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Background

Control over the norm: Lerner, 2013.

Point-wise approach: Conde-Alonso, Rey, 2015.

Point-wise stopping time: Lacey, 2015. Different points of
view: Bernicot, Frey, Petermichl; Domelevo, Petermichl;
Lerner; Volberg, Zorin-Kranich (2016).

Bilinear form approach: Culiuc, Di Plinio, Ou; Benea,
Bernicot, Luque; Lacey, Spencer (2016).
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Introduction

A collection of cubes S is c-sparse if for each S ∈ S there is
ES ⊆ S such that

1 |ES | > c|S|,

2 ‖
∑

S∈S 1ES‖∞ ≤ c−1.

If 〈f〉S = |S|−1
∫
S f(x) dx, a bilinear sparse form is defined by

ΛS(f, g) =
∑
S∈S
〈f〉S 〈g〉S |S|.
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Usually we take S a subcollection of a dyadic grid such that∑
S′∈ChS(S)

|S′| ≤ 1

2
|S|.

Here, ChS(S) = {S′ ∈ S maximal : S′ ( S }.

Then take ES = S\
⋃
S′∈ChS S

S’
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T1 Theorem

A function K on Ω = Rd × Rd\{(x, x) : x ∈ Rd} is called a
standard kernel if there are CK , η > 0 such that

1 ∀x, y ∈ Ω, |K(x, y)| ≤ CK
|x− y|d

2 ∀x, x′, y ∈ Ω, s.t. 2|x− x′| < |x− y|, we have

|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤ CK
|x− y|d+η

Let T : S→ S′ s.t. for f, g ∈ C∞c (Rd) with disjoint supports
〈Tf, g〉 =

∫∫
K(x, y)f(y)g(x) dy dx. If T extends to a bounded

operator on L2, then it’s called a Calderón-Zygmund operator.
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Original T1 Theorem

Theorem (David, Journé)

Let T be a continuous operator from S(Rn) to S′(Rn) associated
with a standard kernel. Then T can be extended to a bounded
operator from L2(Rn) to itself if and only if the three following
conditions are satisfied:

1 T1 ∈ BMO
2 T ∗1 ∈ BMO
3 T has the weak boundedness property: for every ball B,
| 〈T1B,1B〉 | = O(|B|).
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Our formulation

Theorem (Lacey, M.)

Suppose that T is a Calderón-Zygmund operator on Rd, and
moreover there is a constant T so that for all cubes Q and
functions |φ| ≤ 1Q, there holds

|〈T1Q, φ〉|+ |〈Tφ,1Q〉| ≤ T|Q|.

Then there is a constant C = C(CK ,T, d, η) so that for all
bounded compactly supported functions f, g, there is a sparse
operator Λ so that

|〈Tf, g〉| ≤ CΛ(|f |, |g|).
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“Old” approach: Prove T1 to deduce L2, and then use other
(sometimes complicated) techniques to obtain the rest of the
“lattice” estimates.

“New” approach: Prove sparse bounds and get the “lattice”
properties as a trivial corollary.

The proof doesn’t appeal to any structural theory of
Calderon-Zygmund, for example, boundedness of maximal
truncations or Hytönen’s representation (approach followed by
Culiuc-Di Plinio-Ou).
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Consequences of the sparse bound

1 Weak type (1, 1) inequality, Lp inequalities for 1 < p <∞:

Λ(f, g) =
∑
S∈S
〈f〉S 〈g〉S |S| .

∑
S∈S
〈f〉S 〈g〉S |ES |

=

∫
Rd

∑
S∈S
〈f〉S 〈g〉S 1ES (x) dx .

∫
Rd

Mf(x)Mg(x) dx

≤ ‖Mf‖p‖Mg‖p′ . ‖f‖p‖g‖p′

2 Weighted versions relative to Ap weights. Sharp dependence
upon the Ap characteristic, for 1 < p <∞, and the best
known for the case of p = 1.

3 The exponential integrability results of Karagulyan.
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Tools

Random dyadic grids:

Dω = {Q+
∑

j:2−j<`Q 2−jωj : Q ∈ D }, D standard dyadic
grid.

Orthogonal decomposition: f(x) =
∑

Q∈Dω ∆Qf(x).

Notion of good and bad intervals (associated to a positive
integer r and a real number γ > r−1).

It is enough to prove for good projections.∑
P∈D

P is good

∑
Q∈D

Q is good

〈T (∆P f),∆Qg〉 . Λ(|f |, |g|).
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Special bilinear forms:

Let iP = log2(`P ). Let Dkf =
∑

P : `P=2k ∆P f , and define

Bu,v(f, g) =
∑
P

〈|DiP−uf |〉3P 〈|DiP−vg|〉3P |P |

We have

|Bu,v(f, g)| ≤
∫
Suf(x)Svg(x) dx,

with Suf(x) =
∑
P

〈|DiP−uf |〉
2
3P 1P .
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Lemma

We have the inequality below, valid for all integers u ≥ 0

‖Suf : L1 7→ L1,∞‖ . (1 + u).

Lemma

For all u, v ≥ 0, all bounded compactly supported functions f, g,
there is a sparse collection S so that

Bu,v(f, g) . (1 + u)(1 + v)Λ(f, g).
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Universal domination:

There is one sparse form “to rule them all”...

Lemma

Given finitely supported functions f, g, there is a sparse form Λ∗

and a constant C > 0 such that for any other sparse operator Λ
we have

Λ(f, g) ≤ CΛ∗(f, g).
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Additional estimates :

1 Off-diagonal estimate:

If Q b P good, there is η′ > 0 s.t

〈T1Rd\P , g〉 .
[
`Q

`P

]η′
‖g‖1.

Q b P means Q ⊆ P and 2r`Q ≤ `P .

2 Hardy’s inequality.
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Sketch of the proof:

It is enough to prove for f, g compactly supported on a good large
cube P0 (almost all dyadic grids satisfy it).

We consider only `Q ≤ `P , the rest is addressed by duality.

With this, we only consider∑
P : P⊂P0

∑
Q : Q⊂P0
`Q≤`P

〈T∆P f,∆Qg〉

And we decompose it as follows:
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∑
P : P⊂P0

∑
Q : Q⊂P0
`P≥`Q

〈T∆P f,∆Qg〉

=
∑

P : P⊂P0

∑
Q : QbP

〈T∆P f,∆Qg〉 (inside)

+
∑

P : P⊂P0

∑
Q : 2r`Q≤`P
Q⊂3P\P

〈T∆P f,∆Qg〉 (near)

+
∑

P : P⊂P0

∑
Q : `Q≤`P
Q∩3P=∅

〈T∆P f,∆Qg〉 (far)

+
∑

P : P⊂P0

∑
Q : `Q≤`P≤2r`Q

Q∩3P 6=∅

〈T∆P f,∆Qg〉. (neighbors)
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How to define the sparse collection S?

Stopping time argument: Add P0 to S. Recursively, for S ∈ S,
define the sets

F 1
S =

⋃
{S′ ∈ D(S) : 〈|f |〉S′ > C0 〈|f |〉S , S′ maximal }.

F 2
S =

⋃
{S′ ∈ D(S) : 〈|g|〉S′ > C0 〈|g|〉S , S′ maximal }.

F 3
S =

⋃
{S′ ∈ D(S) : 〈|T1S |〉S′ > C0T, S

′ maximal }.

Let FS = F 1
S ∪ F 2

S ∪ F 3
S , and FS be the family of dyadic

components of FS . Add FS to S. For C0 big enough, the
collection is sparse.

Qσ: smallest stopping cube containing Q
Qτ : the smallest stopping cube strongly containing Q.
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We illustrate the proof with one case and two sub-cases.

The inside terms:
∑

P : P⊂P0

∑
Q : QbP

〈T∆P f,∆Qg〉

If PQ is the child of P containing Q, write

∆P f = ∆P f1P\PQ + 〈∆P f〉PQ1PQ

= ∆P f1P\PQ + 〈∆P f〉PQ ·

{
1S − 1S\PQS = Qτ ⊃ PQ
1S + 1PQ\SS = Qτ ( PQ

We first look at
〈
T (∆P f1P\PQ),∆Qg

〉
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We fix the relative sizes of P and Q, by considering `P = 2v`Q.
By the off-diagonal estimates

|〈T (∆P f1P\PQ),∆Qg〉| . [`Q/`P ]η
′〈|∆P f |〉P ‖∆Qg‖1.

= 2−η
′v〈|∆P f |〉P ‖∆Qg‖1.

And further simplifications lead to∑
P

∑
Q : Q⊆P
2v`Q=`P

|〈T (∆P f1P\PQ),∆Qg〉| . 2−η
′vB0,v(f, g)

Use “universal domination” and sum over v.
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Second sub-case: Qτ ⊆ PQ. Fix S ∈ S, we look at∑
Q : Qτ=S

∑
P : QbP

〈T (∆P f1S),∆Qg〉 .

For S = Qτ , define {εQ} by

εQ 〈|f |〉S :=
∑

P∈D, QbPQ

〈∆P f〉PQ .

By the first stopping condition, {εQ} is uniformly bounded. Then,
the following is a martingale transform:

Πε
Sg =

∑
Q : Qτ=S

εQ∆Qg.

Daŕıo Mena-Arias The sparse T1 Theorem
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We can write the sum as∑
Q : Qτ=S

∑
P : QbP

〈T (∆P f1S),∆Qg〉 = 〈|f |〉S 〈T1S ,Π
ε
Sg〉 .

We apply the second and third stopping times (control over
average of g and testing condition) to get that the previous sum is
controlled by 〈|f |〉S〈|g|〉S |S|. Summing over S we get a sparse
bound.
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Rest of the terms?

Follow similar arguments to the first sub-case. By fixing relative
sizes of Q and P , we can find bounds of the form

2−η
′(u+v)Bu,v(f, g).

Universal domination does the job.

Daŕıo Mena-Arias The sparse T1 Theorem


	Background
	Introduction
	Some required tools
	Proof of the main result

