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Abstract

Genome Wide Association Studies (GWAS) allow the use of natural variation to understand the genetics
controlling specific traits. Efficient methods to conduct GWAS in plants have been reported. This chapter
provides the main steps to conduct and analyse GWAS in Arabidopsis thaliana using polyamine levels as
trait. This approach is suitable for the discovery of genes that modulate the levels of polyamines, and can be
used in combination with different types of stress.
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1 Introduction

Genome Wide Association Studies (GWAS) make use of natural
variation to conduct gene mapping. To identify the genetics
controlling natural variation three methods can be considered: (1)
Quantitative Trait Loci (QTL) analysis using the progeny of crosses
among accessions, (2) bulked sample analysis (BSA) which employs
selected and pooled individuals (based on extreme phenotypes)
derived from biparental populations [1], and (3) GWAS using
individuals collected from different parts of the world [2]. QTL
mapping approaches have a low gene mapping resolution meaning
loci with many (even hundreds) potential gene candidates
controlling the trait of interest are mapped. Therefore, additional
experiments are required that involve fine-mapping [2]. Another
method is BSA which has been successfully used to map polyamine
transporters involved in paraquat tolerance in Arabidopsis [3]. The
advantage of the BSA, compared with QTL or GWAS, is the
reduction in scale and costs of the mapping experiments, mainly
because only individuals with extreme phenotypes are used. Simi-
larly to QTL analyses, BSA requires further experiments and crosses
to fine map the gene(s) controlling the trait. In contrast with QTL
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and BSA analyses, GWAS facilitates direct mapping of genes affect-
ing a phenotype without the need for experimental crosses [4, 5].
In the specific case of polyamines, GWAS have been applied to map
genes involved in tolerance to the polyamine oxidase inhibitor
guazatine, in which loss-of-function mutants of CHLOROPHYL-
LASE genes are more tolerant to this herbicide than wild-type
genotypes [6].

One relevant factor when considering the use of GWAS is the
population structure, which means that some genotypes can be in
linkage disequilibrium with each other, for instance, due to a com-
mon origin, thus leading to false genotype-to-phenotype associa-
tions [5]. To correct the population structure, protocols using
linear mixed models have been applied, in which a kinship matrix
inferred from the genotypes is considered in the analysis as a non-
random effect [7, 8]. Furthermore, methodologies have been
developed in which there is no need to correct for population
structure, allowing the mapping of genomic regions, which could
have not been mapped using linear mixed models [9]. Some diffi-
culties with the use of GWAS include the presence of epistatic
interactions, and the involvement of rare alleles in the traits under
analysis [10].

2 Materials

2.1 Representative

set of Arabidopsis

thaliana Accessions

For conducting GWAS, naturally occurring variation is needed. In
the case of Arabidopsis thaliana, a large number of natural acces-
sions are available in germplasm stocks such as the Nottingham
Arabidopsis Stock Centre (NASC), the Arabidopsis Biological
Resource Center (ABRC), and the RIKEN Bioresource Center
(BRC)/SENDAI Arabidopsis Seed Stock Center (SASSC). Also,
it is possible to consider using published populations from GWAS,
including those that have 107 individuals [11], 473 [12], or 1386
[13]. Currently, online platforms to conduct GWAS are available
for Arabidopsis community research, e.g., GWAPP [13] and easy-
GWAS [14], and those continue to expand the number of acces-
sions and mapping tools available for the research community in a
user-friendly environment.

2.2 Genotype Data Allele data from each accession is required to conduct GWAS. Most
studies have genotyped accessions using SNP arrays, which after
quality control have yielded between 216,130 SNPs [11] and
213,497 SNPs [12] for Arabidopsis. SNP data with minor allele
frequency lower than 10% is usually filtered out of the analysis.
Since most of the Arabidopsis accessions are genetically stable,
once an accession is genotyped it is possible to continue to use
the genotype data in additional independent studies. As mentioned
above, online platforms for GWAS contain the allele data required
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for the analysis [13, 14]. Furthermore, next generation sequencing
technologies enables the efficient genotyping of materials suitable
for GWAS [15, 16]. This can be especially useful in crops in which
no genotype data is typically available for specific accessions. For
instance, recent GWAS in rice identified new genes associated with
agronomical traits [17].

2.3 Phenotype Data Polyamine level quantification is determined using high-
performance liquid chromatography [6, 18].

3 Methods

3.1 Data Sets

Preparation

1. Calculate descriptive statistics for the phenotype data (see
Note 1).

2. Check for normality. For instance, perform histograms and
Shapiro Wilks tests for normality. GWAS assume that the phe-
notype data has a normal distribution. Studies have reported
that lack of normality can affect the identification of the causal
polymorphisms [19] (see Note 2).

3. Prepare the phenotype file (Table 1).

4. Prepare the genotype file in a transposed “.tped” format.
Table 2 shows an example of the genotype file.

5. Prepare the kinship matrix to correct for the population struc-
ture using the EMMAX-Kin program [8, 20].

Table 1
Example of the phenotype file

1 CS28636 2.97

2 CS28637 1.73

3 CS28640 6.15

Only three accessions are shown. The first column is the family ID, the second the individual ID, and the third column is

the phenotype value. The file can be saved using a txt format

Table 2
Example of the genotype file matrix

1 m1 657 2 2 2 2 2 2

1 m2 3102 2 2 2 2 1 1

1 m3 4648 2 2 2 2 1 1

Only three markers are shown. The first column is the chromosome; the second the marker name; the third the position

in the genome. Starting from the fourth column, the SNP data (in binary format in this case 1 and 2 representing the

alleles) for each accession is displayed. In this example data are presented for six accessions
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3.2 Mapping and

Results Interpretation

1. Locate all data files under the same folder.

2. Run the mapping procedure. In the case of EMMAX [8, 20]
run the following script in a Linux environment:

./emmax -v -d 10 -t tped_prefix -p phenotype_file.txt -k kin-
ship_file -o output_prefix.txt

3. Plot and interpret the results. The output files will appear in the
same folder where all the data sets are saved (see Note 3).

4. Do a quality control on the results with a QQ-plot (seeNote 4).

5. Find causable genes associated with significant markers.
Because the physical position of the SNP markers is known,
then it is possible to know the exact gene where they are
located.

6. Conduct pairwise linkage disequilibrium (LD) analysis
between SNPs located in the region with the highest associa-
tions (see Note 5).

7. Validate associations with mutant analysis. The use of mutants,
for instance T-DNA mutants available at NASC can be
employed to validate the phenotype of individuals carrying
mutations in genes carrying markers with high association
scores.

4 Notes

1. This initial analysis is important to evaluate the reproducibility
of each of the phenotypes. A high value of broad sense herita-
bility (H2) (closer to one) indicates a high reproducibility
among the different replicates, which means a high genotype
effect, as well as high precision for the method to quantify the
polyamines. If these values are low, it is important to check the
data for outliers that interfere with the reproducibility of the
replicates, discard possible technical errors, and even consider-
ing modifications in the experimental design (e.g., increase the
number of repetitions).

2. A lack of normal distribution in the phenotype can affect the
GWAS, nonetheless, it has also been noted that the use of
transformation can increase the rate of false positive associa-
tions [19].

3. The .ps file contains the P-values of the association tests. It is
convenient to create a new matrix file where one column con-
tains the marker name, another the position in the genome and
a last column with the obtained P-values for each marker. It is
also possible to add another column with the chromosome
number, since that can be helpful in the results interpretation.
Plotting the results can be conducted using R packages, such as
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“qqman” [21], in which tools are available for performing
Manhattan plots. Furthermore, it is possible to include a cor-
rection for multiple testing. This correction is necessary since,
the more markers tested, the higher the possibilities of finding
associations just by chance (for more details see [22]). One
stringent correction is the Bonferroni method, which is calcu-
lated by dividing the significance level (α) by the number of
tested hypotheses. Most of the GWAS reporting strong asso-
ciations have a group of markers associated with the trait rather
than single markers with strong associations. Most of those
single associations may be considered as false positives.

4. Tomake a QQ-plot is a good practice to check for confounding
effects. QQ-plots can be conducted using the qqman R pack-
age [21]. It plots the observed P-value for all tested associa-
tions between phenotypes and SNPs on the y axis versus the
expected uniform distribution of the P-values under the null
hypothesis of no association on the x axis [21].

5. LD analysis can be performed with the R package LD heatmap
[23]. LD indicates how an SNP is inherited with another, and
the R2 values are used to measure allelic correlations, ranging
from 0 to 1, being 1 a complete LD between two markers.
High R2 values between pairs of SNPs indicate the possibilities
of additional markers providing similar information as the one
fount for the association under study [24].
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(2010) Genome-wide association study of
107 phenotypes in Arabidopsis thaliana inbred
lines. Nature 465:627–631

12. Li Y, Huang Y, Bergelson J et al (2010) Asso-
ciation mapping of local climate-sensitive
quantitative trait loci in Arabidopsis thaliana.
Proc Natl Acad Sci U S A 107:21199–21204

Genome-Wide Association Mapping Analyses Applied to Polyamines 431



13. Seren U, Vilhjalmsson BJ, Horton MW et al
(2012) GWAPP: a web application for
genome-wide association mapping in Arabi-
dopsis. Plant Cell 24:4793–4805

14. Grimm DG, Roqueiro D, Salome P et al
(2016) easyGWAS: a cloud-based platform for
comparing the results of genome-wide associa-
tion studies. Plant Cell 29:5–19

15. Elshire RJ, Glaubitz JC, Sun Q et al (2011) A
robust, simple genotyping-by-sequencing
(GBS) approach for high diversity species.
PLoS One 6:e19379

16. Ott A, Liu S, Schnable JC, et al (2017) Tunable
genotyping-by-sequencing (tGBS®) enables
reliable genotyping of heterozygous loci.
bioRxiv

17. Yano K, Yamamoto E, Aya K et al (2016)
Genome-wide association study using whole-
genome sequencing rapidly identifies new
genes influencing agronomic traits in rice. Nat
Genet 48:927–934
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