing and concave.

c) G
(1)
µ (t)− µπ/2 ∼ tµ−1/Γ(µ), t→∞,

G
(2)
µ (t)− µπ/2− π/2 ∼ −tµ−1/Γ(µ), t→∞,

Proof

Since the sum G
(1)
µ + G

(2)
µ is constant in the domain U = R+, it is enough to analyze one of

them. Let G = G
(1)
µ .

Item a) is immediate from the condition J = (0, 1) and that the term arcsin
(
f1−µ(t)

Γ(µ)

)
is the

arcsine evaluated in the real interval (0, 1).
Item b) it follows from the relationship

Γ(µ)G′(t) = (arcsin)′
(
f1−µ(t)

Γ(µ)

)
f ′1−µ(t) (5.7)

where the factor(arcsin)′
(
f1−µ(t)

Γ(µ)

)
is positive and decreasing since arcsine is increasing and convex

and f1−µ is decreasing; the factor f ′1−µ(t) = −g1−µ(t) (see property (3.5)) is increasing and
negative strict; then the product of these two factors is a strict and negative increasing function,
i.e. the convexity of G and its decrease. For part c): in the �rst pair of limits we use the fact that
arcsin(t) ∼ t at 0, while f1−µ(t) ∼ tµ−1 at in�nity. For the second limit we use the expression
(5.7) and the facts: arcsin′(t) ∼ 1 at 0, f ′1−µ(t) = −g1−µ(t) ∼ −(1 − µ)tµ−2 at in�nity ( see
de�nition of g1−µ and property (3.5) ) to conclude. QED

Lemma 5.3. The FPSP's de�ned in lemma 5.1 have a unique solution.

Proof

It is enough to invoke the corollary 2.3 from the section 2 that is ful�lled with L = π, since the
length of the intervals is constant L and that the other conditions of this corollary (with the
condition of convexity or concavity) are ful�lled thanks to the lemma 5.2. QED

Finally we can establish quote 1.5, for the zeros of the Lommel functions:

Proof of quote 1.5:
The intervals I2n−1(µ), I2n(µ) belong to the intervals I4n−2, I4n respectively de�ned above.
Under the lemma 5.3 it is enough to prove that I2n−1(µ) (resp. I2n(µ)) contains a �xed point

of G = a4n−2 + G
(1)
µ , (resp. of G = a4n−1 + G

(2)
µ ). Actually we proved that the interiors of

I2n−1(µ), I2n(µ) contain them.

Let z be the only �xed point of the G corresponding to the interval I4n−2, then: z = a4n−2 +

G
(1)
µ (z). Since G

(1)
µ (t) > µπ/2 for all t ∈ U we obtain z > a4n−2 + µπ/2. On the other hand,

using 3.7, we have G
(1)
µ (t) < µπ/2 + arcsin(sin(µπ/2)) = µπ for all t ∈ U and in particular we

�nd z < a4n−2 + µπ. then z ∈ I2n−1(µ).

11



If z is the only �xed point of the G corresponding to the interval I4n we have: z = a4n−1+G
(2)
µ (z).

Since G
(2)
µ (t) < µπ/2 + π/2 we have

z < a4n−1 + µπ/2 + π/2 = a4n + µπ/2.

On the other hand
z = a4n−1 + µπ/2 + π/2− arcsin(f1−µ(z)/Γ(µ)),

where − arcsin(f1−µ(z)/Γ(µ)) > −µπ/2 (por (3.7)). Then z > a4n and we conclude that z ∈
I2n(µ). QED

By virtue of the above results, the problem of zeros of the family (Fµ)µ∈J is equivalent to the
following pair of FPSP's (reduced FPSP's):

� reduced problem a): de�ned by the intervals I2n+1(µ), n ∈ N and the function Gµ = G
(1)
µ −

µπ/2

� reduced problem b): de�ned by the intervals I2n(µ), n ∈ N and the function Gµ = G
(2)
µ −π/2

Through the reduced FPSP's above, we can prove quote 1.6 invoking the proposition 2.5.

Proof of the quote 1.6 :
Thanks to the lemma 5.2 it follows that the reduced problems are of unique solution with
arithmetic conditions, A = c = µπ/2, and that the G associated to the reduced problem a)
satis�es LIM condition, while the G associated with the reduced problem b) is such that µπ/2−G
satis�es LIM. The application of the proposition 2.5, part b), allows to conclude the results of
the quote 1.6. QED

We denote by zn,µ the unique zero of Fµ in the interval In(µ). We complete the quote 1.6 by
an asymptotic law for the convergent sequences mentioned there (they are denoted by an,µ, bn,µ
resp.) the lower end (upper end resp.) of In(µ)):

Proposition 5.4. We have the following asymptotic approximations

z2n+1,µ − a2n+1,µ ∼
n→∞

aµ−1
2n+1,µ

Γ(µ)
, z2n,µ − b2n,µ ∼

n→∞
−
bµ−1
2n,µ

Γ(µ)
,

Proof

According to lemma 5.2, item c), the property @ is met in both reduced problems with G(t) ∼
tµ−1/Γ(µ), t→∞ in the reduced problem a) and G(t)− c ∼ −tµ−1/Γ(µ) t→∞, in the reduced
problem b). It su�ces to apply then the proposition 2.5 and the interpretation of the zeros as
�xed points of each reduced FPSP. QED

5.2 New theoretical bounds and their error

The location intervals In(µ), n ∈ N studied in the previous section have constant length µπ/2
and therefore the property (bn,µ − an,µ) −→

n→∞
0 is not accomplished. We look for some intervals

with this property resorting to proposition 2.2, for which it is required to �nd a pair of functions
de�ned in each interval In(µ) which bounds function G.

We remember that zn,µ denotes the unique zero of Fµ in the interval In(µ).

We de�ne:
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1. for n odd, let be

Fµ(z) = arcsin

(
zµ−1(1 + (1− µ)(2− µ)z−2)−1

Γ(µ)

)
, Hµ(z) = arcsin

(
zµ−1

Γ(µ)

)
.

Hn,µ = an,µ +Hµ, Fn,µ = an,µ + Fµ,

2. for n even, let be

Fµ(z) = arccos

(
zµ−1

Γ(µ)

)
+ µπ/2− π/2, Fn,µ = an,µ + Fµ,

Theorem 5.5. We assume that (an,µ)µ−1 < Γ(µ+ 1). We have the following theoretical bounds
of zn(µ):

1. if n is odd, the function Hn,µ is well de�ned in In(µ) and there is a unique �xed point hn,µ
of this function in this interval that ful�lls:

Fn,µ(hn,µ) < zn,µ < hn,µ

2. if n is even( n ≥ 2 ) the function Fn,µ is well de�ned in In(µ) and there is a unique �xed
point fn,µ of this function in this interval that ful�lls:

fn,µ < zn,µ < bn,µ

Proof

1. For n odd the inequalities are satis�ed for z ∈ In(µ):

Fµ(z) < G(1)
µ (z)− µπ/2 < Hµ(z)

as long as its members are de�ned. They result from the growth of the function arcsine on the
one hand and on the other hand the inequalities of 3.4 for the function fµ.

The well de�nition of Hn,µ in In(µ) follows form an,µ > 1 for n odd, so the function z → zµ−1

Γ(µ) ,

bounded above by
(an,µ)µ−1

Γ(µ) in In(µ), is less than 1 and then belongs to the arcsine domain. The

existence and uniqueness of the �xed point of function Hn,µ in In(µ) follows from the proposition
2.1. In e�ect, by inequality arcsin(x) < π/2x, x > 0 and the condition of the theorem, it is
ful�lled that 0 < Hµ < µπ/2 for all In(µ). Then the codomain of Hn,µ is in the interior of In(µ)
and as on the other hand Hn,µ ful�lls case 1) of this proposition we conclude.

On the other hand, the function Fn,µ is well de�ned in In(µ) if Hn,µ is. It satis�es the conditions
of the proposition 2.2 and case 1) of the proposition 2.1. For the condition of the case 1) let's
prove that for n odd the function z → zµ−1(1 + (1 − µ)(2 − µ)z−2)−1 is decreasing in In(µ).
It is easy to prove, using the logarithmic derivative, that this last condition is equivalent to
z2 > (1 + µ)(2), z ∈ In(µ) which is equivalent to a2

n,µ > (1 + µ)(2) for n odd; since an,µ is
increasing for n odd, it is enough to prove it for n = 1, which is almost immediate. The result
is then derived from the proposition 2.2.

2. For n even the function Fµ is well de�ned in In(µ) for reasons similar to those given in case
1 for the function Hn,µ. The inequality is ful�lled for z ∈ In(µ):

Fµ(z) < G(2)
µ (z)− π/2

13



resulting from the decrease of arccosine and the inequalities of (3.4). The existence and unique-
ness of the �xed point of Fn,µ in In(µ) is a consequence of the proposition 2.1, case 2), because
it is concave with codomain in the interior of In(µ). As the functions of the previous inequality
satisfy the conditions of the case 2) of the proposition 2.2 ( see b) from lemma 5.2) the result is
a consequence of this theorem. QED

The bounds found in the preceding theorem de�ne new location intervals for zeros whose ap-
proximation errors are studied below:

Theorem 5.6. We have the following error bounds:

1. If n is odd |Fn,µ(hn,µ)− hn,µ| < K(µ)an
µ−3(µ),

where K(µ) = (1−µ)2
Γ(µ) (1− (aµ−1

2 (µ)/Γ(µ))2)−1/2,

2. if n is even: |bn,µ − fn,µ| <
π

2

aµ−1
n (µ)

Γ(µ)

Proof

From the bounds de�ned in the theorem 5.5:
1) An upper bound for |Fn,µ(hn,µ)−hn,µ| is ||Fn,µ−Hn,µ||In(µ), where the right member denotes
the uniform norm of the function Fn,µ −Hn,µ in In(µ).
Now Fn,µ−Hn,µ = Fµ−Hµ, the function of the right member being a di�erence of the function

arcsine in points of the form zµ−1(1+(1−µ)(2−µ)z−2)−1

Γ(µ) and zµ−1

Γ(µ) for a real z ∈ In(µ), we can then use

in this case the mean value theorem using the derivative of arcsin() and the convexity property
of this function in (0, 1) to obtain the sought inequality .

2) The relation

|bn,µ −Fn,µ(fn,µ)| = arcsin

(
(fn,µ)µ−1

Γ(µ)

)
holds, and as arcsin(z) < π

2 z for z positive and (fn,µ)µ−1 < (an,µ)µ−1 the desired relation is
�nally deduced. QED

Then as a corollary of previous result the lengths of the new location intervals in 5.5 converge to
0 when n→∞, thus improving the quality of the bounds an,µ, bn,µ considered in the subsection
5.1.

Remark:

Other bounds of the zeros are obtained by taking on new upper bound functions H,F . For
example for n odd, you can take:

Hµ(z) =
π

2

zµ−1

Γ(µ)
, Fµ(z) =

zµ−1

Γ(µ)
(1 + (1− µ)(2− µ)z−2)−1.

These result from the functions Hµ and Fµ de�ned above, and inequalities:
arcsin(z) > z, z > 0 y arcsin(z) < π

2 z, z > 0. The advantage is that it is easier to determine, at
least numerically, the �xed point of the Hn,µ = an,µ +Hµ() that for the previous one. The �xed
points hn,µ of Hn,µ in In(µ) are, in this case, the new theoretical upper bounds of the zeros

As in the proof of the theorem 5.6 one can obtain:
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an,µ + Fµ(hn,µ) < zn,µ) < hn,µ

y

|hn,µ − zn,µ| <
cµ−1

Γ(µ)
(
π

2
− (1 + (1− µ)(2− µ)c−2)−1), c = an,µ

The second inequality is almost immediate from de�nitions. The error bound is asymptoti-
cally larger than that of the theorem 5.6, because it is O(aµ−1

n,µ ) while that of the theorem is
O(aµ−3

n,µ ), n→∞.

5.3 Conclusions and future work

The results developed in this paper about the location of the zeros of the parametric functions
considered above has been based on the theory that we called �xed point sequential problems. In
particular we have been able to �nd bounds of approximation error that were not evident in the
previous work [10] and that are absent in [7].
We hope to continue with this approach in a next work about on the problem of parametric
dependence of the zeros of the same families of functions.
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