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Abstract

The fuzzy sphere, as a quantum metric space, carries a sequence of metrics which we
describe in detail. We show that the Bloch coherent states, with these spectral distances, form
a sequence of metric spaces that converge to the round sphere in the high-spin limit.

1 Introduction

It is common practice in several fields to “approximate” a manifold with a finite or countable subset
of points. A typical example in is the study of quantum field theories on a lattice. One drawback
is the absence of some of the symmetries of the continuous theory it purports to approximate (e.g.,
Poincaré symmetries in flat Minkowski space).

Take the simple example of a unit two-sphere 𝕊2. On replacing 𝕊2 with a subset of 𝑁 points,
rotational symmetry is lost. In algebraic language: the algebra ℂ𝑁 of functions on 𝑁 points is not
an U(su(2))-module ∗-algebra. There are no nontrivial 𝑆𝑈 (2)-orbits with finitely many points;
to preserve the symmetries and keep the algebra finite dimensional, one may replace the function
algebra ℂ𝑁 with a noncommutative one, provided that the noncommutativity be suppressed as
𝑁 → ∞. This is the idea behind the fuzzy sphere (and more general fuzzy spaces), put forward
in [26], as well as in [21, 35, 36].

Let 𝑥1, 𝑥2, 𝑥3 be Cartesian coordinates on𝕊2, andA(𝕊2) be the ∗-algebra of polynomials in these.
As an abstract ∗-algebra, this is the complex unital commutative ∗-algebra with three self-adjoint
generators 𝑥1, 𝑥2, 𝑥3 subject only to the relation 𝑥2

1 + 𝑥
2
2 + 𝑥

2
3 = 1. As an U(su(2))-module ∗-algebra,
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A(𝕊2) decomposes into a direct sum of irreducible representations A(𝕊2) ≃
⊕∞

ℓ=0𝑉ℓ. Here 𝑉ℓ is
the vector space underlying the irreducible representation of U(su(2)) with highest weight ℓ ∈ ℕ,
and is spanned by Laplace spherical harmonics 𝑌ℓ,𝑚.

In the spirit of [3, 4], we introduce a cut-off in the energy spectrum, i.e., we neglect all but the
first (𝑁 + 1) representations in the decomposition of A(𝕊2). One cannot simply take the linear
span of 𝑌ℓ,𝑚 for ℓ = 0, 1, . . . , 𝑁 , as this is not a subalgebra of A(𝕊2). To proceed, we write 𝑁 = 2 𝑗
and denote by 𝜋 𝑗 : U(su(2)) → 𝑀2 𝑗+1(ℂ) the spin 𝑗 representation of U(su(2)); the action (using
Sweedler notation for the coproduct):

ℎ ⊲ 𝑎 := 𝜋 𝑗 (ℎ(1)) 𝑎 𝜋 𝑗 (𝑆(ℎ(2))), ℎ ∈ U(su(2)), 𝑎 ∈ 𝑀2 𝑗+1(ℂ)

makes the matrix algebraA𝑁 := 𝑀𝑁+1(ℂ) anU(su(2))-module ∗-algebra. There is a decomposition
into irreducible representations:

A𝑁 ≃ 𝑉 𝑗 ⊗ 𝑉∗
𝑗 ≃

2 𝑗⊕
ℓ=0

𝑉ℓ

and a surjective homomorphism A(𝕊2) → A𝑁 of U(su(2))-modules (but not of module algebras),
given on generators by

𝑥𝑘 ↦→ 𝑥𝑘 :=
1√︁

𝑗 ( 𝑗 + 1)
𝜋 𝑗 (𝐽𝑘 ),

where the 𝐽𝑘 are the standard real generators of U(su(2)). The map 𝑥𝑘 ↦→ 𝑥𝑘 does not extend to
an algebra morphism, but can be extended in a unique way, using coherent-state quantization, to an
isometry between ∗-representations of U(su(2)) sending the spherical harmonic 𝑌ℓ,𝑚, for ℓ ≤ 2 𝑗 ,
into a matrix 𝑌

( 𝑗)
ℓ,𝑚

sometimes called a “fuzzy spherical harmonic” (details at the end of Sect. 3.3).
Since an infinite-dimensional vector space is mapped onto a finite-dimensional one, information is
lost and the space becomes “fuzzy”.

The matrices 𝑥𝑘 are normalized in such a way that the spherical relation still holds: 𝑥2
1+𝑥

2
2+𝑥

2
3 = 1,

but their commutators are clearly not zero [36]:

[𝑥𝑘 , 𝑥𝑙] =
1√︁

𝑗 ( 𝑗 + 1)
i 𝜀𝑘𝑙𝑚𝑥𝑚 .

Since the coefficient in the commutator vanishes for 𝑁 = 2 𝑗 → ∞, the naı̈ve idea is that the fuzzy
sphere “converges”, as 𝑁 → ∞, to a unit sphere. It is clear that the notion of convergence must
involve the Riemannian metric of 𝕊2.

The correct mathematical framework for the convergence of matrix algebras to algebras of
functions on Riemannian manifolds (or more generally, on metric spaces) was developed by Rieffel
in a series of seminal papers, where he introduced the notion of (compact) quantum metric spaces
and quantum Gromov–Hausdorff convergence [29–31]. The convergence of the fuzzy sphere to 𝕊2

was established in [32]. However, there the metrics are dealt with globally and the proof does not
indicate how to choose a sequence of elements approximating a given point of 𝕊2. In this paper we
approximate the points of 𝕊2 by the corresponding (Bloch) coherent states of A𝑁 .

A distance 𝑑𝑁 on the state space of A𝑁 can be defined via a generalized Dirac operator. Since,
for any 𝑁 , the set of coherent states is labelled by 𝕊2, this gives a distance on 𝕊2 depending on the
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deformation parameter 𝑁 . Denoting by 𝑑geo the geodesic distance of the round sphere, we prove
that

lim
𝑁→∞

𝑑𝑁 (𝑝, 𝑞) = 𝑑geo(𝑝, 𝑞), for all 𝑝, 𝑞 ∈ 𝕊2.

Another noncommutative space where the distance between coherent states has already been
studied is the Moyal plane [10,27,37]. In contrast with that example, whose distance is independent
of the deformation parameter, here the distance depends on 𝑁 .

Sect. 2 briefly recalls the basics of noncommutative spaces. In Sect. 3, we introduce our spectral
triples for the sphere and compare them with other proposals in the literature. In Sect. 4, we recall
the Bloch coherent states [5] and compute some particular distances between them. Then we prove
that the spectral distance is 𝑆𝑈 (2)-invariant, nondecreasing with 𝑁 , and converges to the geodesic
distance on 𝕊2 when 𝑁 → ∞.

2 Preliminaries on noncommutative manifolds

Material in this section is mainly taken from [15, 18]. In the spirit of Connes’ noncommutative
geometry, manifolds are replaced by spectral triples. A unital spectral triple (A,H, 𝐷) has the
following data: (i) a separable complex Hilbert space H; (ii) a complex associative involutive unital
algebra A with a faithful unital ∗-representation A → B(H), the representation symbol usually
being omitted; (iii) a self-adjoint operator 𝐷 on H with compact resolvent such that [𝐷, 𝑎] is a
bounded operator for all 𝑎 ∈ A.

A spectral triple is even if there is a grading 𝛾 on H, i.e., a bounded operator satisfying 𝛾 = 𝛾∗

and 𝛾2 = 1, commuting with any 𝑎 ∈ A and anticommuting with 𝐷.
A spectral triple is real if there is an antilinear isometry 𝐽 : H → H (the “real structure”), such

that 𝐽2 = ±1, 𝐽𝐷 = ±𝐷𝐽 and 𝐽𝛾 = ±𝛾𝐽 in the even case, with the signs related to the KO-dimension
of the triple [16]; and

[𝑎, 𝐽𝑏𝐽−1] = 0, [[𝐷, 𝑎], 𝐽𝑏𝐽−1] = 0, for all 𝑎, 𝑏 ∈ A. (2.1)

This shows that 𝑏 ↦→ 𝐽𝑏∗𝐽−1 is an injective homomorphism of A into its commutant.
For the notion of equivariant spectral triple, we refer to [34]. A group, or more generally a Hopf

algebra, acts on A and on H, intertwining the operator 𝐷 with itself.
Remark 2.1. Note that if (A,H, 𝐷, 𝛾) is an even spectral triple and 𝑣 an eigenvector of 𝐷 with
eigenvalue 𝜆, then 𝛾𝑣 is an eigenvector of 𝐷 with eigenvalue −𝜆. Thus, the eigenvalues 𝜆 and −𝜆
have the same multiplicity.

We use the following notations and conventions. B(H) is the algebra of all bounded linear
operators on H. The set of all states of (the norm completion of) A is denoted by S(A). We denote
by ∥ · ∥ the operator norm of B(H); by ∥𝑣∥2

H
= ⟨𝑣 | 𝑣⟩ the norm-squared of a vector 𝑣 ∈ H, writing

⟨· | ·⟩ for scalar products. By Cℓ(g) we mean the Clifford algebra over a semisimple Lie algebra
with its Killing form.

Recall that S(A) is a convex set, compact in the weak∗ topology, whose extremal points are the
pure states of A. S(A) is an extended metric space (allowing distances to be +∞), with distance
function given by

𝑑A,𝐷 (𝜔, 𝜔′) := sup
𝑎=𝑎∗∈A

{ |𝜔(𝑎) − 𝜔′(𝑎) | : ∥ [𝐷, 𝑎] ∥ ≤ 1 } (2.2)
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for all 𝜔, 𝜔′ ∈ S(A). This is usually called Connes’ metric or spectral distance [14]. The supremum
is usually taken over all 𝑎 ∈ A obeying the side condition; but it was noted in [23] that the supremum
is always attained on self-adjoint elements. More generally, when defining a metric, one can replace
∥ [𝐷, 𝑎] ∥ by 𝐿 (𝑎) where 𝐿 is a Leibniz seminorm on A. The structure (A, 𝑑A,𝐿) so obtained is a
“compact quantum metric space” [30, 33].

3 Dirac operators for the fuzzy sphere

The classical Dirac operator /𝐷 on a compact semisimple Lie group 𝐺 with Lie algebra g can be seen
as a purely algebraic object D living in the noncommutative Weil algebra𝑈 (g) ⊗Cℓ(g), see [22,25].
It is equivariant in the sense that there exists a Lie algebra homomorphism g → 𝑈 (g) ⊗ Cℓ(g)
with whose range D commutes. The spinor bundle of 𝐺 is parallelizable: 𝐿2(𝐺, 𝑆) ≃ 𝐿2(𝐺) ⊗ Σ,
where Σ is an irreducible Cℓ(g)-module. The algebra 𝑈 (g) ⊗ Cℓ(g) acts on the Hilbert space
𝐿2(𝐺) ⊗ Σ making D into the “concrete” Dirac operator /𝐷 of 𝐺, an unbounded first-order elliptic
operator. Using the injection g ↩→ Cℓ(g) we can also think of D as an element of 𝑈 (g) ⊗ 𝑈 (g),
equivariant in the sense that it commutes with the range of the coproduct Δ in 𝑈 (g) ⊗ 𝑈 (g). On a
compact Riemannian symmetric space 𝐺/𝑈, this construction also applies (indeed, it works on 𝐺

as a symmetric space of 𝐺 ×𝐺), although the spinor bundle is not always parallelizable. This is the
point of view that we shall adopt for the fuzzy sphere.

3.1 An abstract Dirac operator

We begin with the two-sphere 𝕊2. The abstract Dirac element D ∈ U(su(2)) ⊗U(su(2)) is defined
as

D := 1 ⊗ 1 + 2
∑

𝑘 𝐽𝑘 ⊗ 𝐽𝑘 . (3.1)

Since
∑

𝑘 [𝐽𝑘 ⊗ 𝐽𝑘 , 𝐽𝑙 ⊗ 1 + 1 ⊗ 𝐽𝑙] = 0, this element commutes with the range of the coproduct
Δ : U(su(2)) → U(su(2)) ⊗ U(su(2)). That is an equivariance property of D.

The corresponding element of U(su(2)) ⊗ Cℓ20 is

D𝑆 := (id ⊗𝜋 1
2
) (D) = 1 ⊗ 1 + ∑

𝑘 𝐽𝑘 ⊗ 𝜎𝑘 =

(
1 + 𝐻 𝐹

𝐸 1 − 𝐻

)
. (3.2)

where 𝐻 = 𝐽3, 𝐸 = 𝐽1 + i𝐽2, 𝐹 = 𝐸∗. The square of D is D2
𝑆
= 𝐶𝑆𝑈 (2) + 1

4 (1 ⊗ 1), where
𝐶𝑆𝑈 (2) :=

∑
𝑘 (𝐽𝑘 ⊗ 1+ 1⊗ 1

2𝜎𝑘 )2 is the Casimir operator and 1/4 = 𝑅/8 is the scalar curvature term
(𝑅 = 2 being the scalar curvature of 𝕊2). This is the symmetric space version, 𝐷2 = 𝐶𝐺 + 𝑅/8, of
the Schrödinger–Lichnerowicz formula for equivariant Dirac operators [17, p. 87].

Lemma 3.1. For any ℓ ≠ 0 in 1
2ℕ, the operator (𝜋ℓ ⊗ 𝜋 1

2
) (D2) has eigenvalues ℓ2 with multiplicity

2ℓ and (ℓ+1)2 with multiplicity 2ℓ+2. For ℓ = 0, (𝜋0⊗𝜋 1
2
) (D2) has eigenvalue 1 with multiplicity 2.

Proof. With 𝐽2 =
∑

𝑘 𝐽
2
𝑘
, it follows from Δ(𝐽2) = ∑

𝑘 Δ(𝐽𝑘 )2 =
∑

𝑘 (𝐽𝑘 ⊗ 1 + 1 ⊗ 𝐽𝑘 )2 that 𝐶𝑆𝑈 (2) =

(id ⊗𝜋 1
2
)Δ(𝐽2). Since Δ(1) = 1 ⊗ 1, this yields D2

𝑆
= (id ⊗𝜋 1

2
)Δ(𝐽2 + 1

4 ). Therefore,

(𝜋ℓ ⊗ 𝜋 1
2
) (D2) = (𝜋ℓ ⊗ id) (D2

𝑆) = (𝜋ℓ ⊗ 𝜋 1
2
)Δ(𝐽2 + 1

4 ).

4



Now (𝜋ℓ ⊗ 𝜋 1
2
)Δ is the Hopf tensor product of the representations 𝜋ℓ and 𝜋 1

2
. From

𝑉ℓ ⊗ 𝑉1
2
≃ 𝑉ℓ+ 1

2
⊕ 𝑉ℓ− 1

2
(3.3)

it follows that (𝜋ℓ ⊗ 𝜋 1
2
) (D2) is unitarily equivalent to 𝜋ℓ+ 1

2
(𝐽2 + 1

4 ) ⊕ 𝜋ℓ− 1
2
(𝐽2 + 1

4 ), and hence has
eigenvalues

(ℓ ± 1
2 ) (ℓ ±

1
2 + 1) + 1

4 =

{
(ℓ + 1)2 on 𝑉ℓ+ 1

2
,

ℓ2 on 𝑉ℓ− 1
2
.

If ℓ = 0, the summand 𝑉ℓ− 1
2

in (3.3) is missing, so the only eigenvalue is 1 on 𝑉1
2
. □

3.2 The Dirac operator of 𝕊2

The natural representation of U(su(2)) on 𝕊2 as vector fields yields the Dirac operator /𝐷 of the
unit sphere (with round metric). The spinor bundle 𝑆 → 𝕊2 is trivial of rank 2, so the spinor space
is 𝐿2(𝕊2, 𝑆) ≃ 𝐿2(𝕊2) ⊗ ℂ2.

Modulo the identification 𝐿2(𝕊2) ≃
⊕

ℓ∈ℕ𝑉ℓ, the operator /𝐷 is given by

/𝐷 =
⊕
ℓ∈ℕ

(𝜋ℓ ⊗ 𝜋 1
2
) (D),

with D as in (3.1). It follows from Lemma 3.1 that /𝐷2 has eigenvalues 𝜆ℓ = ℓ2 with multiplicity
𝑚ℓ = 4ℓ, for every integer ℓ ≥ 1. The spectral triple of 𝕊2 is even, using the grading that exchanges
the two half-spinor line bundles [18]. From Remark 2.1 it follows that /𝐷 has eigenvalues ±ℓ with
multiplicities 1

2𝑚ℓ = 2ℓ.

3.3 Dirac operators on the fuzzy sphere

We require an equivariant Dirac operator whose spectrum is that of /𝐷, truncated at ℓ = 𝑁 + 1. Let
𝑁 = 2 𝑗 ≥ 1 be a fixed integer. The fuzzy sphere (labelled by 𝑁) is the “noncommutative 𝑆𝑈 (2)
coset space” described by the algebra A𝑁 := 𝑀𝑁+1(ℂ) with the 𝑆𝑈 (2) left action (𝑔, 𝑎) ↦→ 𝑎𝑔 :=
𝜋 𝑗 (𝑔) 𝑎 𝜋 𝑗 (𝑔)∗, for 𝑔 ∈ 𝑆𝑈 (2), 𝑎 ∈ A𝑁 .

Definition 3.2. The irreducible spectral triple on A𝑁 , that we denote by (A𝑁 ,H𝑁 , 𝐷𝑁 ), is given
by H𝑁 := 𝑉 𝑗 ⊗ ℂ2, with the natural representation of A𝑁 via row-by-column multiplication on the
factor 𝑉 𝑗 ≃ ℂ𝑁+1, and 𝐷𝑁 := (𝜋 𝑗 ⊗ 𝜋 1

2
) (D), where D is the abstract Dirac element in (3.1).

Proposition 3.3. The irreducible spectral triple on A𝑁 = A2 𝑗 has these properties:

(i) It is equivariant with respect to the 𝑆𝑈 (2) representation 𝜋 𝑗 ⊗ 𝜋 1
2

.

(ii) 𝐷𝑁 has eigenvalues 𝑗 + 1 and (− 𝑗), with respective multiplicities 2 𝑗 + 2 and 2 𝑗 .

(iii) No grading or real structure is compatible with this spectral triple.

5



Proof. Equivariance comes from the commuting of D𝑆 with the range of the coproduct, so that 𝐷𝑁

commutes with the representation 𝜋 𝑗 ⊗ 𝜋 1
2

of U(su(2)) —or the corresponding representation of
𝑆𝑈 (2)— and from the intertwining relation:

(𝜋 𝑗 ⊗ 𝜋 1
2
) (𝑔) (𝑎 ⊗ 1) (𝜋 𝑗 ⊗ 𝜋 1

2
) (𝑔)∗ = 𝜋 𝑗 (𝑔) 𝑎 𝜋 𝑗 (𝑔)∗ ⊗ 𝜋 1

2
(𝑔)𝜋 1

2
(𝑔)∗ = 𝑎𝑔 ⊗ 1, 𝑎 ∈ A𝑁 .

From Lemma 3.1 follows that 𝐷2
𝑁

has eigenvalues 𝑗2 and ( 𝑗 + 1)2. However, the spectrum of
𝐷𝑁 is not symmetric about 0. Indeed, an explicit computation shows that H𝑁 has the following
orthonormal basis of eigenvectors for 𝐷𝑁 :

| 𝑗 , 𝑚⟩⟩+ :=
√︃

𝑗+𝑚+1
2 𝑗+1 | 𝑗 , 𝑚⟩ ⊗

(1
0
)
+

√︃
𝑗−𝑚
2 𝑗+1 | 𝑗 , 𝑚 + 1⟩ ⊗

(0
1
)
, 𝑚 = − 𝑗 − 1, . . . , 𝑗 ;

| 𝑗 , 𝑚⟩⟩− := −
√︃

𝑗−𝑚
2 𝑗+1 | 𝑗 , 𝑚⟩ ⊗

(1
0
)
+

√︃
𝑗+𝑚+1
2 𝑗+1 | 𝑗 , 𝑚 + 1⟩ ⊗

(0
1
)
, 𝑚 = − 𝑗 , . . . , 𝑗 − 1 . (3.4)

One easily checks that

𝐷𝑁 | 𝑗 , 𝑚⟩+ = ( 𝑗 + 1) | 𝑗 , 𝑚⟩+ , 𝐷𝑁 | 𝑗 , 𝑚⟩− = − 𝑗 | 𝑗 , 𝑚⟩− .

Therefore, 𝐷𝑁 has eigenvalue 𝑗 + 1 with multiplicity 2 𝑗 + 2, and eigenvalue − 𝑗 with multiplicity
2 𝑗 , as claimed. This asymmetry of the spectrum of 𝐷𝑁 and Remark 2.1 rule out any grading for
this spectral triple.

If there were a real structure, the commutantA′
𝑁

ofA𝑁 would contain 𝐽A𝑁𝐽
−1, whose dimension

is (𝑁 + 1)2 ≥ 4. But dimA′
𝑁
= 2; hence, no real structure can exist. □

Definition 3.4. The full spectral triple on A𝑁 , that we denote by (A𝑁 , H̃𝑁 , D̃𝑁 , J̃𝑁 ), is given by
H̃𝑁 ≃ A𝑁 ⊗ ℂ2, where the first factor carries the left regular representation of A𝑁 , i.e., the GNS
representation associated to the matrix trace; and the Dirac operator and real structure are defined by:

D̃𝑁 (𝑎 ⊗ 𝑣) := 𝑎 ⊗ 𝑣 + ∑
𝑘 [𝜋 𝑗 (𝐽𝑘 ), 𝑎] ⊗ 𝜎𝑘𝑣,

J̃𝑁 (𝑎 ⊗ 𝑣) := 𝑎∗ ⊗ 𝜎2�̄�,

for any 𝑎 ∈ A𝑁 and 𝑣 ∈ ℂ2 (a column vector). For 𝑣 = (𝑣1, 𝑣2)𝑡 ∈ ℂ2, �̄� := (𝑣∗1, 𝑣
∗
2)

𝑡 is again a
column vector.

The nuance between 𝐷𝑁 and D̃𝑁 is that 𝜋 𝑗 is replaced by its adjoint action on the space
A𝑁 = End(𝑉 𝑗 ) ≃ 𝑉 𝑗 ⊗ 𝑉∗

𝑗
.

Proposition 3.5. The full spectral triple on A𝑁 has the following properties:

(i) It is a real spectral triple.

(ii) It is equivariant with respect to the 𝑆𝑈 (2) representation given by the product of the action
𝑎 ↦→ 𝑎𝑔 on A𝑁 and the spin-1

2 representation.

(iii) D̃𝑁 has integer eigenvalues ±ℓ with multiplicity 2ℓ, for every ℓ = 1, . . . , 𝑁; and eigenvalue
𝑁 + 1 with multiplicity 2𝑁 + 2.

(iv) This spectral triple carries no grading.
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Proof. Clearly J̃𝑁 is antilinear, indeed antiunitary, since

⟨J̃𝑁 (𝑎 ⊗ 𝑣) | J̃𝑁 (𝑏 ⊗ 𝑤)⟩ = Tr(𝑎∗𝑏)⟨𝜎2�̄� | 𝜎2�̄�⟩ = Tr(𝑎∗𝑏)⟨�̄� | �̄�⟩
= Tr(𝑏∗𝑎) ⟨𝑤 | 𝑣⟩ = ⟨𝑏 ⊗ 𝑤 | 𝑎 ⊗ 𝑣⟩ .

We need to check the conditions (2.1). The equality �̄�2 = −𝜎2 shows that (J̃𝑁 )2 = −1. Using
J̃−1
𝑁

= −J̃𝑁 , we find that

J̃𝑁 𝑏 J̃−1
𝑁 (𝑎 ⊗ 𝑣) = −J̃𝑁 (𝑏𝑎∗ ⊗ 𝜎2�̄�) = 𝑎𝑏∗ ⊗ 𝑣, for all 𝑎, 𝑏 ∈ A𝑁 , 𝑣 ∈ ℂ2.

Since left and right multiplication on A𝑁 commute, J̃𝑁 𝑏 J̃−1
𝑁

lies in the commutant of A𝑁 ⊗𝑀2(ℂ),
and both conditions in (2.1) are satisfied.

Since 𝜎2�̄�𝑘 = −𝜎𝑘𝜎2 for 𝑘 = 1, 2, 3, and [𝜋 𝑗 (𝐽𝑘 ), 𝑎]∗ = −[𝜋 𝑗 (𝐽𝑘 ), 𝑎∗], we obtain

J̃𝑁D̃𝑁 (𝑎 ⊗ 𝑣) = 𝑎∗ ⊗ 𝜎2𝑣 −
∑

𝑘 [𝜋 𝑗 (𝐽𝑘 ), 𝑎∗] ⊗ 𝜎2�̄�𝑘𝑣 = D̃𝑁 J̃𝑁 (𝑎 ⊗ 𝑣),

for any 𝑎 ∈ A𝑁 and 𝑣 ∈ ℂ2. Hence J̃𝑁D̃𝑁 = D̃𝑁 J̃𝑁 .
Equivariance follows again from the commuting of D𝑆 with the range of the coproduct, since

the representation 𝐽𝑘 ↦→ [𝜋 𝑗 (𝐽𝑘 ), ·] is the derivative of the adjoint action 𝑎 ↦→ 𝑎𝑔 = 𝜋 𝑗 (𝑔) 𝑎 𝜋 𝑗 (𝑔)∗
of 𝑆𝑈 (2).

Writing ad 𝜋 𝑗 (ℎ) : 𝑎 ↦→ 𝜋 𝑗 (ℎ(1)) 𝑎 𝜋 𝑗 (𝑆(ℎ(2))) for ℎ ∈ U(su(2)) and 𝑎 ∈ A𝑁 , we see that

D̃𝑁 = (ad 𝜋 𝑗 ⊗ 𝜋 1
2
) (D),

In view of the unitary U(su(2))-module isomorphism

A𝑁 ≃ 𝑉 𝑗 ⊗ 𝑉∗
𝑗 ≃

2 𝑗⊕
ℓ=0

𝑉ℓ ,

D̃𝑁 is unitarily equivalent to the operator
⊕2 𝑗

ℓ=0(𝜋ℓ ⊗ 𝜋 1
2
) (D). Replacing 𝑁 = 2 𝑗 by 2ℓ in

Prop. 3.3(ii), we see that (𝜋ℓ ⊗ 𝜋 1
2
) (D) has eigenvalues ℓ+1 and (−ℓ), with respective multiplicities

2ℓ + 2 and 2ℓ (but if ℓ = 0 the eigenvalue −ℓ is missing). Hence D̃𝑁 has the eigenvalues ±ℓ, each
with multiplicity 2ℓ for ℓ = 1, . . . , 𝑁; and 𝑁 + 1 with multiplicity 2𝑁 + 2.

Lastly, since the spectrum of D̃𝑁 is not symmetric about 0, there can exist no grading for this
spectral triple. □

Proposition 3.6. The irreducible and full spectral triples induce the same metric on the state space
S(A𝑁 ) of the fuzzy sphere.

Proof. This follows from the calculation:

[D̃𝑁 , 𝑎] (𝑏 ⊗ 𝑣) = ∑
𝑘

(
[𝜋 𝑗 (𝐽𝑘 ), 𝑎𝑏] − 𝑎 [𝜋 𝑗 (𝐽𝑘 ), 𝑏]

)
⊗ 𝜎𝑘𝑣

=
∑

𝑘 [𝜋 𝑗 (𝐽𝑘 ), 𝑎] 𝑏 ⊗ 𝜎𝑘𝑣 = [𝐷𝑁 , 𝑎] (𝑏 ⊗ 𝑣).

Hence [D̃𝑁 , 𝑎] is the operator of left multiplication by the matrix [𝐷𝑁 , 𝑎] ∈ A𝑁 ⊗ 𝑀2(ℂ), so its
operator norm coincides with the norm of the matrix. Therefore, since

[D̃𝑁 , 𝑎]
 =

[𝐷𝑁 , 𝑎]
 for

each 𝑎 ∈ A𝑁 , it follows that the two spectral triples induce the same metric (2.2) on the state space
of A𝑁 . □
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It is useful to give a more explicit presentation of the full spectral triple by exhibiting its eigen-
spinors. Recall that the polynomial algebra A(𝕊2) is linearly spanned by the spherical harmonics
𝑌ℓ,𝑚, each of which is a homogeneous polynomial in Cartesian coordinates of degree ℓ, with the
multiplication rule

𝑌ℓ′,𝑚′𝑌ℓ′′,𝑚′′ =

ℓ=ℓ′+ℓ′′∑︁
ℓ=|ℓ′−ℓ′′ |

ℓ∑︁
𝑚=−ℓ

√︄
(2ℓ′ + 1) (2ℓ′′ + 1)

4𝜋(2ℓ + 1) 𝐶ℓ0
ℓ′0,ℓ′′0𝐶

ℓ𝑚
ℓ′𝑚′,ℓ′′𝑚′′𝑌ℓ,𝑚 ,

involving 𝑆𝑈 (2) Clebsch–Gordan coefficients. From there it is clear that the subspace spanned by
the 𝑌ℓ,𝑚 for ℓ = 0, 1, . . . , 𝑁 does not close under multiplication. To replace them, while keeping
𝑆𝑈 (2) symmetry, one can make use of the irreducible tensor operators at level 𝑁 = 2 𝑗 [1,8]. These
are elements 𝑇 ( 𝑗)

ℓ,𝑚
∈ 𝑀𝑁+1(ℂ) whose matrix elements are

⟨ 𝑗𝑚′′ | 𝑇 ( 𝑗)
ℓ,𝑚

| 𝑗𝑚′⟩ :=

√︄
2ℓ + 1
2 𝑗 + 1

𝐶
𝑗𝑚′′

𝑗𝑚′,ℓ𝑚 .

They transform like the 𝑌ℓ,𝑚 under 𝑆𝑈 (2), but still require an appropriate normalization. For any
−1 ≤ 𝑠 ≤ 1, one can define a matrix 𝑌

( 𝑗 ,𝑠)
ℓ,𝑚

∈ 𝑀𝑁+1(ℂ) as follows [2, 9, 13, 24]:

𝑌
( 𝑗 ,𝑠)
ℓ,𝑚

:=

√︄
4𝜋

2 𝑗 + 1
(
𝐶

𝑗 𝑗

𝑗 𝑗 ,ℓ0
) 𝑠
𝑇
( 𝑗)
ℓ,𝑚

. (3.5)

We omit the precise multiplication rules for these operators, see [24]; but in any case it is clear, by
working backwards, that the ordinary spherical harmonic 𝑌ℓ,𝑚 can be regarded as a “symbol” of the
operator 𝑌 ( 𝑗 ,𝑠)

ℓ,𝑚
for fixed 𝑗 and 𝑠. The cases 𝑠 = 1, 𝑠 = 0 and 𝑠 = −1 correspond respectively to the

Husimi 𝑄-function, the Moyal–Wigner 𝑊-function and the Glauber 𝑃-function [9]. Here we put
𝑠 = 1 in (3.5), omit the superscripts, and call these operators the fuzzy harmonics 𝑌ℓ,𝑚 ∈ A𝑁 . The
commutation rules for the irreducible tensor operators and the fuzzy harmonics come directly from
their symmetries [1, 8, 36]:

[𝜋 𝑗 (𝐽3), 𝑌ℓ,𝑚] = [𝑌1,0, 𝑌ℓ,𝑚] = 𝑚𝑌ℓ,𝑚 ,

[𝜋 𝑗 (𝐽1 ± i𝐽2), 𝑌ℓ,𝑚] = [𝑌1,±1, 𝑌ℓ,𝑚] =
√︁
(ℓ ∓ 𝑚) (ℓ ± 𝑚 + 1)𝑌ℓ,𝑚±1 .

Adopting a 2 × 2 block matrix notation, as in (3.2), we can write

D̃𝑁 =

(
1 + L3 L−
L+ 1 − L3

)
, where L3 = ad 𝜋 𝑗 (𝐽3), L± = ad 𝜋 𝑗 (𝐽1 ± i𝐽2). (3.6)

Then the normalized eigenspinors for the operators D̃𝑁 are

|ℓ, 𝑚⟩⟩+ :=
1

√
2ℓ + 1

(√
ℓ + 𝑚 + 1𝑌ℓ,𝑚√
ℓ − 𝑚𝑌ℓ,𝑚+1

)
, |ℓ, 𝑚⟩⟩− :=

1
√

2ℓ + 1

(
−
√
ℓ − 𝑚𝑌ℓ,𝑚√

ℓ + 𝑚 + 1𝑌ℓ,𝑚+1

)
for ℓ = 0, 1, . . . , 𝑁; whereby

D̃𝑁 |ℓ, 𝑚⟩⟩+ = (ℓ + 1) |ℓ, 𝑚⟩⟩+ for 𝑚 = −ℓ − 1, . . . , ℓ ;

D̃𝑁 |ℓ, 𝑚⟩⟩− = (−ℓ) |ℓ, 𝑚⟩⟩− for 𝑚 = −ℓ, . . . , ℓ − 1.
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The full spectral triple on A𝑁 is thus a truncation of the standard spectral triple over 𝕊2, in
the following sense. The Hilbert space of spinors 𝐿2(𝕊2) ⊗ ℂ2, generated by pairs of spherical
harmonics 𝑌ℓ,𝑚, is truncated at 𝑙 ≤ 𝑁 . On replacing these by pairs of fuzzy harmonics 𝑌ℓ,𝑚, the
resulting spectrum of D̃𝑁 is a truncation of the spectrum of /𝐷 to the range {−𝑁, . . . , 𝑁 + 1},
unavoidably breaking the parity symmetry.

3.4 Comparison with the literature

Two spectral triples on the fuzzy sphere algebra A𝑛 have been introduced, one constructed with the
irreducible su(2)-module 𝑉 𝑗 and the other with the left regular or GNS representation. Neither one
is even (there exists no grading); although this could be remedied by allowing A𝑁 to act trivially on
a supplementary vector space. The first carries no real structure but the second one does, because
the reducible action of the algebra on the Hilbert space allows for a large enough commutant. The
crucial point here, however, is Prop. 3.6, showing that both spectral triples give the same metric.
Other Dirac operators for the fuzzy sphere have been proposed in [6, 7, 11, 12, 19] and are recalled
below.

In [19], A𝑁 is obtained as the even part of a truncated supersphere, and the Dirac operator is
defined as the odd part of a truncated superfield. Reformulating the result of Sect. 4.3 of [19] in our
language, the Hilbert space is taken to be

H′
𝑁 :=

⊕
ℓ= 1

2 ,...,𝑁−
1
2

𝑉ℓ ⊕ 𝑉ℓ .

Note that to get our A𝑁 ⊗𝑉1
2

one must add an extra𝑉𝑁+ 1
2

subspace. The algebra A𝑁 is generated by
the three matrices 𝑥𝑘 , proportional to 𝜋 𝑗 (𝐽𝑘 ), which can be represented onH′

𝑁
using a suitable direct

sum of irreducible representations of su(2). The Dirac operator can be defined by representing
the abstract Dirac element (3.1) on H′ using the same representation of su(2); it is proportional to
the identity on each subspace 𝑉ℓ and its spectrum is given by the eigenvalues ±ℓ, for ℓ = 1, . . . , 𝑁
(restricted to 𝑉ℓ ⊕ 𝑉ℓ their Dirac operator is the operator ℓ ⊕ −ℓ). Compared to our full spectral
triple, the eigenvalue 𝑁 + 1 is missing. Since the two copies of 𝑉ℓ carry the same representation of
A𝑁 , the operator 𝛾𝑁 that exchanges these copies commutes with A𝑁 (and anticommutes with the
Dirac operator): therefore, one obtains an even spectral triple.

This construct is still metrically equivalent to the spectral triples of subsection 3.3. Here
H̃𝑁 ≃ H′

𝑁
⊕ 𝑉𝑁+ 1

2
; but the additional term 𝑉𝑁+ 1

2
carries a nontrivial subrepresentation of A𝑁 , and

the Dirac operator 𝐷𝑁 is proportional to the identity on such a subspace: hence [𝐷𝑁 , 𝑎] vanishes
on the subspace𝑉𝑁+ 1

2
for any 𝑎 ∈ A𝑁 . Therefore the two spectral triples induce the same seminorm

on A𝑁 , and hence the same distance.
The authors of [6,7] take another approach. Given any finite-dimensional su(2)-module Σ, one

can construct a Dirac-like operator on 𝐿2(𝕊2) ⊗ Σ by using the appropriate representation of the
abstract Dirac element (3.1). If Σ is the spin 𝑗 representation, this can be called a “spin- 𝑗” Dirac
operator. For 𝑗 = 1

2 we recover the ordinary Dirac operator acting on 2-spinors.
A spin-1

2 Dirac operator for the fuzzy sphere is discussed in [6], and is generalized to arbitrary
spin 𝑗 in [7]. These are constructed using the Ginsparg–Wilson algebra, namely, the free algebra
generated by two grading operators Γ and Γ′. The linear combinations Γ1 = 1

2 (Γ+Γ
′), Γ2 = 1

2 (Γ−Γ
′)

anticommute, and the proposal is to realize them as operators on a suitable Hilbert space, interpreting
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Γ1 as the Dirac operator and Γ2 as the chirality operator. In the spin-1
2 case, the Hilbert space is

taken to be A𝑁 ⊗ 𝑉1
2
. From equation (2.20) of [7], or equivalently from (8.29) of [6], we see that

the Dirac operator is the same as the operator (3.6) of our full spectral triple. The chirality operator,
(2.21) of [7], in contrast with the Dirac operator, is constructed using the anticommutator with
𝜋 𝑗 (𝐽𝑘 ), i.e., 𝐿𝐿

𝑘
+ 𝐿𝑅

𝑘
in the notation of [7].

The asymmetry of the Dirac operator spectrum was already noticed in [6]. At the end of
subsection 8.3.2 we read:

For 𝑗 = 2𝐿+1 [ℓ = 𝑁 +1 in our notations here] we get the positive eigenvalue correctly,
but the negative one is missing. That is an edge effect caused by cutting off the angular
momentum at 2𝐿.

And in the same subsection, after equation (8.30):

As mentioned earlier, use of Γ2 as chirality resolves a difficulty addressed else-
where [80], where sign(Γ2) was used as chirality. That necessitates projecting out
𝑉+1 and creates a very inelegant situation.

In other words, Γ2 is not a true grading operator. Since Γ2 anticommutes with the Dirac operator,
it must vanish on 𝑉𝑁+ 1

2
(otherwise, the Dirac operator would have an eigenvector Γ2𝑣 for 𝑣 ∈ 𝑉𝑁+ 1

2
,

with eigenvalue −𝑁 − 1); which entails (Γ2)2 ≠ 1.
A third proposal is that of [11, 12]. It starts by constructing, on the Hilbert space A𝑁 , a

square 1 chirality operator that is a genuine ℤ2-grading, then finding a Dirac-like operator D
by imposing anticommutation with the grading, arriving at an even spectral triple. It follows
that this operator cannot be isospectral to our D̃𝑁 . The earlier paper uses a chirality operator
𝛾𝜒, see (5) of [12], that does not commute with the algebra A𝑁 . Later, in (6) of [12], this is
corrected to 𝛾◦𝜒 by replacing left with right multiplication. On imposing anticommutation of D
with that grading, one arrives at a “second order” operator, (8) of [12], that in our notations is
D(𝑎 ⊗ 𝑣) := 𝑐 𝛾◦𝜒

∑
𝑘𝑙𝑚 𝜀𝑘𝑙𝑚 𝜋 𝑗 (𝐽𝑘 ) 𝑎 𝜋 𝑗 (𝐽𝑙) ⊗ 𝜎𝑚𝑣, where 𝑐 is a normalization constant.

From (17) of [12], relabelling with ℓ = 𝑗 + 1
2 , we see that the spectrum of D is given by the

eigenvalues ±𝜆ℓ, for ℓ = 1, . . . , 𝑁 + 1, with

𝜆2
ℓ :=

ℓ2((𝑁 + 1)2 − ℓ2)
𝑁 (𝑁 + 2) .

Note that 𝜆ℓ is nonlinear in ℓ, and that 𝜆𝑁+1 = 0, i.e., this operator has a kernel 𝑉𝑁+ 1
2
.

The mentioned proposals, and other variants such as [20], begin with a chirality operator and then
find an anticommuting self-adjoint Dirac-like operator with a plausible spectrum. Our approach, in
contrast, starts from 𝑆𝑈 (2)-equivariance and arrives at a neater truncation of the classical spectrum,
paying the price of spectral asymmetry.

4 Spectral distance between coherent states

Having reduced the problem of computing distances on the fuzzy sphere, via Prop. 3.6, to the use
of the irreducible spectral triple (A𝑁 ,H𝑁 , 𝐷𝑁 ), we now compute the distance between particular
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pairs of pure states in S(A𝑛). Using (3.2), we know that

𝐷𝑁 =

(
1 + 𝜋 𝑗 (𝐻) 𝜋 𝑗 (𝐹)
𝜋 𝑗 (𝐸) 1 − 𝜋 𝑗 (𝐻)

)
(4.1)

where again 2 𝑗 = 𝑁 . From now on we omit the representation symbol 𝜋 𝑗 and use the matrix of (3.2)
instead, by an abuse of notation. The spectral distance is denoted by 𝑑𝑁 .

Lemma 4.1. For any 𝑎 ∈ A𝑁 , the following inequalities hold:[𝐻, 𝑎]
 ≤

[𝐷𝑁 , 𝑎]
, [𝐸, 𝑎] ≤

[𝐷𝑁 , 𝑎]
, [𝐹, 𝑎] ≤

[𝐷𝑁 , 𝑎]
.

Moreover, if 𝑎 is a diagonal hermitian matrix, then ∥ [𝐷𝑁 , 𝑎] ∥ = ∥ [𝐸, 𝑎] ∥.

Proof. Using the expression

[𝐷𝑁 , 𝑎]∗ [𝐷𝑁 , 𝑎] =
(
[𝐻, 𝑎]∗ [𝐻, 𝑎] + [𝐸, 𝑎]∗ [𝐸, 𝑎] · · ·

· · · · · ·

)
,

we find a lower bound for ∥ [𝐷𝑁 , 𝑎] ∥ taking the supremum over unit vectors of the form (𝑥, 0)𝑡 , with
𝑥 ∈ 𝑉 𝑗 : [𝐷𝑁 , 𝑎]

2 ≥ sup
∥𝑥∥=1

〈
𝑥

�� ( [𝐻, 𝑎]∗ [𝐻, 𝑎] + [𝐸, 𝑎]∗ [𝐸, 𝑎]
)
𝑥
〉

= sup
∥𝑥∥=1

(
∥ [𝐻, 𝑎] 𝑥∥2 + ∥[𝐸, 𝑎] 𝑥∥2) = ∥ [𝐻, 𝑎] ∥2 + ∥[𝐸, 𝑎] ∥2.

Thus ∥ [𝐻, 𝑎] ∥ ≤
[𝐷𝑁 , 𝑎]

 and ∥ [𝐸, 𝑎] ∥ ≤
[𝐷𝑁 , 𝑎]

, Since [𝐹, 𝑎] = −[𝐸, 𝑎∗]∗, we also get
∥ [𝐹, 𝑎] ∥ ≤ ∥[𝐷𝑁 , 𝑎

∗] ∥ = ∥ [𝐷𝑁 , 𝑎]∗∥ = ∥ [𝐷𝑁 , 𝑎] ∥.
If 𝑎 ∈ A𝑁 is a diagonal matrix, then [𝐻, 𝑎] = 0, so that

[𝐷𝑁 , 𝑎]∗ [𝐷𝑁 , 𝑎] =
(
[𝐸, 𝑎]∗ [𝐸, 𝑎] 0

0 [𝐹, 𝑎]∗ [𝐹, 𝑎]

)
,

thus ∥ [𝐷𝑁 , 𝑎] ∥ is the greater of ∥ [𝐸, 𝑎] ∥ and ∥ [𝐹, 𝑎] ∥. Furthermore, if 𝑎 = 𝑎∗, then [𝐹, 𝑎] =

−[𝐸, 𝑎]∗ and ∥ [𝐸, 𝑎] ∥ = ∥ [𝐹, 𝑎] ∥, so that ∥ [𝐷𝑁 , 𝑎] ∥ = ∥ [𝐸, 𝑎] ∥ = ∥ [𝐹, 𝑎] ∥. □

The 𝑆𝑈 (2)-coherent states on A𝑁 were introduced in [5], under the names Bloch or atomic
coherent states, by applying the rotation 𝑅(𝜑,𝜃) to the “ground” state | 𝑗 ,− 𝑗⟩ ∈ 𝑉 𝑗 . The coherent-
state vectors are [5]:

|𝜑, 𝜃)𝑁 :=
𝑗∑︁

𝑚=− 𝑗

(
2 𝑗

𝑗 + 𝑚

)1
2

𝑒−𝑖𝑚𝜑 (sin 𝜃
2 )

𝑗+𝑚 (cos 𝜃
2 )

𝑗−𝑚 | 𝑗 , 𝑚⟩. (4.2)

The corresponding vector states are denoted by

𝜓𝑁
(𝜑,𝜃) (𝑎) := (𝜑, 𝜃 | 𝑎 | 𝜑, 𝜃)𝑁 .

These Bloch coherent states are for the group 𝑆𝑈 (2) what the usual harmonic oscillator coherent
states are for the Heisenberg group [28]. In particular, they are minimum uncertainty states. The
map 𝕊2 → 𝑉 𝑗 , sending the point (𝜑, 𝜃) ∈ 𝕊2 to the vector |𝜑, 𝜃), intertwines the rotation action of
𝑆𝑈 (2) on 𝕊2 with the irrep 𝜋 𝑗 on𝑉 𝑗 . At the infinitesimal level, this is expressed by the next lemma,
whose proof is a simple direct computation.
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Lemma 4.2. Regarding 𝜓𝑁
(𝜑,𝜃) as a vector state on B(𝑉 𝑗 ), we find that

𝜓𝑁
(𝜑,𝜃) ( [𝐻, 𝑎]) = −i

𝜕

𝜕𝜑
𝜓𝑁
(𝜑,𝜃) (𝑎), (4.3a)

𝜓𝑁
(𝜑,𝜃) ( [𝐸, 𝑎]) = 𝑒i𝜑

(
𝜕

𝜕𝜃
+ i cot 𝜃

𝜕

𝜕𝜑

)
𝜓𝑁
(𝜑,𝜃) (𝑎), (4.3b)

𝜓𝑁
(𝜑,𝜃) ( [𝐹, 𝑎]) = −𝑒−i𝜑

(
𝜕

𝜕𝜃
− i cot 𝜃

𝜕

𝜕𝜑

)
𝜓𝑁
(𝜑,𝜃) (𝑎). (4.3c)

4.1 The 𝑁 = 1 case

We write the general hermitian element 𝑎 = 𝑎∗ ∈ 𝑀2(ℂ) as

𝑎 =

(
𝑎0 + 𝑎3 𝑎1 + i𝑎2
𝑎1 − i𝑎2 𝑎0 − 𝑎3

)
= 𝑎0 12 + ®𝑎 · ®𝜎,

with 𝑎0 real and ®𝑎 = (𝑎1, 𝑎2, 𝑎3) ∈ ℝ3. Arbitrary (not necessarily pure) states on 𝑀2(ℂ) are given
by 𝜔®𝑥 (𝑎) := 𝑎0 + ®𝑥 · ®𝑎, with ®𝑥 in the closed unit ball 𝐵3 ⊂ ℝ3. This state is pure if and only if
®𝑥 = (sin 𝜃 cos 𝜑, sin 𝜃 sin 𝜑, cos 𝜃) lies on the boundary 𝕊2 of the ball, in which case it coincides
with the coherent state 𝜓1

(𝜑,𝜃) . Note that for 𝑁 = 1, all pure states are coherent states.
The next proposition shows that the distance among states is half of the Euclidean distance in

the ball; thus, for coherent states, half of the chordal distance on the sphere.

Proposition 4.3. For all ®𝑥, ®𝑦 ∈ 𝐵3, the distance between the corresponding states is

𝑑1(𝜔®𝑥 , 𝜔®𝑦) =
1
2
| ®𝑥 − ®𝑦 |. (4.4)

In particular, 𝑑1(𝜓1
(0,𝜃) , 𝜓

1
(0,0)) = sin(𝜃/2).

Proof. Writing 𝑎± = 𝑎1 ± i𝑎2 and 𝜎± = 𝜎1 ± i𝜎2, we get, for 𝑎 = 𝑎∗:

[𝐷1, 𝑎] =
( 1

2 [𝜎3, 𝑎] [𝜎−, 𝑎]
[𝜎+, 𝑎] −1

2 [𝜎3, 𝑎]

)
=

©«
0 𝑎+ −𝑎+ 0

−𝑎− 0 2𝑎3 𝑎+
𝑎− −2𝑎3 0 −𝑎+
0 −𝑎− 𝑎− 0

ª®®®¬ .
The matrix i[𝐷1, 𝑎] is hermitian, and its characteristic polynomial is easily seen to be
det(𝜆 − i[𝐷1, 𝑎]) = 𝜆2(𝜆2 − 4| ®𝑎 |2), showing that its norm is ∥ [𝐷1, 𝑎] ∥ = 2| ®𝑎 |.

The Cauchy–Schwarz inequality��𝜔®𝑥 (𝑎) − 𝜔®𝑦 (𝑎)
�� = ��(®𝑥 − ®𝑦) · ®𝑎

�� ≤ |®𝑥 − ®𝑦 | | ®𝑎 |

is saturated when ®𝑎 is parallel to ®𝑥− ®𝑦. Thus 𝑑1(𝜔®𝑥 , 𝜔®𝑦) is the supremum of | ®𝑥− ®𝑦 | | ®𝑎 | over hermitian
𝑎 with ∥ [𝐷1, 𝑎] ∥ = 2| ®𝑎 | ≤ 1. This establishes (4.4).

If ®𝑥 = (sin 𝜃, 0, cos 𝜃) and ®𝑦 = (0, 0, 1), then | ®𝑥 − ®𝑦 |2 = 2(1 − cos 𝜃) = 4 sin2(𝜃/2), and thus
𝑑1(𝜔®𝑥 , 𝜔®𝑦) = sin(𝜃/2). □
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4.2 Distances between basis vectors

Similarly to Prop. 3.6 of [10], the distance between basis vectors can be exactly computed. For fixed
𝑁 = 2 𝑗 , and 𝑚 ∈ {− 𝑗 , . . . , 𝑗}, the basic vector states are

𝜔𝑚 (𝑎) := ⟨ 𝑗 , 𝑚 | 𝑎 | 𝑗 , 𝑚⟩ .

Proposition 4.4. For any 𝑚 < 𝑛 in {− 𝑗 , . . . , 𝑗}, the following distance formula holds:

𝑑𝑁 (𝜔𝑚, 𝜔𝑛) =
𝑛∑︁

𝑘=𝑚+1

1√︁
( 𝑗 + 𝑘) ( 𝑗 − 𝑘 + 1)

. (4.5)

Proof. If 𝑎 ∈ A𝑁 , then

𝜔𝑚 (𝑎) − 𝜔𝑛 (𝑎) =
𝑛∑︁

𝑘=𝑚+1
⟨ 𝑗 , 𝑘 − 1 | 𝑎 | 𝑗 , 𝑘 − 1⟩ − ⟨ 𝑗 , 𝑘 | 𝑎 | 𝑗 , 𝑘⟩

=

𝑛∑︁
𝑘=𝑚+1

1√︁
( 𝑗 + 𝑘) ( 𝑗 − 𝑘 + 1)

⟨ 𝑗 , 𝑘 | [𝐸, 𝑎] | 𝑗 , 𝑘 − 1⟩.

Using Lemma 4.1, we get the estimate��⟨ 𝑗 , 𝑘 | [𝐸, 𝑎] | 𝑗 , 𝑘 − 1⟩
�� ≤ ∥[𝐸, 𝑎] ∥ ≤ ∥[𝐷𝑁 , 𝑎] ∥

which shows that the left hand side of (4.5) is no greater than the right hand side. On the other
hand, let �̂� be the self-adjoint diagonal operator:

�̂� | 𝑗 , 𝑚⟩ := −
( 𝑚∑︁
𝑘=− 𝑗+1

1√︁
( 𝑗 + 𝑘) ( 𝑗 − 𝑘 + 1)

)
| 𝑗 , 𝑚⟩. (4.6)

The coefficients are chosen so that [𝐸, �̂�] | 𝑗 , 𝑚⟩ = | 𝑗 , 𝑚 + 1⟩ for 𝑚 = − 𝑗 , . . . , 𝑗 − 1. Notice that
�̂� | 𝑗 ,− 𝑗⟩ = 0 and [𝐸, �̂�] | 𝑗 ,− 𝑗⟩ = 0. Since �̂� = �̂�∗, Lemma 4.1 then shows that ∥ [𝐷𝑁 , �̂�] ∥ =

∥ [𝐸, �̂�] ∥ = 1. Therefore,

𝑑𝑁 (𝜔𝑚, 𝜔𝑛) ≥ 𝜔𝑚 (�̂�) − 𝜔𝑛 (�̂�) =
𝑛∑︁

𝑘=𝑚+1

1√︁
( 𝑗 + 𝑘) ( 𝑗 − 𝑘 + 1)

. □

Note that the distance is additive on the chain of basic vector states:

𝑑𝑁 (𝜔𝑚, 𝜔𝑛) =
𝑛∑︁

𝑘=𝑚+1
𝑑𝑁 (𝜔𝑘−1, 𝜔𝑘 ).

Corollary 4.5. For any 𝑁 , the distance between the north and south poles of the fuzzy sphere is:

𝑑𝑁 (𝜓𝑁
(0,0) , 𝜓

𝑁
(0,𝜋)) =

𝑁∑︁
𝑘=1

1√︁
𝑘 (𝑁 − 𝑘 + 1)

. (4.7)

Proof. By construction, the Bloch state vectors at the poles are basis vectors: |0, 0)𝑁 = | 𝑗 ,− 𝑗⟩ and
|0, 𝜋)𝑁 = | 𝑗 , 𝑗⟩. Therefore, 𝜓𝑁

(0,0) = 𝜔− 𝑗 and 𝜓𝑁
(0,𝜋) = 𝜔 𝑗 . From (4.5) we get (4.7), since the left

hand side is just 𝑑𝑁 (𝜔− 𝑗 , 𝜔 𝑗 ). □
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4.3 An auxiliary distance

Let B𝑁 ⊂ A𝑁 be the subalgebra of diagonal matrices. Note that if 𝑎 is diagonal, then 𝜓𝑁
(𝜑,𝜃) (𝑎) =

𝜓𝑁
(0,𝜃) (𝑎) for any 𝜑. Define the distance

𝜌𝑁 (𝜃) := sup
{��𝜓𝑁

(0,𝜃) (𝑎) − 𝜓𝑁
(0,0) (𝑎)

�� : 𝑎 = 𝑎∗ ∈ B𝑁 , ∥ [𝐷𝑁 , 𝑎] ∥ ≤ 1
}
. (4.8)

Proposition 4.6. For any 0 ≤ 𝜃 ≤ 𝜋, 𝜌𝑁 (𝜃) is given by:

𝜌𝑁 (𝜃) =
𝑁∑︁
𝑛=1

(
𝑁

𝑛

)
(sin 𝜃

2 )
2𝑛 (cos 𝜃

2 )
2(𝑁−𝑛)

𝑛∑︁
𝑘=1

1√︁
𝑘 (𝑁 − 𝑘 + 1)

. (4.9)

Proof. Let 𝑎 = (𝛿𝑚𝑛𝑐𝑚) ∈ B𝑁 , with 𝑐𝑚 ∈ ℝ. Then 𝜔𝑚 (𝑎) = 𝑐𝑚, which gives

𝜓𝑁
(0,0) (𝑎) − 𝜓𝑁

(0,𝜃) (𝑎) =
𝑗∑︁

𝑚=− 𝑗

(
2 𝑗

𝑗 + 𝑚

)
(sin 𝜃

2 )
2( 𝑗+𝑚) (cos 𝜃

2 )
2( 𝑗−𝑚) (𝜔− 𝑗 (𝑎) − 𝜔𝑚 (𝑎)).

We also know that

𝜔− 𝑗 (𝑎) − 𝜔𝑚 (𝑎) ≤ 𝑑𝑁 (𝜔𝑚, 𝜔− 𝑗 ) =
𝑚∑︁

𝑚′=− 𝑗+1

1√︁
( 𝑗 + 𝑚′) ( 𝑗 − 𝑚′ + 1)

for all 𝑎 with ∥ [𝐷𝑁 , 𝑎] ∥ ≤ 1, with the supremum saturated on the diagonal element �̂� given by (4.6).
On substituting 𝑛 = 𝑗 + 𝑚 and 𝑘 = 𝑗 + 𝑚′, we arrive at (4.9). □

Lemma 4.7. The derivative 𝜌′
𝑁
(𝜃) of (4.9) satisfies 0 ≤ 𝜌′

𝑁
(𝜃) ≤ 1.

Proof. From (4.3b) we deduce that 𝜓𝑁
(0,𝜃) ( [𝐸, 𝑎]) =

𝜕
𝜕𝜃
𝜓𝑁
(0,𝜃) (𝑎) for all 𝑎 ∈ B𝑁 . Using this relation

and the equality 𝜌𝑁 (𝜃) = 𝜓𝑁
(0,𝜃) (�̂�) − 𝜓𝑁

(0,0) (�̂�), with �̂� the element in (4.6), we get:

𝜌′𝑁 (𝜃) =
𝜕

𝜕𝜃
𝜓𝑁
(0,𝜃) (�̂�) = 𝜓𝑁

(0,𝜃) ( [𝐸, �̂�]).

Since states are functionals with norm 1, it follows that

|𝜌′𝑁 (𝜃) | = |𝜓𝑁
(0,𝜃) ( [𝐸, �̂�]) | ≤ 𝜓𝑁

(0,𝜃) (1) ∥ [𝐸, �̂�] ∥ = 1.

On the other hand, since 𝐿 := [𝐸, �̂�] is the ladder operator | 𝑗 , 𝑚⟩ ↦→ | 𝑗 , 𝑚 + 1⟩, we get

𝜌′𝑁 (𝜃) = (0, 𝜃 | 𝐿 | 0, 𝜃)𝑁 =

𝑗−1∑︁
𝑚=− 𝑗

(
2 𝑗

𝑗 + 𝑚

)1
2
(

2 𝑗
𝑗 + 𝑚 + 1

)1
2

(sin 𝜃
2 )

2 𝑗+2𝑚+1(cos 𝜃
2 )

2 𝑗−2𝑚−1 ≥ 0.

Actually, we see that 𝜌′
𝑁
(𝜃) > 0 for 0 < 𝜃 < 𝜋. □

The previous lemma has two consequences: 𝜌𝑁 (𝜃) is strictly increasing on 0 ≤ 𝜃 ≤ 𝜋, for
fixed 𝑁; and, for 0 < 𝜃 ≤ 𝜋 the mean value theorem gives 𝜙 with 0 < 𝜙 < 𝜃 such that

𝜌𝑁 (𝜃) = 𝜌𝑁 (𝜃) − 𝜌𝑁 (0) = 𝜃 𝜌′𝑁 (𝜙) ≤ 𝜃.

That is: 𝜌𝑁 (𝜃) is no greater than the geodesic distance on the circle.
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4.4 𝑆𝑈 (2)-invariance of the distance

Lemma 4.8. The distance function 𝑑𝑁 (𝜓𝑁
(𝜑,𝜃) , 𝜓

𝑁
(𝜑′,𝜃′)) is 𝑆𝑈 (2)-invariant.

Proof. Up to now, we have identified the element 𝑎 ∈ A𝑁 ≃ End(𝑉 𝑗 ) with the operator 𝑎 ⊗ 12
acting on H𝑁 = 𝑉 𝑗 ⊗ 𝑉1

2
. In this proof, we shall write explicitly 𝑎 ⊗ 12 to avoid ambiguities.

For any 𝑔 ∈ 𝑆𝑈 (2) and 𝑎 ∈ A𝑁 , we write 𝑎𝑔 := 𝜋 𝑗 (𝑔)𝑎𝜋 𝑗 (𝑔)∗. Since 𝜋 1
2
(𝑔)𝜋 1

2
(𝑔)∗ = 12 by

unitarity of 𝜋 1
2
, we get

𝑎𝑔 ⊗ 12 = 𝑢(𝑎 ⊗ 12)𝑢∗ where 𝑢 := 𝜋 𝑗 (𝑔) ⊗ 𝜋 1
2
(𝑔).

Since 𝐷𝑁 commutes with 𝑢, the operator [𝐷𝑁 , 𝑎
𝑔 ⊗ 12] = 𝑢[𝐷𝑁 , 𝑎 ⊗ 12]𝑢∗ has the same norm as

[𝐷𝑁 , 𝑎 ⊗ 12].
Given a state 𝜔 on A𝑁 and 𝑔 ∈ 𝑆𝑈 (2), let 𝑔∗𝜔 be the state defined by 𝑔∗𝜔(𝑎) = 𝜔(𝑎𝑔). For any

pair of states 𝜔, 𝜔′, we then obtain

𝑑𝑁 (𝑔∗𝜔, 𝑔∗𝜔′) = sup
𝑎∈A𝑁

{ |𝜔(𝑎𝑔) − 𝜔′(𝑎𝑔) | : ∥ [𝐷𝑁 , 𝑎 ⊗ 12] ∥ ≤ 1 }

= sup
𝑏∈A𝑁

{ |𝜔(𝑏) − 𝜔′(𝑏) | : ∥ [𝐷𝑁 , 𝑏 ⊗ 12] ∥ ≤ 1 } = 𝑑𝑁 (𝜔, 𝜔′),

where we have put 𝑏 = 𝑎𝑔 and used ∥ [𝐷𝑁 , 𝑎
𝑔 ⊗ 12] ∥ = ∥ [𝐷𝑁 , 𝑎 ⊗ 12] ∥. By construction, the action

𝜓𝑁
(𝜑,𝜃) ↦→ 𝑔∗𝜓𝑁

(𝜑,𝜃) corresponds to the usual rotation action of 𝑆𝑈 (2) on 𝕊2. □

4.5 Dependence on the dimension

We now show that the distance 𝑑𝑁 (𝜓𝑁
(𝜑,𝜃) , 𝜓

𝑁
(𝜑′,𝜃′)) is non-decreasing with 𝑁 . Using the fuzzy spinor

basis (3.4), one defines injections 𝑈±
𝑗

: 𝑉 𝑗± 1
2
→ 𝑉 𝑗 ⊗ 𝑉1

2
by

𝑈+
𝑗 | 𝑗 + 1

2 , 𝑚 + 1
2⟩ := | 𝑗 , 𝑚⟩⟩+ , 𝑈−

𝑗 | 𝑗 − 1
2 , 𝑚 + 1

2⟩ := | 𝑗 , 𝑚⟩⟩− ,

using the same index sets as in (3.4), namely 𝑚 = − 𝑗 − 1, . . . , 𝑗 for the range of 𝑈+
𝑗

and 𝑚 =

− 𝑗 , . . . , 𝑗 −1 for the range of𝑈−
𝑗
. One easily checks that these𝑈±

𝑗
are isometries, i.e., (𝑈±

𝑗
)∗𝑈±

𝑗
= 1,

that intertwine the representations of su(2). Also,𝑉 𝑗 ⊗𝑉1
2

is the orthogonal direct sum of the ranges
of 𝑈+

𝑗
and 𝑈−

𝑗
.

Lemma 4.9. 𝑈+
𝑗
|𝜑, 𝜃)𝑁+1 = |𝜑, 𝜃)𝑁 ⊗ |𝜑, 𝜃)1 for any (𝜑, 𝜃) ∈ 𝕊2.

Proof. Note that |𝜑, 𝜃)1 = 𝑒−
1
2 i𝜑 sin 𝜃

2 | 12 ,−
1
2⟩ + 𝑒

1
2 i𝜑 cos 𝜃

2 | 12 ,
1
2⟩. The rest is an easy computation,

using (4.2). □

We define two injective linear maps

𝜂±𝑁 : A𝑁 → A𝑁±1 , 𝜂±𝑁 (𝑎) := (𝑈±
𝑗 )∗(𝑎 ⊗ 12)𝑈±

𝑗 .

They are unital and commute with the involution, but are neither surjective nor algebra morphisms,
since 𝑈+

𝑗
(𝑈+

𝑗
)∗ +𝑈−

𝑗
(𝑈−

𝑗
)∗ = 1. They are norm decreasing: the norm of 𝑎 ⊗ 12 on the range of 𝑈±

𝑗

is no greater than its norm on 𝑉 𝑗 ⊗ 𝑉1
2
, which equals the norm of 𝑎 on 𝑉 𝑗 .

15



Lemma 4.10. For any 𝑎 ∈ A𝑁 ,

𝜓𝑁+1
(𝜑,𝜃) ◦ 𝜂

+
𝑁 (𝑎) = 𝜓𝑁

(𝜑,𝜃) (𝑎), (4.10)

and [𝐷𝑁±1, 𝜂
±
𝑁 (𝑎)]

 ≤
[𝐷𝑁 , 𝑎]

. (4.11)

Proof. The equality (4.10) follows from Lemma 4.9, because

(𝜑, 𝜃 | 𝜂+𝑁 (𝑎) | 𝜑, 𝜃)𝑁+1 = (𝜑, 𝜃 | 𝑎 | 𝜑, 𝜃)𝑁 (𝜑, 𝜃 | 𝜑, 𝜃)1 = (𝜑, 𝜃 | 𝑎 | 𝜑, 𝜃)𝑁 .

Since 𝑈±
𝑗

intertwines representations of su(2), i.e.,

𝑈±
𝑗 𝑋 = (𝑋 ⊗ 12 + 12 ⊗ 𝑋)𝑈±

𝑗 for all 𝑋 ∈ su(2)

(the representation symbols are omitted), we conclude that

[𝑋, 𝜂±𝑁 (𝑎)] = (𝑈±
𝑗 )∗

(
[𝑋, 𝑎] ⊗ 12

)
𝑈±

𝑗 = 𝜂±𝑁
(
[𝑋, 𝑎]

)
.

In view of (4.1), therefore, [𝐷𝑁±1, 𝜂
±
𝑁
(𝑎)] = 𝜂±

𝑁

(
[𝐷𝑁 , 𝑎]

)
, where [𝐷𝑁 , 𝑎] ∈ 𝑀2(A𝑁 ) and we extend

𝜂±
𝑁

from A𝑁 to 𝑀2(A𝑁 ) by applying it to each matrix entry. Since both 𝜂±
𝑁

are norm-decreasing
maps, this proves (4.11). □

Proposition 4.11. For any 𝑁 ≥ 1, the following majorization holds:

𝑑𝑁+1(𝜓𝑁+1
(𝜑,𝜃) , 𝜓

𝑁+1
(𝜑′,𝜃′)) ≥ 𝑑𝑁 (𝜓𝑁

(𝜑,𝜃) , 𝜓
𝑁
(𝜑′,𝜃′)).

Proof. We get directly:

𝑑𝑁+1(𝜓𝑁+1
(𝜑,𝜃) , 𝜓

𝑁+1
(𝜑′,𝜃′)) = sup

𝑎∈A𝑁+1

{ ��𝜓𝑁+1
(𝜑,𝜃) (𝑎) − 𝜓𝑁+1

(𝜑′,𝜃′) (𝑎)
�� : ∥ [𝐷𝑁+1, 𝑎] ∥ ≤ 1

}
≥ sup

𝑎∈A𝑁

{ ��𝜓𝑁+1
(𝜑,𝜃) ◦ 𝜂

+
𝑁 (𝑎) − 𝜓𝑁+1

(𝜑′,𝜃′) ◦ 𝜂
+
𝑁 (𝑎)

�� :
[𝐷𝑁+1, 𝜂

+
𝑁 (𝑎)]

 ≤ 1
}

= sup
𝑎∈A𝑁

{ ��𝜓𝑁
(𝜑,𝜃) (𝑎) − 𝜓𝑁

(𝜑′,𝜃′) (𝑎)
�� :

[𝐷𝑁+1, 𝜂
+
𝑁 (𝑎)]

 ≤ 1
}

≥ sup
𝑎∈A𝑁

{ ��𝜓𝑁
(𝜑,𝜃) (𝑎) − 𝜓𝑁

(𝜑′,𝜃′) (𝑎)
�� : ∥ [𝐷𝑁 , 𝑎] ∥ ≤ 1

}
= 𝑑𝑁 (𝜓𝑁

(𝜑,𝜃) , 𝜓
𝑁
(𝜑′,𝜃′)) .

The first inequality follows since the supremum over the range of 𝜂+
𝑁

in A𝑁+1 is smaller than the
supremum over the whole A𝑁+1. In the next line (4.10) is used; and we get the second inequality
from (4.11). □

Remark 4.12. The calculation in the proof of Prop. 4.11 can be adapted to establish that

𝜌𝑁+1(𝜃 − 𝜃′) ≥ 𝜌𝑁 (𝜃 − 𝜃′), for 𝜃, 𝜃′ ∈ [0, 𝜋] . (4.12)

For that, just restrict 𝑎 ∈ A𝑁 to (be self-adjoint and) lie in the diagonal subalgebra B𝑁 . The only
thing to note that is that 𝜂+

𝑁
maps B𝑁 into a non-diagonal subalgebra of A𝑁+1; but the notion of

diagonal subalgebra is in any case basis-dependent. It is enough to replace B𝑁+1 by a conjugate
subalgebra that includes 𝜂+

𝑁
(B𝑁 ), after conjugating A𝑁+1 by a unitary operator commuting with

the 𝑆𝑈 (2) action via ad 𝜋 𝑗+ 1
2
. This rotates the basis vectors in 𝑉 𝑗+ 1

2
, in such a way that the coherent

states 𝜓𝑁+1
(𝜑,𝜃) are unchanged. Thus also, 𝜌𝑁+1(𝜃 − 𝜃′) is unchanged, and (4.12) holds.
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4.6 Upper and lower bounds and the large 𝑁 limit

Proposition 4.13. The following inequalities hold, for all (𝜑, 𝜃), (𝜑′, 𝜃′) ∈ 𝕊2:

𝜌𝑁 (𝜃 − 𝜃′) ≤ 𝑑𝑁 (𝜓𝑁
(𝜑,𝜃) , 𝜓

𝑁
(𝜑′,𝜃′)) ≤ 𝑑geo

(
(𝜑, 𝜃), (𝜑′, 𝜃′)

)
, (4.13)

where 𝜌𝑁 (𝜃) is the auxiliary distance (4.8) and 𝑑geo is the geodesic distance for the round metric
of 𝕊2. In particular,

𝜌𝑁 (𝜃) ≤ 𝑑𝑁 (𝜓𝑁
(0,𝜃) , 𝜓

𝑁
(0,0)) ≤ 𝜃. (4.14)

Proof. Due to Lemma 4.8, the second inequality in (4.13) involves two 𝑆𝑈 (2)-invariant expressions.
It is then enough to prove it when (𝜑′, 𝜃′) = (0, 𝜋2 ) and (𝜑, 𝜃) = (𝜑, 𝜋2 ). We thus need to prove that

𝑑𝑁 (𝜓𝑁
(𝜑, 𝜋2 )

, 𝜓𝑁
(0, 𝜋2 )

) ≤ |𝜑 | for all − 𝜋 < 𝜑 ≤ 𝜋.

Integrating (4.3a), we find

𝜓𝑁
(𝜑, 𝜋2 )

(𝑎) − 𝜓𝑁
(0, 𝜋2 )

(𝑎) = i
∫ 𝜑

0
𝜓𝑁
(𝛼, 𝜋2 )

( [𝐻, 𝑎]) 𝑑𝛼 ,

and since |𝜔(𝐴) | ≤ ∥𝐴∥ for any state 𝜔 and operator 𝐴, we obtain, using Lemma 4.1:

|𝜓𝑁
(𝜑, 𝜋2 )

(𝑎) − 𝜓𝑁
(0, 𝜋2 )

(𝑎) | ≤ ∥[𝐻, 𝑎] ∥
����∫ 𝜑

0
𝑑𝛼

���� = |𝜑 | ∥ [𝐻, 𝑎] ∥ ≤ |𝜑 | ∥ [𝐷𝑁 , 𝑎] ∥.

This proves the upper bound in (4.13). That of (4.14) follows from 𝑑geo
(
(0, 𝜃), (0, 0)

)
= 𝜃.

A lower bound for the distance is given by the supremum over diagonal matrices:

𝑑𝑁 (𝜓𝑁
(𝜑,𝜃) , 𝜓

𝑁
(𝜑′,𝜃′)) ≥ sup

𝑎=𝑎∗∈B𝑁

{ ��𝜓𝑁
(𝜑,𝜃) (𝑎) − 𝜓𝑁

(𝜑′,𝜃′) (𝑎)
�� : ∥ [𝐷𝑁 , 𝑎] ∥ ≤ 1

}
.

Since 𝜓𝑁
(𝜑,𝜃) (𝑎) is independent of 𝜑 for any diagonal 𝑎, we arrive at

𝑑𝑁 (𝜓𝑁
(𝜑,𝜃) , 𝜓

𝑁
(𝜑′,𝜃′)) ≥ sup

𝑎=𝑎∗∈B𝑁

{ ��𝜓𝑁
(0,𝜃) (𝑎) − 𝜓𝑁

(0,𝜃′) (𝑎)
�� : ∥ [𝐷𝑁 , 𝑎] ∥ ≤ 1

}
= 𝜌𝑁 (𝜃 − 𝜃′). □

For 0 < 𝜃 < 𝜋, neither the upper nor the lower bound in (4.14) is sharp. On the other hand,
𝑑𝑁 (𝜓𝑁

(0,𝜋) , 𝜓
𝑁
(0,0)) = 𝜌𝑁 (𝜋), since the formula (4.9) coincides with (4.7) when 𝜃 = 𝜋. Thus the

lower bound is sharp for 𝜃 = 𝜋. In Figure 1a we show a plot of the upper bound (straight line) and
lower bounds 𝜌𝑁 for 𝑁 = 10, 30, 500 (nondecreasing with 𝑁). It would seem that 𝜃 − 𝜌𝑁 (𝜃) has
its maximum at 𝜃 = 𝜋. Figure 1b plots 𝜃 − 𝜌𝑁 (𝜃) for 𝑁 = 5, 10, 20, 30 (decreasing with 𝑁). This
suggests how to prove our final result.

Proposition 4.14. As 𝑁 → ∞, the sequence 𝜌𝑁 (𝜃) is uniformly convergent to 𝜃 in [0, 𝜋]. Therefore,

lim
𝑁→∞

𝑑𝑁 (𝜓𝑁
(𝜑,𝜃) , 𝜓

𝑁
(𝜑′,𝜃′)) = 𝑑geo

(
(𝜑, 𝜃), (𝜑′, 𝜃′)

)
.
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(a) Plot of 𝜃 and 𝜌𝑁 (𝜃) for 𝑁 = 10, 30, 500.
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(b) Plot of 𝜃 − 𝜌𝑁 (𝜃) for 𝑁 = 5, 10, 20, 30.

Figure 1: Comparison of 𝜌𝑁 (𝜃) with 𝜃. The abscissa is 𝑥 = 𝜋𝜃.

Proof. Let 𝑓𝑁 (𝜃) := 𝜃 − 𝜌𝑁 (𝜃). Clearly 𝑓𝑁 (0) = 0, and 𝑓 ′
𝑁
(𝜃) ≥ 0 by Lemma 4.7. Hence 𝑓𝑁 (𝜃) is

a nondecreasing positive function of 𝜃 for each 𝑁 , and

∥𝜃 − 𝜌𝑁 (𝜃)∥∞ = sup
𝜃∈[0,𝜋]

𝑓𝑁 (𝜃) ≤ 𝑓𝑁 (𝜋) = 𝜋 − 𝜌𝑁 (𝜋).

Therefore, the uniform convergence lim𝑁→∞ ∥𝜃 − 𝜌𝑁 (𝜃)∥∞ = 0 holds if and only if the diameter
converges to 𝜋, i.e., lim𝑁→∞ 𝜌𝑁 (𝜋) = 𝜋.

The formula for 𝜌𝑁 (𝜋) is given by (4.7). The sequence 𝜌𝑁 (𝜋) is bounded, 𝜌𝑁 (𝜋) ≤ 𝜋, and is
nondecreasing by Remark 4.12. Hence it is convergent, and the limit can be computed using any
subsequence. It is thus enough to prove that 𝜌𝑁 (𝜋) ≥ 𝑐𝑁 , where 𝑐𝑁 → 𝜋 as 𝑁 → ∞.

We consider the subsequence with odd 𝑁 only. The function (𝑥(𝑁 − 𝑥 + 1))−1/2 is positive for
1 ≤ 𝑥 ≤ 𝑁 , symmetric about 𝑥 = 1

2 (𝑁 + 1), and monotonically decreasing for 1 ≤ 𝑥 ≤ 1
2 (𝑁 + 1).

Hence

𝜌𝑁 (𝜋) = 2

1
2 (𝑁−1)∑︁
𝑘=1

1√︁
𝑘 (𝑁 − 𝑘 + 1)

+ 2
𝑁 + 1

≥ 2
∫ 1

2 (𝑁+1)

1

𝑑𝑥√︁
𝑥(𝑁 − 𝑥 + 1)

.

Substituting 𝑥 =: 1
2 (𝑁 + 1) (1 + sin 𝜉), so that 𝑑𝜉 = 𝑑𝑥/

√︁
𝑥(𝑁 − 𝑥 + 1) , we obtain

𝜌𝑁 (𝜋) ≥ 2 arcsin
𝑁 − 1
𝑁 + 1

.

The right hand side converges monotonically to 𝜋 as 𝑁 → ∞, thus lim𝑁→∞ 𝜌𝑁 (𝜋) = 𝜋 through
odd 𝑁 , and so, as noted above, through all 𝑁 . (A slightly modified estimate gives lim𝑁→∞ 𝜌𝑁 (𝜋) = 𝜋

through even 𝑁 , directly, without using Remark 4.12.) This proves the uniform convergence
𝜌𝑁 (𝜃) → 𝜃.

The estimate (4.14) now shows that 𝑑𝑁 (𝜓𝑁
(0,𝜃) , 𝜓

𝑁
(0,0)) is uniformly convergent to 𝜃; by 𝑆𝑈 (2)-

invariance, 𝑑𝑁 (𝜓𝑁
(𝜑,𝜃) , 𝜓

𝑁
(𝜑′,𝜃′)) converges to 𝑑geo

(
(𝜑, 𝜃), (𝜑′, 𝜃′)

)
uniformly on 𝕊2. □
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