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Abstract 1 

In this paper, we present a strong-motion database from earthquakes recorded by the Earthquake Engineering 2 

Laboratory at the University of Costa Rica. The database consists of 2471 three-component accelerograms from 155 3 

digitally recorded events. It covers the last 20 years of measurements, including records from the Nicoya earthquake 4 

of Mw 7.6 on 2012 September 05. The engineering and seismological communities can use this data either to conduct 5 

new research or to improve seismic or hazard studies in the region. A catalog is also available with metadata of each 6 

record containing several intensity measures from the ground-motion time-histories.  7 

Introduction 8 

The convergence of the Cocos and Caribbean plates along the Pacific coast of Costa Rica is the major 9 

source of seismic activity for the country (Alvarado et al., 2017; Arroyo et al., 2017). As a result, many 10 

earthquakes occur along the subduction zone as well as active volcanism in the continental part. The outer 11 

slope side of the place generates normal faulting while reverse faulting takes place at depths between 15 12 

and 50 km (Quintero and Güendel, 2000; DeShon et al., 2003; Norabuena et al., 2004). At depths between 13 

50 and 280 km, intraplate or intra-slab earthquakes (deep subduction) occur and in general normal type 14 

mechanisms predominate (Guendel and Protti, 1998). 15 

The Benioff zone gets shallower in the southern part of Costa Rica, where the Cocos mountain range 16 

subducts. The Panama Fracture Zone is a dextral fault system that separates the Cocos plate from the Nazca 17 

plate (Schmidt-Díaz, 2014). At the southern end of the Burica Peninsula lies the triple junction where the 18 

Cocos, Caribbean and Panama block meet. There is also a high number of seismic events that take place 19 

along the Northern Panama Deformed Belt (NPDB) and Central Costa Rica Deformed Belt (CRDB). These 20 

are a series of cortical deformation zones with a high density of active faults (Goes et al., 1993; Guangwei 21 

Fan et al., 1993; Montero, 2001). This complex tectonic framework has resulted in numerous destructive 22 

earthquakes (i.e., 1991 Limon Mw 7.7; 2012 Nicoya Mw 7.6), and, consequently, a concern to develop and 23 

improve the seismic hazard and risk studies of the country.  24 
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The Earthquake Engineering Laboratory at the University of Costa Rica (LIS-UCR for its acronym in 25 

Spanish) started operations in 1983. That year, the United States Agency for International Development 26 

(USAID), donated several SMA-1 Kinemetrics strong-motion accelerographs to Costa Rica. They were 27 

located along the Pacific coast and the highly populated Central Valley. That was known as the Faculty of 28 

Engineering's Accelerographic Network. It was an analog network, which meant that after a strong 29 

earthquake took place, the collection and processing of the information took several days to weeks to get 30 

ready for analysis.  31 

In 1989 the name was changed to LIS-UCR. New digital instruments were acquired, and the geographic 32 

coverage of the stations increased. At the time of writing this document, the LIS-UCR has more than 160 33 

digital, 24-bit strong-motion units located in free-field conditions, boreholes, and inside buildings. The LIS-34 

UCR is in charge of recording, processing and storing all acceleration records for academic and research 35 

purposes. The accelerograms used in this document were recorded only by sensors in free-field conditions. 36 

The time span for the database provided in this paper ranges from 1998 to the present. The objective of this 37 

article is to give an overview and provide easy access to this database, and therefore, expanding its use on 38 

research.  39 

Strong-Motion Network 40 

The strong-motion network of the LIS-UCR began operating in 1983 with the installation of SMA-1 41 

Kinemetrics analog sensors. In June 1991, digital processing started with the installation of several SSA-2 42 

Kinemetrics type sensors. In 2010 many analog instruments were replaced by Ref Tek technology, and in 43 

2012 Güralp and Nanometrics sensors were also added to the network. Nowadays, there are a total of 130 44 

free-field stations [most of them with FBA (force-balanced-accelerograph) sensors, but MEMS (Micro-45 

Electro-Mechanical Systems) as well] as shown in figure 1. 46 

There are four soil types according to the Costa Rican Seismic Code (CRSC) (CFIA, 2016). This 47 

classification is similar to that proposed in the ASCE 7-16 (ASCE, 2017) with some differences. Soil types 48 
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A and B are called S1 (rock). Soil types C, D, and E of ASCE 7-16 are equivalent to S2 (stiff soil), S3 (soft 49 

soil) and S4 (very soft soil). There is no F type of soil in the CRSC classification. 50 

Due to the complexity of data acquisition and the cost of the geotechnical studies, we used the classification 51 

method proposed by Zhao et al. (2006). The results can be found in Schmidt-Díaz (2011). The method is 52 

based on the horizontal-to-vertical (H/V) 5% damped response spectral ratio. From that, the fundamental 53 

period can also be obtained. We then used a classification index for each station. When available, geological 54 

and geotechnical information was also used as a reference.  55 

A total of 42.0% stations are classified as soft soil (S3), 33.1% as stiff soil (S2), 17.2% are classified as 56 

very soft soil (S4), and 7.7 % as rock sites (S1). In order to get a better site characterization, we are also 57 

conducting MASW measurements to define the Vs30 parameter. Currently, 35 stations have Vs30 and we 58 

are conducting measurements in 30 more stations (data available upon request via email). Figure 2 shows 59 

the site classification described above. There is also a table with a summary of the site conditions available 60 

at the LIS-UCR website (see Data and Resources). 61 

Strong-Motion Database 62 

The strong-motion database we present here has a total of 2471 three-component accelerograms. They 63 

correspond to 155 earthquakes recorded from 1998 to the present. The database is being updated 64 

automatically with new events as they trigger the Accelerographic Monitoring System (SMA in Spanish, 65 

Moya-Fernández, 2018). Figure 3 shows the distribution of ground motion recordings per year. The number 66 

has increased in recent years because at present there are more stations. 67 

The SMA threshold requires that 30 stations surpass a value of 10 defined as follows: Every 15 seconds the 68 

SMA computes the PGA at every station for the last 60 seconds and stores its value. Only the NS component 69 

is used. It compares the PGA from the current minute (PGAC) and the previous one (PGAP). If the ratio 70 

(PGAC/PGAP) is larger than 10 in 30 sites, the SMA processing begins. PGA is computed for the three 71 

components of every station once the SMA gets activated using the whole waveform. Once the SMA closes 72 
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the event, we select the records that have at least one horizontal PGA greater than 2 gals in order to include 73 

them in the final database. 74 

The earthquake’s location (coordinates in WGS84 system), depth, and magnitude are calculated 75 

automatically by the SMA (Moya-Fernández, 2018). The magnitude used to characterize the database is 76 

the moment magnitude (Mw). Table 1 shows a statistical summary of the number of records per different 77 

ranges of magnitude, depth, and epicentral distance. Figure 4a shows the relation magnitude vs hypocentral 78 

distance. The hypocentral distance for the events in the database ranges from 5 to 400 km.  There are 1509 79 

records from earthquakes with Mw ≥ 5 (61.1 %) (see Figure 4b). Figure 5 shows the location of the events 80 

in the database. Only one of the recorded earthquakes has an Mw > 7, the 7.6 Mw Nicoya earthquake of 2012. 81 

A total of 71 stations recorded that event which shook the whole country. The largest peak ground 82 

acceleration was 1.6 g at GNSR station, which was the closest to the epicenter (Schmidt-Díaz et al., 2014).  83 

The LIS-UCR stores strong-motion data in an ASCII format called “lis-format” (Moya-Fernández, 2006). 84 

This is a special type of format developed for researchers and students to have access to time-series data.  85 

The files contain a header of 34 lines with relevant station and earthquake information of each record, after 86 

which there are the three independent columns corresponding to the north-south (N00E), vertical (UPDO), 87 

and east-west (N90E) component. Metadata from the header includes the earthquake source (subduction or 88 

local), site to event distance [epicentral (Repi), hypocentral (Rhypo), Joyner-Boore (Rjb) and the closest 89 

distance to rupture (Rrup)], site condition, soil classification, among others. The Rjb and the Rrup were 90 

computed following the methodology proposed by Thompson and Worden (2018).  Earthquake source 91 

information is given in the database as local (LOCAL) or subduction (SUBDU) type events. This 92 

classification is a general one, and it is based on the epicenter location and depth. Earthquakes located place 93 

along the Pacific coast are usually classified as subduction type events. Earthquakes further inland in the 94 

rest of the country at shallow depths (less than 30 km) are classified as local ones. Deeper earthquakes 95 

(more than 30 km) along the subducted Cocos plate are classified as intraslab (INSLB) events. We use 96 

“UNDEF” for those earthquakes happening in complex tectonic settings or where a simple classification 97 
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cannot be made. The slab model for Central America from USGS was used to help define which events 98 

happened along the subducted slab in Costa Rica (Hayes et al., 2012). This metadata is available in a catalog 99 

on the LIS-UCR website (see Data and Resources). 100 

  101 

Data Processing 102 

Each station transmits real-time data to the LIS-UCR servers in miniSEED format. When an earthquake is 103 

strong enough to trigger 30 stations, the SMA extracts a pre-defined time-window and converts waveform 104 

data to SAC format (Goldstein et al., 2003) in cm/s2. A baseline correction is applied by removing the mean 105 

value. After tapering on both ends, a second-order Butterworth bandpass filter is used. The SMA then 106 

processes the source parameters, calculate peak values, and gathers station information and soil type to save 107 

data into lis-format. Notice that the entire process is automatic, for that reason, the data is later inspected 108 

by eye in order to identify events with a low signal-to-noise ratio or with processing issues. Records that 109 

are not suitable are removed from the database.  110 

Data processing is proposed to satisfy the requirements of an Engineering Strong Motion (ESM) database. 111 

Frequency bandpass is set to include and overcomes the frequency range for civil structures. Over the years, 112 

corner frequencies have change according with technology, equipment brands and internal requirements on 113 

LIS.  For example, before 1998, the LIS's network was made of Kinemetrics type instrumentation only. The 114 

default filtering from the K2 and ETNA strong motion records from Vol2 format was 0.12 to 47 Hz. When 115 

Reftek was introduced in 2010, the range was set at 0.1 to 40 Hz. After 2017, when the SMA took care of 116 

the automatic signal processing, it was decided that the range 0.05 to 25 Hz best fitted the needs for most 117 

engineering purposes in Costa Rica. In this way, new technologies such as Guralp and Nanometrics that 118 

were later introduced could be used with common values. It is recommendable for the reader to take care 119 

when this parameter is sensitive and read the corner frequencies for each record. 120 
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Intensity Measures 121 

In addition to the database and the catalog, we computed a series of intensity measures (IMs) based on 122 

ground motion time-histories (Table 2) and peak responses (Table 3). The IMs for each record are also 123 

available in the LIS-UCR website (see Data and Resources). The IMs based on time histories are available 124 

in a single table where each column represents a single IM. In the case of the IMs based on peak responses, 125 

they were calculated with absolute spectral acceleration (SA) and a 5% damping. Despite the most 126 

commonly used IM in Ground Motion Prediction Equations (GMPE) is the pseudo-spectral acceleration 127 

(PSA), we estimate the SA with the Nigam and Jennings (1969) exact solution of the differential equation 128 

governing the response. For small damping, these two IMs are equivalent (Chopra, 2007). They are 129 

presented in single tables as a function of several oscillator periods. 130 

We used the acceleration time-histories to calculate the IMs in Table 2. They have been widely used in the 131 

development of ground-motion prediction equations and seismic hazard studies (Boore et al., 1997; 132 

Watson-Lamprey and Boore, 2007; Mezcua et al., 2008; Schmidt-Díaz, 2014; Douglas, 2017), as well as 133 

in the evaluation of expected damage (Park et al., 1987; Kostinakis et al., 2015; Muin and Mosalam, 2017). 134 

Figure 6 shows the relation between PGA (PGAN00E, PGAN90E and PGAZ from Table 2) and hypocentral 135 

distance in the database. There are 7413 individual time-histories corresponding to the 2471 records. Of 136 

them, 39.5% have a PGA larger than 10 cm/s2. Comparing the mean values of several PGA definitions, we 137 

got differences of 1.45% between PGALarger(3) and PGALarger(2), and 12.5%, 15.6% and 14.0% between 138 

PGALarger(2) and PGAN00E, PGAN90E, and PGAGM respectively. Figure 7 shows the relation for the rest of the 139 

IMs with hypocentral distance.  140 

The IMs from peak responses in Table 3 are commonly used in the development of GMPE and hazard maps 141 

(Douglas, 2017). The SAGM (where GM means geometric mean) has gained popularity in the development 142 

of GMPEs in recent years (Douglas, 2003; Campbell and Bozorgnia, 2008; Bindi et al., 2011) because the 143 

dispersion in the averaging procedure in GMPE is significantly reduced (Baker and Cornell, 2006; Watson-144 

Lamprey and Boore, 2007; Stewart et al., 2011). However, this IM has a dependence on the recording 145 
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sensor orientation (this means that if the recording sensor is oriented along the polarization direction, the 146 

GM of the response spectra of the as-recorded ground motion tends to zero, Boore et al. 2006). The 147 

SAGMRotDpp and the SAGMRotIpp developed by Boore et al. (2006) (where GM means geometric mean, Rot: 148 

rotation, D and I: period-dependent and independent rotations, and pp is the percentile) were proposed in 149 

order to eliminate the sensor orientation dependency of the SAGM. The IM SAGMRotIpp, for the 50th percentile 150 

(SAGMRtI50), was used as an intensity parameter in the Next Generation Attenuation (NGA) project (Chiou 151 

et al., 2008; Power et al., 2008). Later on, Boore (2010) proposed the usage of the orientation-independent 152 

SARotDpp and SARotIpp IMs without computing the geometric mean. Finally, the SARotD50 IM was used to 153 

develop the NGA-West2 (Boore et al., 2013; Bozorgnia et al., 2014) and NGA-East (PEER, 2015) GMPEs 154 

models. 155 

Figure 8 shows a comparison between the rotated spectra and the SARotD100 IM (following Boore (2010)) 156 

for the 2012 Nicoya earthquake at GNSR station. It is clear from the figure that the SARotD100 is the envelope 157 

of the rotated spectra. Because this IM represents the maximum value of the vector composition, it could 158 

be used for the design (or risk assessment) of structures of special importance such as historical-cultural 159 

heritage buildings or other high-risk constructions (Pinzón, Pujades, Hidalgo-Leiva, et al., 2018). Figure 9 160 

shows the rest of IMs: SARotD100, SALarger, SAGMRotD50, SAGMRotI50, SARotD50, and SAGM calculated in the in 161 

the range of 0.10s to 0.25s. SAGMRotD50, SAGMRotI50 and SARotD50 correspond to the median values of the 162 

rotated spectra and have similar values compared to SAGM. SARotD100 and SALarger represent the maximum 163 

spectral values. SARotD100 is 9% larger than SALarger on average for the entire database. A statistical summary 164 

for all the IMs can be found on the LIS-UCR website (see Data and Resources). 165 

Conclusions 166 

The database presented in this paper contains 2471 three-component digitally recorded strong-motion 167 

records from the last 20 years in Costa Rica. They correspond to 155 earthquakes with maximum 168 

hypocentral distances of 400 km. Data will continue to be added as new earthquakes get recorded by the 169 

LIS-UCR network. In addition, a catalog with earthquake and station metadata is also available. Several 170 
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time-history IMs and peak responses were also calculated for each component. The IMs will be useful for 171 

developing new seismic hazard studies for the region or for updating the current GMPEs established for 172 

Costa Rica (Schmidt-Díaz, 2014). The database, the catalog with the metadata, and the estimated IMs are 173 

available at the LIS-UCR website (see Data and Resources). 174 

Data and Resources 175 

The link to the LIS-UCR website is http://www.lis.ucr.ac.cr/. A table with the site conditions of each station 176 

is available in the following link: http://www.crsmd.lis.ucr.ac.cr/?id=Estaciones. To request the database 177 

of accelerograms please access the following link: http://www.crsmd.lis.ucr.ac.cr/?id=BD, and fill out the 178 

form or send an e-mail to lis.inii@ucr.ac.cr.  179 

The catalog is available at http://www.crsmd.lis.ucr.ac.cr/?id=BD. The IMs and statistical summary can be 180 

found in the following link: http://crsmd.lis.ucr.ac.cr/crsmdb.zip.  181 
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Tables 

Table 1 Magnitude, depth and epicentral distance statistics for the entire database. Number and 

percentage of three-components records per interval.  

Magnitude (Mw) 
Depth (km) 

< 10 10—25 25—50 50—100 100—150 ≥ 150 

3.0 - 4.0 38 (1.5%) 27 (1.1%) - - - - 

4.0 - 5.0 76 (3.1%) 348 (14.1%) 365 (14.8%) 108 (4.4%) - - 

5.0 - 6.0 57 (2.3%) 472 (19.1%) 229 (9.3%) 144 (5.8) - 28 (1.1%) 

6.0 - 7.0 12 (0.5%) 232 (9.4%) 227 (9.2%) 7 (0.2%) 30 (1.2%) - 

≥ 7.0 - 71 (2.9%) - - - - 

Magnitude (Mw) 
Epicentral distance (km) 

< 10 10—25 25—50 50—100 100—150 ≥ 150 

3.0 - 4.0 17 (0.7%) 31 (1.3%) 5 (0.2%) 8 (0.3%) 4 (0.2%) - 

4.0 - 5.0 30 (1.2%) 130 (5.3%) 325 (13.1%) 326 (13.2%) 53 (2.1%) 33 (1.3%) 

5.0 - 6.0 18 (0.7%) 58 (2.3%) 170 (6.9%) 316 (12.8%) 182 (7.4%) 186 (7.5%) 

6.0 - 7.0 3 (0.1%) 12 (0.5%) 26 (1.0%) 104 (4.2%) 75 (3.0%) 288 (11.7%) 

≥ 7.0 - 1 (0.1%) 1 (0.1%) 8 (0.3%) 13 (0.5%) 48 (2.0%) 

 

 335 
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 339 

 340 

 341 

 342 

 343 

 344 

 345 

 346 

 347 

 348 

 349 
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Table 2 List of intensity measures based on ground motion time histories 

Intensity measure Acronym Formulation Units 

Peak ground acceleration 
PGAN00E  

PGAN90E 

PGAZ 

max|𝑎𝑁00𝐸(𝑡)| 

max|𝑎𝑁90𝐸(𝑡)| 

max|𝑎𝑍(𝑡)| 
cm/s

2 

Larger value of the two horizontal components of 

acceleration (Douglas, 2003; Beyer and Bommer, 2006; 

Pinzón, Pujades, Hidalgo-Leiva, et al., 2018) 
PGA

Larger(2)
 max [

𝑚𝑎𝑥|𝑎𝑁00𝐸(𝑡)|

𝑚𝑎𝑥|𝑎𝑁90𝐸(𝑡)|
]  cm/s

2 

Larger value of the three components of acceleration PGA
Larger(3)

 max[

𝑚𝑎𝑥|𝑎𝑁00𝐸(𝑡)|

𝑚𝑎𝑥|𝑎𝑁90𝐸(𝑡)|

𝑚𝑎𝑥|𝑎𝑧(𝑡)|
]  cm/s

2 

Geometric mean of the PGA of the two horizontal 

components (Beyer and Bommer, 2006; Pinzón, Pujades, 

Hidalgo-Leiva, et al., 2018) 
PGA

GM
 √𝑃𝐺𝐴𝑁00𝐸 ∗ 𝑃𝐺𝐴𝑁90𝐸 cm/s

2 

Peak ground velocity PGV max|𝑣(𝑡)| cm/s 

PGV-to-PGA ratio (Tso et al., 1992; Sucuoǧlu and Nurtuǧ, 

1995; Bommer et al., 2000) 
PGV/PGA 

max|𝑣(𝑡)|

max|𝑎(𝑡)|
 s 

Arias intensity (Arias, 1970) I
A
 𝜋

2 𝑔
∫ 𝑎(𝑡)2 𝑑𝑡

𝑡𝑓

𝑡𝑖

 cm/s 

Root-mean-square (RMS) of acceleration (Housner, 1975; 

Dobry et al., 1978) 
acc

RMS
 √

1

∆
∫ 𝑎(𝑡)2

𝑡95%

𝑡5%

 𝑑𝑡 g 

Root-mean-square (RMS) of velocity (Garini and Gazetas, 

2013; Kostinakis et al., 2015) 
vel

RMS
 √

1

∆
∫ 𝑣(𝑡)2

𝑡95%

𝑡5%

 𝑑𝑡 cm/s 

Specific energy density (Sarma, 1971; Sarma and Yang, 

1987) 
SED ∫ 𝑣(𝑡)2 𝑑𝑡

𝑡𝑓

𝑡𝑖

 cm
2
/s 

Characteristic intensity (Park et al., 1987) I
C
 𝑎𝑐𝑐𝑅𝑀𝑆

1.5 √𝑡𝑓 - 

Cumulative absolute velocity (Reed and Kassawara, 1990) CAV ∫ |𝑎(𝑡)| 𝑑𝑡
𝑡𝑓

𝑡𝑖

 cm/s 

Significant duration (Husid, 1969; Bolt, 1973; Housner, 

1975; Trifunac and Brady, 1975),  
∆ 5-95% of Arias intensity s 

Duration-PGV intensity (Pinzón et al., 2020) I
-PGV

 𝑃𝐺𝑉𝛼 ∆𝛽  - 
• a(t) and v(t) represents the acceleration and velocity time histories of an earthquake. 350 
• ti is the beginning of the record, tf is the total duration of the record.  351 
• 5% and 95% of the Arias intensity marks the beginning (t5%) and end (t95%) of the strong phase. 352 
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Table 3 List of intensity measures based on peak responses 

Intensity measure Definition 

SA
N00E

 and SA
N90E

 Response spectra of the as-recorded horizontal orthogonal components 

SA
Larger

 
The larger of the two horizontal components (Douglas, 2003; Beyer and Bommer, 2006; 

Bradley and Baker, 2015; Boore and Kishida, 2016; Pinzón, Pujades, Hidalgo-Leiva, et 

al., 2018) 

SA
GM

 
Geometric mean of the response spectra of the two as-recorded horizontal components 

(Beyer and Bommer, 2006; Bradley and Baker, 2015; Boore and Kishida, 2016; Pinzón, 

Pujades, Hidalgo-Leiva, et al., 2018) 

SA
GMRotDpp

 
Percentile (pp) value of the geometric mean of the response spectra of the two as-recorded 

horizontal components rotated onto all non-redundant azimuths (Boore et al., 2006; Boore 

and Kishida, 2016)  

SA
GMRotIpp

 
Percentile (pp) value of the geometric mean of the response spectra of the two as-recorded 

horizontal components rotated onto all non-redundant period- independent azimuths 

(Boore et al., 2006; Boore and Kishida, 2016) 

SA
RotDpp

 
Percentile (pp) values of the response spectra of the two as-recorded horizontal 

components rotated onto all non-redundant azimuths (Boore, 2010; Pinzón, Pujades, Diaz, 

et al., 2018) 
 

 

 

 

 

 

 

 

 

 

 



21 
 

List of figures  

Figure 1. Station distribution for the LIS-UCR strong-motion network. White lines correspond to 

administrative divisions by provinces and gray lines to major roads. 

Figure 2. Station distribution and soil classification. 

Figure 3. Number of ground motions recorded per year. 

Figure 4. (a) Magnitude as a function of the hypocentral distance for the 2471 records and (b) magnitude 

distribution. 

Figure 5. Epicenter location for the earthquakes recorded between 1998 and 2019. 

Figure 6. Peak ground acceleration as a function of the hypocentral distance for the three as-recorded 

components. 

Figure 7. Several intensity measures as a function of the hypocentral distance: (a) PGV, (b) PGV/PGA, (c) 

Arias intensity SAT1, (d) accRMS, (e) velRMS, (f) Specific Energy Density, (g) Characteristic intensity, (h) 

Cumulative Absolute Velocity and (i) Significand duration. 

Figure 8. Comparison of the 5% damped response spectra estimated with RotD100, GM, horizontal 

acceleration components (N00E and N90E) and the rotated components (º rot) from the 7.6 Mw Nicoya 

earthquake recorded at station GNSR, which occurred on 5 September 2012. 

Figure 9. Comparison of the 5% damped response spectra estimated with RotD100, Larger, RotD50, 

GMRotI50, GMRotD50 and the GM using the 7.6 Mw Nicoya earthquake recorded at station GNSR, which 

occurred on 5 September 2012. 

  353 



−86˚ −85˚ −84˚ −83˚
8˚

9˚

10˚

11˚

75 km

Nicaragua

P
a

n
a

m
a

Station

10 km

Figure 1



−
8

6
˚

−
85

˚
−

84
˚

−
83

˚
8

˚

9
˚

1
0˚

1
1˚

7
5 

km

N
ic

ar
a

gu
a

Panama

S
o

il
 t

y
p

e

S
1 

(R
o

ck
)

S
2 

(S
tif

f 
so

il)
S

3 
(S

o
ft

 s
o

il)
S

4 
(V

e
ry

 s
o

ft 
so

il)

1
0 

km

Figure 2



Figure 3



(b)(a)Figure4



−86˚ −84˚ −82˚

8˚

10˚

12˚

−86˚ −84˚ −82˚

8˚

10˚

12˚

0 100

−86˚ −84˚ −82˚

8˚

10˚

12˚
100 km

Nicaragua

Panama

Earthquakes from 1998−2019

M < 3.9 M 4−4.9 M 5−5.9 M 6−6.9 M > 7

Figure 5



Figure 6



(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

Figure 7



Figure 8



Figure 9




