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Abstract. Trace links between commits and user stories can be used
in educational software engineering projects to track progress and deter-
mine the students’ contribution to projects’ requirements. Thus, trace-
ability can be helpful in courses for grade assessment, and project mon-
itoring and improvement. Currently developers, including students in
courses, manually link commits and issues using version control systems
(e.g., Git) and issue tracking systems (e.g., Jira). However, manual trace
links are often incomplete. In our study, we found that only 43% of
the commits are linked to stories in the analyzed project. Therefore,
there is a need to automatically or semi-automatically create trace links.
This study aims to automatically recover trace links between commits
and user stories requirements in an undergraduate student project with
twenty students and four teams. We used unstructured data from mes-
sages, code and files of commits and stories to gather textual similarity
measures. We evaluated the effectiveness of information retrieval (Vector
space model, Latent semantic indexing and BM25) and machine learning
(Random forests, Decision trees and Neural networks) techniques in re-
covering missing links using textual and process data. Machine learning
models outperformed information retrieval models in precision, recall,
and F-measure. Machine learning models were able to effectively recover
missing trace links with an average of 93% precision and 94% recall,
showing the applicability of the approach.

Keywords: software engineering education · traceability · link recovery
· information retrieval · machine learning · mining software repositories

1 Introduction

Traceability supports, throughout the development life cycle, different software
engineering tasks and activities such as verification and validation, change im-
pact analysis, change management, and requirement completeness analysis [1].
The establishment and use of trace links have been applied and studied in a wide
range of software development environments [2–5] and software artifacts [6–8].
Traceability practitioners in software projects have reported commonly using
tracing for tracking the implementation of requirements and tasks, finding the
origin and rationale of requirements, documenting requirements’ stories, and an-
alyzing requirements coverage in source code [9]. These benefits could also be
applied to software development projects in education.
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Links between changes and issues (i.e., features, bugs or enhancements) can
be used to build prediction or localization models, characterize the impact of
a change, assign bugs to developers, and map source code and features [10]. A
common practice to establish manual trace links between changes and issues is
tagging [11]. Source code changes (i.e., commits) are saved in version control
systems (VCS), including information about the who, what, why, when and how
of a change [12]. Meanwhile, issue tracking systems (ITS) collect bugs, enhance-
ment requests, features and tasks [13]. To link issues with changes, developers
tag (in the change) the identification of the implemented issue [14].

Tracing commits with user story requirements in student’s software engi-
neering projects would allow instructors and students to monitor requirement
progress and completion. Roadblocks with requirement implementation can then
be detected to be tackled by students or instructors providing additional feed-
back. Traceability could help determine a student’s or team’s contribution and
can be combined with other information such as process [15] and quality [16]
metrics. Trends in feature implementation could also be determined to find re-
curring patterns in the process or product. Therefore, the information gathered
could help instructors determine improvement opportunities for courses and help
grade assessment based on data.

Despite the benefits of establishing manual trace links, it has been reported
that links are frequently inaccurate and untrustworthy [17]. Several studies, both
in open source software and industrial projects, have also indicated that links
between commits and issues are often incomplete [10,11,18]. Therefore, there is
a need to establish automatic or semi-automatic trace links.

In this paper, we aim to automatically recover trace links between commits
and user stories in students’ software engineering projects. We investigated miss-
ing link recovery in an undergraduate software engineering project with twenty
students, 1, 035 commits, and 230 committed or done stories. We analyzed to
what extent students manually linked commits and user stories. Furthermore,
we assessed a total of six information retrieval and machine learning techniques.
Information retrieval methods used the messages, files and code of the commits
and stories to create missing links. Additionally, machine learning techniques
utilized both process and textual similarity information to recover the links.

The remainder of this paper is organized as follows. Section 2 describes re-
lated work. Section 3 details the methdology of our study. Section 4 presents
and discusses the results. Section 5 describes the work’s conclusions and future
work.

2 Related Work

Several approaches have previously investigated recovering commits and issues.
Heuristic and information retrieval approaches have been previously applied.

Śliwerski et al. [14] used syntactical and semantical heuristics to determine if
a change fixed a bug. Wu et al. [19] applied ReLink, an algorithm that auto-
matically learns from links between bugs and changes to recover missing links.
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ReLink uses the time, ownership, and textual features to determine the links.
Nguyen et al. [20] proposed MLink, an approach that calculates, with Tf-Idf,
code and textual similarity between bugs and bug-fixing changes. Hübner and
Paech [21] used data from interaction logs, requirements, and source code in
student projects. Hübner and Paech [5] further extend their approach by using
the issue identifiers provided in the commit messages. Our approach differs from
most previous approaches as it focuses on another context, students’ software
engineering projects, and also includes probabilistic models.

Other approaches have used machine learning techniques. Sun et al. [22]
proposed FRLink, an approach that included non-source code documents and
discards irrelevant source code files. FRLink extracts the textual similarity for
the commit code, non-source code and logs, and issue reports with the vector
space model. Then, FRLink classifies if the commits and issues are related using
a binomial prediction model. Sun et al. [23] further improved their approach
by considering unlabeled data with PULink. Rath et al. [11] used process and
text-related features with machine learning techniques to generate missing links
between the commits and issues (bugs and improvements). They calculated the
textual similarity between commits and issues using algebraic information re-
trieval models with the commits messages and files, and issues summaries and
files. Ruan et al. [10] utilized deep learning techniques to capture the semantic
representation between commits’ logs and code, and issues titles, texts and code.
We differ from previous machine learning approaches as we focus on validating
the approach in another context and requirements.

Therefore, we extend previous studies by generating more evidence, compar-
ing other techniques, and applying the approach in a less studied context.

3 Methodology

In this section, we describe the methodology of our study. Subsection 3.1 de-
scribes our approach. Subsection 3.2 details the analyzed project. Subsection 3.3
comments the threats to validity.

3.1 Approach

Figure 1 shows the approach used in this study with four main stages: data ex-
traction, data preprocessing, information retrieval modeling, and machine learn-
ing modeling. Commits from the version control systems (VCS) and user stories
from the issue tracking system (ITS) are first extracted from their repositories.
Next, the true commit-story and false commit-story trace links are recovered.
Then, the unstructured data from the commits and user stories are prepro-
cessed. The preprocessed data is then used with information retrieval techniques
to extract the textual similarity between artifacts and retrieve the most relevant
documents. Finally, machine learning models are trained and evaluated. The
complete approach has been implemented in Python. Each step will be further
elaborated in the following paragraphs.
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Fig. 1: Trace link recovery approach

Data extraction. Many different artifacts are created during a software devel-
opment project. In our study, we used the commits and requirements written as
user stories.

Commit. For Git [24] a commit is a snapshot, a version of the repository at
that moment. Each commit has a unique identifier and saves the changes
to the files with the associated code. Furthermore, other metadata of the
commit is saved, such as when the changes were made, the developer who
made the change, and why the change was made in the commit message
(subject and body).

User story. A user story is a type of requirement used in agile software engi-
neering written from the perspective of the end-user in natural language [25].
User stories were written based on the Connextra template (I as a role want
function so that business value) [26]. Furthermore, the user story also in-
cluded a summary, acceptance criteria, user story points, sprints, creation
time, termination time, and creator. The stories were saved in Jira 1, but
some additional information, such as the assignees of each story, was saved in
Excel. We consider the message of a story the summary and the description.
This included the Connextra template and acceptance criteria.

The relationship between our selected artifacts is shown in Fig. 2. The squares
represent artifacts. Relationships with an arrow represent linking, while squares
represent containment. Commits have messages, a pair of subjects and bodies.
Stories also have messages, which include their title and description. A user story
can have multiple associated linked commits, and vice versa. Furthermore, a com-
mit contains files that were changed and can be modified in multiple commits.
These files save numerous code changes of addition, deletion, or modification.

User story Commit File Code

Fig. 2: Relationship between commits and stories

1 https://www.atlassian.com/software/jira
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For both commits and stories, we mapped each developer and team to a
unique identifier. To map the commits, we used a mailmap 2. Meanwhile, the
stories are mapped with a program based on a configuration file that maps
the students’ emails to the unique identifier. For both the commits and stories,
students are also mapped with their respective team with a configuration file.

Finally, the trace links between the commits and user stories were recovered
using previously used heuristics [10]. Trace links in the project were saved by
tagging in the commits’ message the associated story identifier. Therefore, we
recover the true links by identifying the story identifier in a commit message.
Meanwhile, false links are created for each commit with a true link. For each
story not associated with the linked commit, a false link is created. Furthermore,
to reduce the potential false links only commits that were committed between 7
days before the creation or after the completion date of the story [23]. Further-
more, stories had to be either committed to a sprint or done to be included as
either a true or false link.

Data preprocessing. To select more representative terms using information
retrieval models, the commits’ and stories’ unstructured data is linguistically
preprocessed [27]. Particularly, the stories messages, and the commits messages,
files and source code changes between snapshots. To preprocess the text, text nor-
malization, camel and snake case words splitting, text tokenization, stop words
removal, and morphological root stemming were applied. Words were stemmed
using the Porter stemmer algorithm [28]. The nltk [29], ftfy 3 and Cucco li-
braries 4 were used to preprocess the text. As the text could be written in either
English or Spanish, all the text was translated to English with google trans-
late [30]. To process the commit files, we also included the full path. Further-
more, the files’ extensions were removed and folders were split. Finally, to extract
relevant terms from the source code from the commit, we eliminate source code
keywords for CS, SQL and JS files [31].

Information retrieval modeling. Information retrieval models select and
rank documents based on queries, and are classified into four main categories:
probabilistic, algebraic and logical, informational theoretic, and bayesian [32].
In our case, we used these models to gather and rank the textual similarity
between commits and stories. Most traceability information retrieval-based ap-
proaches have focused on using algebraic models, specifically the Vector space
model [33]. In this paper, both algebraic and probabilistic models were analyzed.
The examined models were the Vector space model (VSM) [34], Latent semantic
indexing (LSI) [35] and BM25 [36, 37]. We used Gensim’s [38] implementation
of algebraic models. For BM25, we used the library Rank-BM25 5. The default
configuration is used for all the models.
2 https://git-scm.com/docs/git-check-mailmap#_mapping_authors
3 https://github.com/LuminosoInsight/python-ftfy
4 https://github.com/davidmogar/cucco
5 https://github.com/dorianbrown/rank_bm25
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The story’s message is treated as the document in the model, while the
commit’s message, files and code are the queries. We index each of the different
documents and the query is then processed to obtain the commit-story similarity
score. Based on the similarity score given by the models, the relevant documents
for a commit are the two highest, non-zero stories. For the queries with multiple
entries (i.e., code and files), a total score is calculated based on four different
strategies: maximum score, median score, average score, and the average of the
top 5 scores. Models performance was evaluated based on the precision, recall and
F-measure [27]. Precision is the fraction of retrieved documents relevant, recall
is the fraction of relevant documents retrieved, and F-measure is the harmonic
mean for the precision and recall.

Machine learning modeling. Our machine learning approach has four major
steps: data selection, training and evaluation. For the data selection phase, the
commits, stories, true and false links, and commit-story similarity scores are
gathered from the previous steps. Previously, process and textual similarity sets
have been used [11]. Therefore, we divide our features into the following sets:

Process. Incorporates process related information. We capture: (p1) committer;
(p2) committer team; (p3) story assignees; (p4) teams assigned to story; (p5)
committer is an assignee (committer == an assignee); (p6) committer team
is an assigned team (committer == an assigned team); (p7) story created
date <= commit date; and, (p8) commit date <= story resolution date.
Features p5, p6, p7 and p8 are binary.

Similarity. Contains the textual similarity scores. We used: (s1) commit mes-
sage and story message similarity; (s2) commit files and story message simi-
larity; (s3) commit code and story message similarity. Since we have multiple
similarity scores, we select the highest performing information retrieval mod-
els for each similarity feature.

All. All the features (p1, · · · , p8, s1, s2, s3) from both the process and similarity
set are selected.

Previously decision trees (DT), neural networks (NN) and random forests
(RF) models have been applied to recover commit-issue trace links [10, 11].
Therefore, we trained and investigated these three different supervised machine
learning classifiers. We used Scikit-learn’s [39] implementation of machine learn-
ing models. Decision trees and random forests apply default hyperparameters.
Meanwhile, the neural network adopts all the default hyperparameters except
iterations with a value of 500 to achieve model convergence. As the datasets
were severely unbalanced, data was balanced with sub-sampling using Scikit-
learn. In order to mitigate the effects of randomness while training the model,
every model and set is tested ten times. The classifier returns if the commit-story
pair was either linked or unlinked. We evaluated each model’s precision, recall
and F-measure as they have been previously used to assess the performance of
machine learning models for commit-issue link recovery [10,11,22].
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3.2 Software project

We analyzed a third-year undergraduate software engineering project from the
Universidad de Costa Rica with Git and Jira repositories. Furthermore, students
also detailed some aspects related to the user stories in an additional excel. The
students applied agile methodologies and developed a medical attention mobile
application using Blazor, C# and SQL Server. The project was developed by
twenty students divided into four teams with scrums of scrums 6. At the end of
the project, students added 1, 035 commits and 279 user stories in the backlog.
230 stories were committed to a sprint or done.

Students were required to manually tag while committing the identifier of the
associated user stories and tasks. After the course ended, the number of manual
links between the commits and user stories was calculated. Out of 279 user
stories, 55 were linked to only one commit, 102 were linked to various commits,
and 122 had no linked commits. Meanwhile, for the 1, 035 commits, 353 were
linked to only one story, 92 were linked to multiple stories, and 590 were not
linked to stories. Therefore 56.3% of the stories were linked to commits, and 43%
of the commits were linked to stories.

The number of commits with linked stories by student and team is shown
in Fig. 3. Each bar represents the number of commits committed or stories as-
signed to the student or team. Each color of the bar represents the number of
commits or stories that were not linked (0), linked to one artifact (1) or linked
to multiple artifacts (n). There was significant variance in the number of com-
mits linked to stories by students (Subfigure 3a) and teams (Subfigure 3b). The
unlinked commits by students ranged from 22% to 95%. Furthermore, commits
were not linked proportionally to their commits. For example, S14 had a total
of 45 commits and had an average commit contribution. Despite not being a top
contributor for commits, S14 had the lowest number of unlinked commits. In to-
tal, 16 students, representing 80% of the students, linked commits to more than
one story. Thus it was a frequent practice to implement more than one function-
ality per commit. The differences of linking practices for commits are also present
in the teams, with unlinked commits ranging from 37% to 83%. Meanwhile, the
user stories assigned by students (Subfigure 3c) or teams (Subfigure 3d) had a
higher degree of linking than commits, but still, there was considerable variabil-
ity. For the assigned stories, 4% to 72% of stories were unlinked. The unlinked
stories average was 33%. There were even two students who had linked at least
one commit to their assigned stories. Still, there are 65 stories without an as-
signee. These unassigned stories were unlinked in 98% of the stories. 21% to 67%
of the stories assigned to a team were not linked to a commit.

3.3 Threats to validity

There are several potential threats to the validity of our study. External va-
lidity. We studied an undergraduate software engineering project. A validity

6 https://www.agilealliance.org/glossary/scrum-of-scrums
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(a) Students’ commits to stories (b) Teams’ commits to stories

(c) Students’ stories to commits (d) Teams’ stories to commits

Fig. 3: Manual links of students and teams

threat is related to how generalizable our results are to other projects, contexts
and technologies. Thus, we cannot claim the generalizability of our results. As
future work, we plan to evaluate additional undergraduate software engineering
projects. Internal validity. The manual links were generated by the students’
during the project as experts of the project. Thus we cannot guarantee the ac-
curacy of the links. In order to mitigate the influence of grading in creating the
links, the evaluation of the trace links was conducted after the project was fin-
ished. Only committed or done stories were used to create automatic trace links.
There is a validity threat with regards to the selection of the stories used in the
linking. To mitigate this threat we included any story that was committed or
done in either Jira or excel.

4 Results and discussion

In this section, we detail (Subsection 4.1) and discuss (Subsection 4.2) the results
of our study.

4.1 Results

Figure 4 shows the precision, recall and F-measure for the information retrieval
models and sets. The x-axis represents the different models. The y-axis represents
the value for each performance measure. Each dot is a different result for the
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pair of the sets and models. The code and file sets have multiple dots per model-
set pair as there are different strategies to calculate the total score. The best
performing model was BM25 with the commit message, achieving an average
precision of 32% and recall of 50%. Across all information retrieval models,
the message attained the best results with 30% precision and 46% recall on
average. Meanwhile, the files and code had similar performance. On average,
files had 7% precision and 11% recall, and code had 6% precision and 10%
recall. Furthermore, there was no singular strategy for selecting the total for
files and code that had outperformed the performance of the models. Across all
the models and sets, the recall was higher than precision. However, though the
information retrieval models had a low performance, they were useful as they
provided textual data for the machine learning models.

Fig. 4: Effectiveness of the information retrieval models

Figure 5 shows the precision, recall and F-measure of the machine learning
models and feature sets. Each model-set box plot limits represent upper and
lower quartiles, while the small lines represent the mean. The RF model with
the all set achieved the highest performance. The average precision was 93% and
recall was 94%. Furthermore, the NN model with all the features obtained a very
similar performance, with an average precision of 92% and recall of 94%. Still,
both RF and NN had an average of 90% F-measure across the sets. Meanwhile,
DT had an average 87% F-measure, thus were slightly less effective than RF
and NN. Using all the features was the most effective set and it achieved 93% of
precision, recall and F-measure on average. The process set was the second-best
set with an average precision of 84% and recall of 98%. Specifically, the recall
was very close to or was one for the process set. Lastly, the similarity set had the
worst performance achieving an average precision and recall of 83%. Regarding
the variance, the all set had a low variance. The all sets variance, on average,
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ranged between 1% to 2% for precision and recall. The similarity set variance
was slightly more (on average) ranging between 3% to 5%. Lastly, using the
process set, the variance was considerable across all models with an average 5%
precision variance and 9% recall variance.

Fig. 5: Effectiveness of the machine learning models

4.2 Discussion

Our findings show that trace links were often incomplete in our project, which
provides further empirical evidence of the need to create automatic or semi-
automatic trace links. Previous studies reported that manual linking was ap-
proximately 48% of commits were not linked to issues, and ranged between 30%
and 45% of issues were not linked to commits [10,11,18]. Our student undergrad-
uate project had a similar percentage of missing commits links (43%), though
the stories linked were slightly higher (56%) than the average reported by pre-
vious studies. We also found evidence that there is inequality in the linking
process, with some students and teams students barely contributing to the man-
ual linking. Hence, instructors must give further attention to verify if students
are actually linking their commits, possibly with tool support.

We found that information retrieval models could achieve adequate precision
by sacrificing the recall value.. This seems to be in line with previous research
results for information retrieval techniques in automatic link creation and main-
tenance, achieving low precision and higher recall [40]. However, these models
did provide additional textual information to the machine learning models that
helped improve their performance. The machine learning models attained high
precision and recall, regenerating most commit-story links (true links) with few
false links. Compared to other recent commit-issue approaches that accomplished
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and precision within the 90% using machine learning [10], we achieved similar
results.

Our results are encouraging as they can be applied in courses where instruc-
tors need to retrieve links automatically at any point of the project. With future
validation, this approach may be used to help in semi-automatic or automatic
link creation. Furthermore, analyzing trace links can provide quantitive informa-
tion about students’ implementation trends during the process. Thus, the data
gathered can be used to plan and monitor projects, helping grade assessment
and improving the development process.

5 Conclusions

Manually creating trace links is often incomplete; therefore automatic or semi-
automatic approaches are needed. Specifically, trace links are helpful in education
as they can monitor projects, determine implementation contributions and help
grade assessment. In this paper, we automatically recover trace links between
commits and user stories in an undergraduate software engineering project. We
applied our approach in a student project using agile methodologies with twenty
students, 1, 035 commits, and 230 committed or done stories. We found evidence
that only 43% of the commits were linked to the stories. We evaluated both infor-
mation retrieval and machine learning models to recover missing links. Algebraic
and probabilistic information retrieval models achieved, in the best of the results,
32% precision and 50% recall. Even though information retrieval models did not
achieve outstanding performance, they were helpful as they provided textual
similarity information of the unstructured data. Thus, machine learning models,
using a combination of textual and process data, achieved promising results. In
the best case, these models reached 93% of precision and 94% of recall. The re-
sults demonstrate the applicability of the approach to recover links in projects to
help monitor and evaluation of ’students’ contributions during the development
of the project.

In future work, we plan to extend our analysis to other undergraduate soft-
ware engineering projects. Additionally, this work could be further expanded
using different models and other data from the commits and issues. Further re-
search is needed in creating automatic trace links in students’ projects in-vivo to
determine the accuracy and feasibility of the approach to create links. Addition-
ally, creating tools to help monitor the projects’ traceability. Further research
could also gather students’ and instructors’ perceptions of the benefits and chal-
lenges of traceability in educational projects. Research can also be conducted
to gather instructors’ and students’ benefits and current traceability challenges
in an educational context. Finally, students’ trends between commits and issues
can be analyzed to determine behavioral patterns.

Acknowledgments. This research was partially funded by Universidad de
Costa Rica, project No. 834-C1-011.
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