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Background

Background

@ Control over the norm: Lerner, 2013.
@ Point-wise approach: Conde-Alonso, Rey, 2015.

@ Point-wise stopping time: Lacey, 2015. Different points of
view: Bernicot, Frey, Petermichl; Domelevo, Petermichl;
Lerner; Volberg, Zorin-Kranich (2016).

@ Bilinear form approach: Culiuc, Di Plinio, Ou; Benea,
Bernicot, Luque; Lacey, Spencer (2016).
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Introduction

Introduction

A collection of cubes 8 is c-sparse if for each S € 8 there is
Eg C S such that

Q [Es| > clS],
Q| ZSeS ]lESHOO <ch

If (f)g =157 [ f(x)dz, a bilinear sparse form is defined by

As(£,9) =D (Ns s8I

Ses
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Introduction

Usually we take 8 a subcollection of a dyadic grid such that

1
Y. IS 5ls)
S’€Chg(S)

Here, Chg(S) = {5’ € 8 maximal : §' C S}
Then take ES == S\ US/EChss S’
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Introduction

T1 Theorem

A function K on Q = R% x RN\ {(z,z) : 2 € R4} is called a
standard kernel if there are C'x,n > 0 such that

Ck
d

o \V/ZL‘,Z/E Qv |K($7y)| S T3
|z =yl
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Introduction

T1 Theorem

A function K on Q = R% x RN\ {(z,z) : 2 € R4} is called a
standard kernel if there are C'x,n > 0 such that

Ck
|z — y|d

Q Vz,yeQ, |K(z,y)| <

Q Vr,2',y € Q, st 2l — 2| <|zr—y|, we have

Ck
K — K(2' K Ky 2 < —K
|K (2, y) — K(2',y)| + |K(y, ©) (y,ﬂc)l_‘g{;_y‘dﬂ7
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Introduction

T1 Theorem

A function K on Q = R% x RN\ {(z,z) : 2 € R4} is called a
standard kernel if there are C'x,n > 0 such that

Ck

Q Vr,y e, |K(z,y)| <
Kl < o2

Q Vr,2',y € Q, st 2l — 2| <|zr—y|, we have

Ck
K — K(2' K Ky 2 < —K
|K (2, y) — K(2',y)| + |K(y, ©) (y,w)l_‘%,_y‘dﬂ7

Let T:8 — 8 s.t. for f g € C(RY) with disjoint supports

(Tf,q) ffK x,9)f(y)g(x)dydz. If T extends to a bounded
operator on L?, then |t s called a Calderén-Zygmund operator.
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Original T1 Theorem

Theorem (David, Journé)

Let T be a continuous operator from S(R™) to 8'(R™) associated
with a standard kernel. Then I" can be extended to a bounded
operator from L?(R™) to itself if and only if the three following
conditions are satisfied:

Q@ 7'1 € BMO

Q@ 7*1 € BMO

© T has the weak boundedness property: for every ball B,

|(T15,15) | = O(B)).
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Our formulation

Theorem (Lacey, M.)

Suppose that T' is a Calderén-Zygmund operator on R?, and
moreover there is a constant T so that for all cubes () and
functions |¢| < 1¢, there holds

(T, )| + [(T9, 1g)| < TIQ.

Then there is a constant C' = C(Ck,T,d,n) so that for all
bounded compactly supported functions f, g, there is a sparse
operator A so that

(T f, 9| < CA(If], g])-
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“Old” approach: Prove T'1 to deduce L?, and then use other
(sometimes complicated) techniques to obtain the rest of the
“lattice” estimates.
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Introduction

“Old” approach: Prove T'1 to deduce L?, and then use other
(sometimes complicated) techniques to obtain the rest of the
“lattice” estimates.

“New” approach: Prove sparse bounds and get the “lattice”
properties as a trivial corollary.
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Introduction

“Old” approach: Prove T'1 to deduce L?, and then use other
(sometimes complicated) techniques to obtain the rest of the
“lattice” estimates.

“New” approach: Prove sparse bounds and get the “lattice”
properties as a trivial corollary.

The proof doesn't appeal to any structural theory of
Calderon-Zygmund, for example, boundedness of maximal
truncations or HytOnen's representation (approach followed by
Culiuc-Di Plinio-Ou).
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Consequences of the sparse bound

© Weak type (1,1) inequality, L? inequalities for 1 < p < oo:

A(f79)=Z< S‘S‘<Z (9)s |Es]

Ses Ses

= [ S thsta)s s d:c</Mf My () da

Ses8
< IMS [l Mgllp S 1 fllpllgll
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Introduction

Consequences of the sparse bound

© Weak type (1,1) inequality, L? inequalities for 1 < p < oo:

A(f79)=Z< S‘S‘<Z (9)s |Es]

Ses Ses

= [ S thsta)s s d:c</ M (2)Mg(z) do

Ses8
< IMS [l Mgllp S 1 fllpllgll

@ Weighted versions relative to A, weights. Sharp dependence
upon the A, characteristic, for 1 < p < 0o, and the best
known for the case of p = 1.
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Introduction

Consequences of the sparse bound

© Weak type (1,1) inequality, L? inequalities for 1 < p < oo:

A(f,g):Z< S‘S‘<Z (9)s |Es]

Ses Ses

= [ S thsta)s s d:c</ M (2)Mg(z) do

Ses8
< IMS [l Mgllp S 1 fllpllgll

@ Weighted versions relative to A, weights. Sharp dependence
upon the A, characteristic, for 1 < p < 0o, and the best
known for the case of p = 1.

© The exponential integrability results of Karagulyan.
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Some required tools

Random dyadic grids:

0 DY ={Q+ Y 9icig2'wj: Qe D}, D standard dyadic
grid.

o Orthogonal decomposition: f(z) =3 ocpe Aqf(®).

o Notion of good and bad intervals (associated to a positive
integer r and a real number v > r~1).

@ It is enough to prove for good projections.

> Z T(Arf), Aqg) S Af1:lgD)-

pPeD
Pis gOOd Q |s good
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Some required tools

Special bilinear forms:

Let ip = logy(¢P). Let Dif = p. yp_ox Apf, and define

B“"(f,9) = Y (IDip—uf1)3p{|Dip-vgl)sp| P|
P
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Some required tools

Special bilinear forms:

Let ip = logy(¢P). Let Dif = p. yp_ox Apf, and define

B“"(f,9) = Y (IDip—uf1)3p{|Dip-vgl)sp| P|
P

We have
B (f,g)] < / Suf(2)Sug(x) da,

with Sy f(2) = > (IDip—ufl)3p Lp.

P
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Some required tools

We have the inequality below, valid for all integers u > 0

|Suf @ L' — LY°| < (1 4+ u).
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Some required tools

We have the inequality below, valid for all integers u > 0
|Suf @ L' — LY°| < (1 4+ u).

Lemma

For all u,v > 0, all bounded compactly supported functions f, g,
there is a sparse collection 8 so that

BY(f,9) S (14 u)(1+v)A(f, 9).

Dario Mena-Arias The sparse T1 Theorem



Some required tools

Universal domination:

There is one sparse form ‘“to rule them all”...

Given finitely supported functions f, g, there is a sparse form A*
and a constant C' > 0 such that for any other sparse operator A
we have

A(f,9) < CA*(f,9)-
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Some required tools

Additional estimates :
@ Off-diagonal estimate:
If Q € P good, thereis ' > 0 s.t
Q1"
(T1zap) S g2 ol

Q@ € P means Q C P and 2"/Q) < (P.

@ Hardy's inequality.
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Proof of the main result

Sketch of the proof:

It is enough to prove for f, g compactly supported on a good large
cube Py (almost all dyadic grids satisfy it).

We consider only /@) < £P, the rest is addressed by duality.

With this, we only consider

Yo > (TApf.Agg)

P:PCPyQ:QCPy
LQ<LP

And we decompose it as follows:
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Proof of the main result

S Y (TApf Agg)

P:PCPy Q : QCPO
1P>10

= > ) (TApf Agg) (inside)

P:PCPyQ:Q€eP

+ > > (TApf,Aqy) (near)

P:PCPyQ:274Q<(P
QC3P\P

+ Y Y (TApf, Agg) (far)

P:PCPyQ: lQ<LP
QN3P=0

+ Z Z (TApf,Aqg). (neighbors)
P:PCPyQ: (Q<LP<2"(Q
QN3P#D
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Proof of the main result
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Proof of the main result

How to define the sparse collection 57

Stopping time argument: Add P, to 8. Recursively, for S € 8,
define the sets

o FL=U{SeDS):(Ifl)g > Co(lfl)g, S maximal }.
o F2=J{5€D(S):{lgl)g > Co(lgl}g, S" maximal }.
o FE=U{S €D(S):(T1s|)sr > CoT, S’ maximal }.
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How to define the sparse collection 57

Stopping time argument: Add P, to 8. Recursively, for S € 8,
define the sets

o FL=U{SeDS):(Ifl)g > Co(lfl)g, S maximal }.
o F2=J{5€D(S):{lgl)g > Co(lgl}g, S" maximal }.
o FE=U{S €D(S):(T1s|)sr > CoT, S’ maximal }.

Let Fs = F4 U F2U F2, and Fg be the family of dyadic
components of Fg. Add Fg to S§. For Cj big enough, the
collection is sparse.
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How to define the sparse collection 57

Stopping time argument: Add P, to 8. Recursively, for S € 8,
define the sets

o FL=U{SeDS):(Ifl)g > Co(lfl)g, S maximal }.
o F2=J{5€D(S):{lgl)g > Co(lgl}g, S" maximal }.
o FE=U{S €D(S):(T1s|)sr > CoT, S’ maximal }.

Let Fs = F4 U F2U F2, and Fg be the family of dyadic
components of Fg. Add Fg to S§. For Cj big enough, the
collection is sparse.

Q7 smallest stopping cube containing Q)
Q7 the smallest stopping cube strongly containing Q.
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Proof of the main result

We illustrate the proof with one case and two sub-cases.

The inside terms: Z Z (TApf,Aqg)
P:PCPyQ:QeP

If Pp is the child of P containing @, write
Apf=Apflpp, + (Arf)p,1p,

ﬂS_]lS\P S=Q" D Fq
= Apflppy + (Arflrg - {]15 +1p \25 =Q" & g
Q -

We first look at <T(Apf]lp\pQ), AQg>
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Proof of the main result

We fix the relative sizes of P and @), by considering /P = 2V4Q).
By the off-diagonal estimates

(T(ApfLppy,) Aog) S [€Q/LP) {|Apf1)pllAggl:-
= 27" Ap )l Al

And further simplifications lead to

> Z T(Apflpp,)s Ag)l S 277" B%(f,9)

P Q:QCP
2sz P

Use “universal domination” and sum over v.
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We fix the relative sizes of P and @), by considering /P = 2V4Q).
By the off-diagonal estimates

(T(ApfLppy,) Aog) S [€Q/LP) {|Apf1)pllAggl:-
= 27" Ap )l Al

And further simplifications lead to

> Z T(Apflpp,)s Ag)l S 277" B%(f,9)

P Q:QCP
2sz P

Use “universal domination” and sum over v.
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Proof of the main result

Second sub-case: Q" C Pq. Fix S € 8, we look at

> > (T(Apfls), Agg) .

Q:Q7=S P:QEeP
For S = Q7, define {eg} by

«lfhs:== D (Apfip,

PeD, Q@PQ

By the first stopping condition, {eg} is uniformly bounded. Then,
the following is a martingale transform:

59= Y. eqlqy
Q Q=5
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Proof of the main result

We can write the sum as

SN (1(Apf1s), Agg) = (| f)g (T1s,T159) .
Q:Q7=S P:QeP

We apply the second and third stopping times (control over
average of g and testing condition) to get that the previous sum is
controlled by (| f])s(|g])s|S|- Summing over S we get a sparse
bound.
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We can write the sum as

SN (1(Apf1s), Agg) = (| f)g (T1s,T159) .
Q:Q7=S P:QeP

We apply the second and third stopping times (control over
average of g and testing condition) to get that the previous sum is
controlled by (| f])s(|g])s|S|- Summing over S we get a sparse
bound.
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Proof of the main result

Rest of the terms?

Follow similar arguments to the first sub-case. By fixing relative
sizes of ) and P, we can find bounds of the form

2_n/(u+v)Bu,’U(f’ g)

Universal domination does the job.
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