Show simple item record

dc.creatorBarquero Sánchez, Adrián Alberto
dc.creatorMasri, Riad
dc.description.abstractIn this paper we establish a Chowla-Selberg formula for abelian CM fields. This is an identity which relates values of a Hilbert modular function at CM points to values of Euler’s gamma function Γ and an analogous function Γ2 at rational numbers. We combine this identity with work of Colmez to relate the CM values of the Hilbert modular function to Faltings heights of CM abelian varieties. We also give explicit formulas for products of exponentials of Faltings heights, allowing us to study some of their arithmetic properties using the Lang-Rohrlich conjecture.es_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.sourceCompositio Mathematica, vol. 152(3), pp. 445-476es_ES
dc.subjectChowla-Selberg formulaes_ES
dc.subjectCM pointes_ES
dc.subjectFaltings heightes_ES
dc.subjectHilbert modular functiones_ES
dc.titleThe Chowla-Selberg formula for abelian CM fields and Faltings heightses_ES
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Matemáticaes_ES
dc.description.procedenceUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones en Matemáticas Puras y Aplicadas (CIMPA)es_ES

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional