Now showing items 57-76 of 77

    • Una retrospección a la matemática griega 

      Várilly Boyle, Joseph C. (2000-12-01)
      Este artículo apareció originalmente en la revista cultural semestral Laberintos, publicado por el Instituto de Enseñanza Superior ÉLAIOS, de Zaragoza, en un número dedicado al Año Mundial de las Matemáticas (2000). ...
    • REVISTA SERENGUETI 2(1) 

      Valerio Salas, Ericka; García Calvo, Susana; Vargas Montero, Andrea; Salas Obando, Joshua; Aguilar Umaña, José Pablo; Alvarado Prado, Fernando; Hernández Orama, Daniely; Chavarría Guevara, Daniela; Jiménez Mena, Noelia; Zarate Artavia, Gabriel; Herrera Delgado, Shirley; Rojas Ramírez, Noelia; Solís Quirós, María José; Quirós Gómez, Luis Diego; Montero Solórzalo, Juan José; Solera Vázquez, Silvia; Gómez Quesada, Dayana; Reyes Peña, Jesús; Fallas Godìnez, José Alejandro; Vargas Herrera, Moisés (2019-12)
      Se destaca, de manera general, que la revista Serengueti se compone como una herramienta capaz de incentivar la participación estudiantil, en el cual principalmente se tiene como fin evidenciar y reconocer los esfuerzos ...
    • Stora's fine notion of divergent amplitudes 

      Várilly Boyle, Joseph C.; Gracia Bondía, José M. (2016-11)
      Stora and coworkers refined the notion of divergent quantum amplitude, somewhat upsetting the standard power-counting recipe. This unexpectedly clears the way to new prototypes for free and interacting field theories of ...
    • Stratifications on the Moduli Space of Higgs Bundles 

      Zúñiga Rojas, Ronald Alberto; Beier Gothen, Peter (2016-11-02)
      The moduli space of Higgs bundles has two stratifications. The Bia lynickiBirula stratification comes from the action of the non-zero complex numbers by multiplication on the Higgs field, and the Shatz stratification arises ...
    • Stratifications on the Nilpotent Cone of the moduli space of Hitchin pairs 

      Beier Gothen, Peter; Zúñiga Rojas, Ronald Alberto (2020)
      We consider the problem of finding the limit at infinity (corresponding to the downward Morse flow) of a Higgs bundle in the nilpotent cone under the natural C ∗ -action on the moduli space. For general rank we provide ...
    • String chopping and time-ordered products of linear string-localized quantum fields 

      Cardoso, Lucas T.; Mund, Jens; Várilly Boyle, Joseph C. (2018-03)
      For a renormalizability proof of perturbative models in the Epstein-Glaser scheme with string-localized quantum fields, one needs to know what freedom one has in the definition of time-ordered products of the interaction ...
    • Teoría de grupos en cuantización 

      Várilly Boyle, Joseph C. (Centro de Investigación y de Estudios Avanzados del IPN, México, DF, 1992, 1992-02-15)
      Esta monografía es un curso doctoral impartido en el CInvEstAv del Instituto Politécnico Nacional en México, DF, durante el año académico 1991-92 (con licencia sabática de la UCR) y luego redactado como publicación ...
    • The asymptotic distribution of Andrews’ smallest parts function 

      Banks, Josiah; Barquero Sánchez, Adrián Alberto; Masri, Riad; Sheng, Yan (2015-12)
      In this paper, we use methods from the spectral theory of automorphic forms to give an asymptotic formula with a power saving error term for Andrews’ smallest parts function spt(n). We use this formula to deduce an asymptotic ...
    • The chirality theorem 

      Gracia Bondía, José M.; Mund, Jens; Várilly Boyle, Joseph C. (2018-03)
      We show how chirality of the weak interactions stems from string independence in the string-local formalism of quantum field theory.
    • The Chowla-Selberg formula for abelian CM fields and Faltings heights 

      Barquero Sánchez, Adrián Alberto; Masri, Riad (2016-03)
      In this paper we establish a Chowla-Selberg formula for abelian CM fields. This is an identity which relates values of a Hilbert modular function at CM points to values of Euler’s gamma function Γ and an analogous function ...
    • The Error in an Alternating Series 

      Villarino Bertram, Mark (2018-03)
      We present a new proof of Johnsonbaugh’s estimates for the error in an alternating series based on an idea of R. M. Young. We also use this same idea to prove the convergence of the Euler transform and a corresponding error ...
    • The Gromov’s centralizer theorem for semisimple Lie group actions 

      Rosales Ortega, José (2017-10)
      We give a new version of the Gromov’s centralizer theorem in the case of semisimple Lie group actions and arbitrary rigid geometric structures of algebraic type.
    • The Kirillov picture for the Wigner particle 

      Gracia Bondía, José M.; Lizzi, Fedele; Várilly Boyle, Joseph C.; Vitale, Patrizia (2018-06)
      We discuss the Kirillov method for massless Wigner particles, usually (mis)named "continuous spin" or "infinite spin" particles. These appear in Wigner's classification of the unitary representations of the Poincaré group, ...
    • The pseudo-fundamental group scheme 

      Antei, Marco; Dey, Arijit (2019)
      Let X be any scheme defined over a Dedekind scheme S with a given section x ∈ X (S). We prove the existence of a pro-finite S-group scheme א (X,x) and a universal א (X,x)-torsor dominating all the pro-finite pointed torsors ...
    • The role of short-term immigration on disease dynamics: An SIR model with age-structure 

      Sánchez Peña, Fabio Ariel; Calvo Alpízar, Juan Gabriel (2019-02-18)
      We formulate an age-structured nonlinear partial differential equation model that features short-term immigration effects in a population. Individuals can immigrate into the population as any of the three stages in the ...
    • Tres caminos hacia la geometría elemental 

      Várilly Boyle, Joseph C. (Congreso CANP 2012: "Construcción de Capacidades en Matemáticas y Educación Matemática", 2012-08)
      La enseñanza de la geometría a nivel preuniversitaria suscita debates sobre su fundamentación, su puesta en práctica y su engranaje con otros áreas de la matemática. Aquí se ofrecen algunas ideas para explorar de qué ...
    • Uniform sparse bounds for discrete quadratic phase Hilbert transforms 

      Kesler, Robert; Mena Arias, Darío Alberto (2017-09)
      Consider the discrete quadratic phase Hilbert Transform acting on $\ell^{2}(\mathbb{Z})$ finitely supported functions $$ H^{\alpha} f(n) : = \sum_{m \neq 0} \frac{e^{i\alpha m^2} f(n - m)}{m}. $$ We prove that, ...
    • Using generalized logistics regression to forecast population infected by Covid-19 

      Villalobos Arias, Mario Alberto (2020-04-05)
      In this work, a proposal to forecast the populations using generalized logistics regression curve fitting is presented. This type of curve is used to study population growth, in this case population of people infected ...
    • Variations of Hodge Structures of Rank Three k-Higgs Bundles and Moduli Spaces of Holomorphic Triples 

      Zúñiga Rojas, Ronald Alberto (2020)
      There is an isomorphism between the moduli spaces of σ-stable holomorphic triples and some of the critical submanifolds of the moduli space of k-Higgs bundles of rank three, whose elements (E, ϕk ) correspond to variations ...
    • Vertical Transmission in a Two-Strain Model of Dengue Fever 

      Murillo, David; Holechek, Susan A.; Murillo, Anarina L.; Sánchez Peña, Fabio Ariel; Castillo Chávez, Carlos (2014)
      The role of vertical transmission in vectors has rarely been addressed in the study of dengue dynamics and control, in part because it was not considered a critical population-level factor. In this paper, we apply the ...