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Abstract

Faulting, shallow seismicity (0±30 km), and seismic hazard of the Costa Rican Central Valley were analyzed. Faults in the study area are

oriented northwest or northeast. There is an active fault system in the south ¯ank of the Central Volcanic Ridge and another in the north ¯ank

of the Talamanca Ridge. Faults of these systems have generated 15 destructive earthquakes in the area during the last 228 years all of them

shallow and their locations show one cluster near the Poas Volcano and another southward the Central Valley. These earthquakes have

damaged cities of the Central Valley, two of them destroyed Cartago city and almost 1000 people were killed. Regarding recent seismicity,

there are three main seismic sources at the Central Volcanic Ridge: Irazu, Bajo de la Hondura and Poas and other three in the Talamanca

Ridge: Puriscal, Los Santos and Pejibaye.

A seismic hazard map for the Metropolitan Area of San JoseÂ has been elaborated, based on local tectonic and seismic information. The area

for the hazard computation covers an area of 20 £ 15 km2 and includes the zone where the most population and socioeconomic activities are

concentrated. The computation analysis are based on areas zones and faults, each one characterized by recurrence parameters, geometry,

minimum and maximum magnitude and source depth. A recent local spectral attenuation model, which includes relations for shallow crustal

sources and subduction zone earthquakes, has been applied in this study. The seismic hazard results are presented in terms of contour plots of

estimated peak ground acceleration (PGA) for bedrock conditions for return period of 50, 100 and 500 years. In the Central Park of San Jose

City the following PGA values were found: 0.29g for 50 years, 0.36g for 100 years, and 0.53g for 500 years. q 2000 Elsevier Science Ltd.

All rights reserved.
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1. Introduction

There is evidence of seismic activity in the central part of

Costa Rica since historic times [1,2]. This activity was ®rst

recorded with portable networks [3] and as a result several

seismic sources were discovered. However, at that moment

it was dif®cult to locate such seismicity because there were

not enough seismic stations in Costa Rica. Furthermore, the

seismic stations had an analog recording system that made it

dif®cult to read P and S waves in the seismograms. In 1990

the Red Sismologica Nacional (RSN: ICE-UCR) changed

its recording system to a digital one and this, plus the

increment in the number of seismic stations, made it

possible to locate earthquakes with high accuracy.

On the other hand, faulting of the area has been

studied since 1970 when the Geology Department was

opened at the University of Costa Rica. During the

period 1989±1991, an exhaustive investigation of the

faulting of the Central Valley of Costa Rica was carried

out as part of a project to mitigate seismic and volcanic

risk in that area. Arias and Denyer [4] complemented

that investigation by studying the geology in the south-

ern of the valley and ®nally, Fernandez and Montero [5]

applied neotectonic criteria to determine active faults in

the area.

The advance in earthquake location and the discovery of

active faults in the central part of Costa Rica made it possible

to correlate earthquakes and faults and estimate seismic

hazard. In this study we carry out this correlation and estimate

the seismic hazard for the Metropolitan Area of the Central
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Valley of Costa Rica where the most important cities of the

country are located.

2. Tectonic setting

Costa Rica is located on the Caribbean plate (Fig. 1)

which borders with the Cocos plate along the Middle Amer-

ican Trench. The Cocos plate subducts normally under the

Caribbean plate from Guatemala to the Central part of Costa

Rica but this process becomes abnormal in southern Costa

Rica where there are no earthquakes below 60 km; these

geometric variations are considered as a consequence of

different ages of the oceanic crust [6]. In front of the south-

ern Paci®c coast of Costa Rica is located the Cocos Ridge

which joined the Middle American Trench ca 5 Ma ago [7].

In the Caribbean Sea, in front of the coasts of Costa Rica

and Panama, is the North Panama Deformed Belt [8]

which is considered as a convergent margin in the

Caribbean plate.
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Fig. 1. (A) Local tectonic setting. Costa Rica is located on the western side of the Caribbean plate which borders with Cocos Plate along Middle American

Trench. CVR, Central Volcanic Ridge; TR, Talamanca Ridge; PFZ, Panama Fracture Zone; PDB, Panama Deformed Belt. The area of interest is indicated by a

rectangle and covers part of the Central Volcanic Ridge of Costa Rica and Talamanca Ridge. Triangles represent seismic stations, black: RSN stations and

white (small): Arenal Network. Rhombus are seismic stations of Boruca Network. (B) Regional tectonic setting.



The Talamanca Ridge and the Central Volcanic Ridge are

two important geologic features built by the tectonic activity

in Costa Rica. Steep subduction of the Cocos Ridge below

southeastern Costa Rica appears to have been responsible

for formation of Talamanca Ridge [7] and because of this

there is no volcanism in it. The Central Volcanic Ridge was

formed by the normal subduction process and has four

Quaternary volcanoes.

3. Data and method

Earthquakes used in this study are from The National

Seismological Network (RSN: ICE-UCR). This network

has 17 seismic stations with digital recording, short period

and vertical component, distributed all over the country.

Eight of these stations are in the studied area and six more

near its limits. The RSN locate earthquakes with a unidi-

mensional velocity structure [9] determined by seismic

refraction in the north of Costa Rica. The seismic signals

analysis was done with the Seisan Earthquake Analysis

Software [10,11] which includes a version of the

Hypocenter to locate earthquakes. In this study we

selected earthquakes with vertical and horizontal errors

of location less than 3 km and with rms equal to 0.5 as

maximum. These events were plotted together with the

faults in order to determine active faulting.

The methodology used in this study for computation of

occurrence of ground motion, as implemented in the

program NPRISK [12], requires that the earthquake

process can be described as a Poisson process. This

requires in turn that the occurrence of events are mutually

independent in time and space. Foreshocks and after-

shocks were removed from the catalog by the application

of a hyperbolic ®lter as detailed by Camacho et al. [13]

and Laporte et al. [14].

In the present study we have used moment magnitudes

for all of the events in the catalog, as explained by Rojas

et al. [15] and Laporte et al. [14]. We accept the previous

Costa Rican catalog completeness tests done by Geoma-

trix Consultants [16] and Rojas et al. [17], which show

completeness for the Central Valley, down to magnitude

2.3 (Mw) for the time-window 1980±1996. For seismic

zones far from the Central Valley regression analysis indi-

cates catalog completeness from 3.0 (Mw) for the time-

period 1980±1996. For the modeled faults the depth range

was set to 0±15 km in most of the cases. For the Costa

Rica territory no evidence is available that indicates

deeper crustal faults.

The coordinates 9.868N±10.008N and 84.188W±84.018W
de®ne the area under focus in this analysis.

4. Faulting

According to the distribution of the faults in the study

area (Fig. 2), it can be seen that most of the faults follow

a NW±SE and NE±SW orientation. This orientation is

interpreted by Arias and Denyer [4] to be a consequence

of a Miocene±Pliocene compressive phase that affected the

Costa Rican territory at that time.

In the Central Volcanic Ridge there are two important

fault systems, one that marks the southern limit of the volca-

nic range and another in the Irazu Volcano (IV) area. The

®rst one is parallel to the strike of the ridge and extends from

Irazu to Poas Volcano. The second one is better known, it is

a normal fault system which surrounds the Irazu Volcano

and has faults no larger than 15 km. Other important faults

are Alajuela and Guapiles that according to Borgia et al.

[18] and Boschini [19] are reverse faults.

Talamanca Ridge area has a high number of faults

suggesting that more deformation has taken place through-

out the geological time there. Aguacaliente and Higuito-

Belen are well known faults located in the northern

¯ank of Talamanca Ridge, close to the Central Valley.

Aguacaliente fault is characterized by the alignment of

valleys, hot springs and sulphur mineralizations; Fernandez

and Montero [5] considered that this fault is oblique.

Higuito-Belen fault has strong changes in slope and scarps

and according to Denyer and Arias [20] this fault has verti-

cal displacement (probably reverse displacement);

Fernandez and Montero [5] found evidence of reverse

displacement in this fault. Most of the other faults are

strike-slip.

5. Seismicity

5.1. Historical earthquakes

There have been eight shallow earthquakes from 1772 to

the present in the CVR, seven of them were located in the

faulting of Poas Volcano area and one in the northwest ¯ank

of Irazu Volcano (Fig. 3). The events of Poas seem to be

related to the northwest extreme of the faulting that begins

southward Irazu Volcano and ends westward Poas Volcano.

Patillos earthquake is a isolated event that has large recur-

rence periods. Montero and Alvarado [21] indicate that Rio

Sucio was the fault responsible for the Patillo earthquake.

The main characteristics of these events listed in Table 1.

Southward the Central Valley of Costa Rica, at the Tala-

manca Ridge side, there have been ®ve important earth-

quakes since 1834 until the present (Fig. 3), all of them

with magnitude larger than 5. They affected the cities of

Cartago and San Jose and killed more than 600 people.

The characteristics of those events are listed in Table 2.

All the earthquakes in Table 2 have been located in the

faulting close to the southern boundary of the Central

Valley, speci®cally in the segment between Cachi (CA)

and San Jose (SJ). They strongly suggest seismic activity

along Aguacaliente and Higuito-Belen Faults and this is

very important because the cities of Cartago and San Jose,

the most important population centers of Costa Rica, are
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close to these seismic sources. In fact, Montero and Morales

[22] considered that this is the area of highest seismic risk in

the central part of Costa Rica.

5.2. Instrumental seismicity

5.2.1. Central Volcanic Ridge Area

Forty-six years have passed since the last historic earth-

quake in the Central Volcanic Ridge (1952) but this fact

does not imply absence of seismicity there. On the contrary,

there are three seismic foci with permanent seismic activity:

the Irazu Volcano Area, Bajo de la Hondura (BH) and the

Poas Volcano zone (Fig. 3). Both Irazu and Poas seismic

zones have generated destructive earthquakes of moderate

magnitude �M , 6:0� but, according to the historic seismi-

city, Poas is the most dangerous seismic source of the

Central Volcanic Ridge. In Bajo de la Hondura, the seismic

activity is more continuous in time but the magnitude of its

earthquakes is smaller than the magnitude of earthquakes

from Irazu and Poas. The seismicity of these zones is

increased after large earthquakes in the country.

In the Irazu Volcano Area occurred seismic swarms in

1982, 1991 and 1997 [23]; these swarms are composed of

thousands of microearthquakes and few earthquakes of

magnitude greater than 4. All of them are due to the faulting

around the volcano, specially those located between Irazu

and Turrialba volcanoes and southward the crater of Irazu.

The seismicity of this zone does not represent a high hazard

for the population of the Central Valley, except for earth-

quakes like Patillos that might produce damage to property.

The main consequence of the activity on the faults of this

area could be the opening of fractures that may favor an

eruption.

There is important seismicity in Bajo de la Hondura

where there were seismic swarms in 1978, 1979 and 1980

[21]. The largest earthquakes of these swarms had magni-

tudes between 3 and 4. In 1990 the largest seismic event of

the area occurred, it was an earthquake of magnitude 4.4.

That event could be originated in Lara Fault. Lara, Hondura

and Patria faults control the seismicity of this area.

At Poas the seismicity is concentrated along the north-

west faulting located southward the volcano. Several seis-

mic swarms have originated in this system, the last one

being in February of 1997. As in the previous zones, the

seismicity increases after large earthquakes here, causing

seismic swarms that last one or two days. Also in the trough

between the Barva and Poas volcanoes there is seismicity,

but in this case there is not clear correlation with faulting.

5.2.2. Central Valley Area

The seismicity within the same valley is scarce and scat-

tered (Fig. 3). Some clusters can be observed northward
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Fig. 2. Structural map of the studied area. Faults were taken from Arias and Denyer [20,36], Denyer and Arias [37,38], Montero et al. [39,40], Montero [41],

Denyer et al. [42], Montero and Alvarado [21], FernaÂndez and Montero (in preparation) and Soto [43]. The shadowed areas in the ®gure correspond to the

Talamanca (South) and Central Volcanic (North) Ridges. Black triangles are volcanoes and squares are population centers. BT, Bajos del Toro; BH, Bajo de la

Hondura; A, Alajuela; H, Heredia; SJ, San JoseÂ; TR, Tres Rios; C, Cartago; P, Pejibaye; IV, Irazu Volcano; TV, Turrialba Volcano; COF, Corralillo Fault.

Triangles on fault indicate reverse faults, arrows strike-slip faults and ^ normal faults.



Cartago (C), southeast of San JoseÂ (SJ) and near

Alajuela (A). It has been dif®cult to ®nd faults in the Central

Valley because most of the surface of this valley is covered

by concrete and volcanic deposits. For this reason it is

dif®cult to correlate the seismicity with the faulting here.

However, that correlation is clear in Alajuela where

Higuito-Belen is the fault responsible for the earthquakes.

This structure has been very active during the last 10 years
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Fig. 3. Seismicity of the studied area. Black circles are historical earthquakes (the number of the earthquake in Tables 1 and 2 has been attached). White circles

represent recent earthquakes. Black triangles are volcanoes and squares are population centers. PV, Poas Volcano; BV, Barba Volcano; BH, Bajo de la

Hondura; RSF, Rio Sucio Fault; HF, Higuito-Belen Fault; JF, Jaris Fault; LF, Lara Fault.

Table 1

Historic earthquakes in the Central Volcanic Ridge (CVR) [44]

Number Name Year Magnitude Damage

1 Barva Earthquake 1772 5.6 The earthquake damaged the church of Barba

2 Alajuela Earthquake 1835 5.8 Few damage in Alajuela

3 Fraijanes Earthquake 1851 5.5 Important damage in Alajuela, San Jose and

Cartago

4 Fraijanes Earthquake 1888 5.8 It affected greatly the cities of Alajuela, Heredia and

San Jose

5 Toro Amarillo Earthquake 1911 6.1 Landslides, fracturing of the soil and houses

destruction in Bajos del Toro

6 Sarchi Earthquake 1912 6.2 Sarchi was severely destroyed, 15 people died

7 Toro Amarillo Earthquake 1955 5.8 Large destruction in Bajos del Toro, evacuation of

that town, 10 people died

8 Patillos Earthquake 1952 5.5 Large damages in the West Flank of Irazu Volcano,

21 people died



and has produced several seismic swarms southward of San

Jose and one in Alajuela. Fortunately, the fault has only

originated earthquakes of magnitude less than 5.0. Aguaca-

liente, a fault that had important activity in the past, now

only generates few earthquakes of low magnitude.

5.2.3. Talamanca Ridge Area

This is the area with highest level of seismic activity in

Central Costa Rica (Fig. 3). Talamanca is a pluton that have

been lifting up since Miocene. Earthquakes are distributed

all over the area and concentrate in Puriscal, La Lucha, and

Pejibaye (Fig. 2).

Puriscal was a very quiet seismic zone but after the

Cobano earthquake (Ms 7.1) on the Paci®c Coast in 1990, an

intense seismic activity began there; thousands of earthquakes

were recorded during the period June±December 1990. Fortu-

nately only 22 of them had magnitudes larger than 4.0 and

only one over 5.0. Because of the largest earthquake 3 people

died and almost 100 people were injured, it was felt through-

out Costa Rica and in western Panama. That seismic activity

was produced by activation of small faults of that area.

Pejibaye (P) is a seismic source activated in 1993

where the seismicity is located in a group of northwest

faults. The seismic sequence of that year had three impor-

tant events, an foreshock, the main event and an after-

shock. Those earthquakes suggest a fault oriented

northwest as most faults. The magnitude of the largest

earthquake of that sequence was 5.6Ms �Mw � 5:8� and

was felt throughout Costa Rica.

Another important seismic source in the Talamanca

Ridge is La Lucha. There is high seismicity northward

from that town. In 1991 a 4.7Ms magnitude occurred

whose epicenter was located in Corralillo fault as the after-

shocks. The main event damaged 30 houses in Cartago area.

6. Seismic hazard analysis

This analysis was done for the Metropolitan Area of the

Central Valley of Costa Rica and includes shallow subduc-

tion zones, shallow crustal sources and local fault systems.

Alvarado et al. [24] estimate that a 6.5 magnitude earth-

quake has a recurrence period of 34 ^ 10 years in this

zone. The b-value of 0.96 is one of the highest found in

this study, and may indicate that events with magnitudes

above 6.5 are unlikely to occur in this zone.

6.1. Seismic zonation

The delineation of the seismic area zones were based on a

simultaneous analysis and assessment of geology and seis-

micity, using the following guiding principles: (1) each zone

should be large enough to allow for a reasonable stable

assessment of the recurrence parameters; (2) the zones

cover an area where the earthquake activity has some in¯u-

ence on the seismic hazard of the region under investigation;

(3) the zonation does allow for variations in focal depth and

tectonic regimes; and (4) the zone de®nition should be

consistent with the geology of the region.

Seismicity source zones were de®ned at two depth

intervals: for shallow subduction zone sources with a

depth range from 40 to 200 km, and crustal sources in the

depth range down to 39 km. No sources with depths greater

than 200 km were modeled since very few observations at

greater depths exist, and since the hazard contribution from

greater depths are minor.

Eighteen seismic sources were analyzed and included in

the hazard computations for this study. They are divided

into three types: four shallow subduction zones, nine crustal

shallow seismic zones (Fig. 4, Table 3) and ®ve local fault

systems composed of 13 fault segments (Fig. 5 and Table 4).

6.2. Fault source modeling

In the estimation of seismic hazard (in the present case

using the NPRISK code), the seismic sources are either

represented as area sources or fault sources. Different

codes are used in the two cases to calculate hazard, even

though the two types of sources are similar in the sense that

both are described through speci®c recurrence models or

frequency±magnitude distributions, and thereby also speci-

®c moment release models.

6.2.1. Principles and practical approaches

Various strategies may be chosen for the assessment of

earthquake activities on faults, depending on the data avail-

able for characterizing the fault movements. There are in

principle two viable approaches: (i) in cases where slip rates

on faults are directly available procedures based on slip rate
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Table 2

Historic earthquakes of Talamanca ridge [44]

Number Name Year Magnitude Damage

9 Cartago Earthquake 1834 5.2 No damage reported

10 Cartago Earthquake 1841 5.8 It was the ®rst destruction of Cartago, 38 people died

11 Alajuelita Earthquake 1842 5.4 Damage in Alajuelita

12 Tablazo Earthquake 1910 5.2 Damage in San Jose

13 Cartago Earthquake 1910 6.4 Severe destruction of Cartago, 600 people died

14 Tres Rios Earthquake 1912 5.2 Damage in Tres RõÂos

15 Paraiso Earthquake 1951 5.2 Paraiso was greatly affected by this event



estimates can be used, preferably in combination with actual

activity observations; (ii) when slip rates are not available,

the earthquake activity on a fault normally has to be

assessed by assigning to the fault a certain part of the seis-

mic activity which is assessed for the region containing the

fault, again, if possible, in combination with actual activity

observations.

The following principles should be observed in both of

these cases: (1) the total seismic activity for a given region

predicted by the model should be considered and discussed

in details, including its distribution on speci®c structures,

not so much in terms of number of events as in terms of

moment (or equivalent, energy) release; (2) there may be

important geologic indicators for modeling an (expected)

activity level on a fault which is higher than what actually

is observed during a period of instrumentation or, for that

matter, during the available historical time-period.

When modeling fault activity from slip rates a basic start-

ing point is, as already stated, that the seismicity which is

assigned to one individual fault is, as for the area sources,

assumed to follow the cumulative Gutenberg±Richter

relationship:

log N � a 2 bM �1�
where N is the cumulative number of earthquakes above

magnitude M, and a, b are constants. This distribution is

limited at the upper end by the maximum magnitude Mmax

where a sharp cutoff is often assumed, and at the lower end

by a limiting or reference magnitude which is the starting

point for the seismic hazard integration, essentially deter-

mined from engineering considerations. Formally, the

cumulative occurrence relationship in this case can be

expressed as [25]:

N1�M� � 10a�12bM�H�Mmax 2 M� �2�
where H(´) is the Heavyside step function. This is the

Anderson and Luco [26] occurrence relation 1, and it is

also the one used in the present study.

Normally, b-values for area sources are around 1.0,

re¯ecting a ratio of 10 decrease in the number of events

per magnitude unit. The b-value assigned to recurrence for

faults is often (but not necessarily) lower, however,

re¯ecting the narrower probability density function for

magnitudes relating to just one particular fault.

Physically, the reason for the lower values is tied to the

concept of ªcharacteristic earthquakesº, which is supported

theoretically as well as by observational data [27,28]. This

concept involves the assumption that most of the energy
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Table 3

Seismic activity parameters for the de®ned area zonation. No., zone number (Fig. 4); N(4.5Mw), yearly recurrence of magnitude 4.2Mw; b-value, seismicity

parameter that describes the relation between the number of small and larger earthquakes; a-value, activity rate parameter; Max. Mag., Maximum magnitude;

Sd, Source depth. From zone 5, 56% of the activity has been subtracted, and as detailed below incorporated in the active fault model. Likewise, from zone 7,

12% was subtracted, and from zone 10, 49% was subtracted

No. Zone name N(4.5Mw) b-value a-value Max. Mag. (Mw) Sd (km)

1 Nicoya Peninsula (subduction) 2.7542 0.88 4.40 7.7 0±40

2 Nicoya Gulf (Subduction) 1.4125 0.74 3.48 7.1 0±40

3 Quepos-Sierpe (Subduction) 2.4266 0.93 4.57 7.0 0±40

4 Osa-Gol®to (Subduction) 2.5409 0.71 3.60 7.3 0±40

5 North of Central Valley 0.1241 0.96 3.77 6.5 2±15

6 Tarcoles-Barranca 0.2065 0.61 2.06 7.0 2±15

7 Puriscal-Virilla 0.4953 0.78 3.26 6.1 2±15

8 Candelaria 0.1798 0.85 3.08 7.0 2±15

9 Jaris-Corralillo 0.2065 0.83 3.05 6.8 2±15

10 EscazuÂ-Guarco 0.0865 0.83 3.31 6.5 1±15

11 Turrialba-Atirro 0.1758 0.63 2.08 6.5 2±15

12 Perez Zeledon 1.2735 0.83 3.80 6.2 4±15

13 Limon-Changuinola 1.9054 0.74 3.61 7.7 5±25

Fig. 4. Shallow area sources used in the hazard computational model.



released (or slip) on a fault is accounted for through earth-

quakes with a larger value regionally (in modeling area

sources) where the contribution from a variety of faults,

large and small, is considered.

The estimation of activity rates (N-values) involves also

the seismic moment, M0, the rigidity modulus, m , the displa-

cement per length of rupture area, a , and the rupture area,

A � LW ; where L is the fault length and W the fault width.

The seismic moment for a particular earthquake is

physically de®ned as

M0 � mDA �3�
where D is the total average displacement (slip) across the

fault.

Assuming conservatively that all of the fault slip occurs

seismically, the total moment release rate (such as moment

per year) M0
T is related to the slip rate (fault movement per

year) of the fault as follows [26,29]:

MT
0 � mSA �4�

where m is the rock shear modulus and S is the annual slip

(slip rate). It has been suggested that M0 must be averaged

over several cycles of large earthquakes for this relation to

be valid [30].

Based on Eqs. (1) and (3), Anderson and Luco [26]

deduced the following relationship for the determination

of the number of earthquakes N above the threshold

magnitude (normally around magnitude 4±5) on a fault:

N �
�d 2 �b
�d

 !
S

b

� �
e
�b�Mmax2M� e� �d=2�Mmax

where �d � d�ln�10��; �b � b�ln�10��; b � ��������������������aM0�0��=�mW�p
and M0(0) is the seismic moment for Ms � 0: The parameter

d is the magnitude scaling coef®cient in the relation between

moment and magnitude of the form log M0 � c 2 dM:

A computer (utility) program ªmom_slipº has been

developed at NORSAR (Hilmar Bungum, personal

commun.) which offers this occurrence model together

with four other models [31], where the difference is mostly

on how the recurrence model tapers off towards the maxi-

mum magnitude. The parameterization used in this program

is as follows: model to use (one of ®ve available), slip rate in

mm/yr, fault length range (min/max/increment) in km, b-

value in log N � a 2 bM; magnitude for N-value calcula-

tion, magnitude type (Mw, Ms or user-de®ned), moment±

magnitude relation: log M0 � c 1 dM; fault area±maxi-

mum magnitude relation: log Af � a 1 bMmax; slip/fault

length (aspect) ratio, fault length/width factor (a ) and

shear modulus (m ).

It should be noted here that when a magnitude scale other

than Mw is used, relations to Mw are established either

through a user-de®ned moment±magnitude relation

combined with the Hanks and Kanamori [32] M0±Mw rela-

tion, or through a standard (global) Mw±Ms relation when Ms

is used [33].

When slip-rate estimates are not available the seismic

activity on faults is normally estimated on the basis of the

area source seismicity in the region, as deduced from the

historical and the recent seismicity. This can conveniently

be done for example by assigning a certain percentage of the

seismicity to the faults, keeping the remaining for the area

source(s) containing the faults. This percentage can be
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Fig. 5. Active and better known faults in Central Valley, Costa Rica. F1±F13 fault segments were modeled in the hazard analysis.

Table 4

Characteristics of the ®ve main fault systems analyzed in this study

Name Type Dip Segments

(Fig. 4)

Length

(km)

Lara Strike-slip 80±85 4 (F1, F2, F3, F4) 27

Higuito-Belen Oblique 80 3 (F5, F6, F7) 30

Aguacaliente Oblique 75±80 3 (F8, F9, F10) 37

Alajuela Reverse 35 2 (F11, F12) 28

Virilla Strike-slip 90 1 (F13) 8



applied directly to the N-values if the b-values are the same

for area and fault sources, but if the b-values are different

the percentage has to be applied to the moment release,

inferring a- or N-values indirectly.

This can be done using another utility program

(ªmom_rateº) also developed at NORSAR, with a parame-

terization as follows: reference magnitude for N, area zone

N, b, and Mmax, fault zone M0-fraction and Mmax, moment±

magnitude relation: log M0 � c 1 dM; fault length in km

and fault length/width factor, a-value iteration steps and

moment ratio convergence limit, max no. of iterations and

level (2, 1 or 0) of output details.

In cases when the b-values and/or the maximum magni-

tudes are different it becomes particularly important to use

an approach of the present kind. The ruling principle in all

of this is, in fact, that it is the seismic moment budget which

is the main scaling parameter, facilitated by the availability

of appropriate moment±magnitude relationships.

6.2.2. Parameterization

For the present fault analysis and its integration in the

NPRISK analysis, the basic and necessary data are

presented in Table 5. In the basic approach available empiri-

cal data (both on moment release and slip) has been used in

constraining the numerical models. The ªmom_slipº

program allows different b-values for areas sources and

faults, so we have chosen to use the area source values (as

estimated from the earthquake catalog) for the faults.

Slip rates are also tested through a combination of struc-

tural geological indicators and speci®c displacement obser-

vations for individual events to be about 5 mm/yr (Montero,

personal commun.). The slip/fault length value has been set

to 4:5 £ 1025
; obtained from observed earthquake slip and

fault lengths in the region.

According to the models proposed by Anderson and

Luco [26], their model number 1 was found to be the

most appropriate for the faults considered in this study.

That model yields the most consistent N-values for an

expected recurrence about every 400 years of an Mw

6.0±6.5 earthquake, and more than 500 years for up to Mw

7.0.

6.2.3. Fault moment (energy) contributions

The results of such an analysis of fault activities for the

present situation are shown in Table 6. The analysis is done

for North of Central Valley, where the North of Central

Valley seismic zone contains the Alajuela and the Lara

fault system, and for the South of Central Valley, where

the Virilla, Higuito-Belen and Aguacaliente faults are.

As seen, we found differences in the moment release

generated from individual earthquake sources (seismic

zones and faults) and the moment generated by the region

considered as a whole.

We found that the active faults included in the model

contribute with about half of the shallow crustal energy

for the studied region. The other half would be coming

from sources not yet classi®ed in terms of active faults.

For computational purposes for the seismic hazard

estimation, we need to subtract the energy contribution

from the faults from the total energy released from seismic

zones containing these faults. This subtraction is done

because if it is not done, the seismic hazard could be

overestimated.

We have found here that the moment release ascribed to

the faults therefore contributes with about 50% of the

expected total moment release within the Central Valley

region. If we consider a fault segment of about 9 km length

this would correspond to a maximum earthquake of about

Mw 6.0 (the Mw 6.0 Virilla fault rupture on 22/12/90 had a

fault length of 8 km). We ®nd by summing all active faults
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Table 5

Main parameters for the faults modeled in the hazard analysis. F.Syst.� fault system; F.Seg� fault segment; HD� horizontal distance of surface fault

projection in km; N(4.2)� yearly recurrence of Mw 4.2; b� index of seismicity; FL� fault length in km; FD� fault depth; F.Dip� fault dip in degrees, Max.

Mw�maximum moment magnitude; Sr� slip rate in mm/year, m � shear module in g/cm s2; Rec� earthquake recurrence in years for Mw 6.0 and 6.5

F.Syst. F.Seg HD (km) N (4.2) b FL (km) FD (km) F.Dip Max Mw Sr (mm/yr) m Rec. 6.0±6.5 (yr)

Lara 1 A Lara 2.6 0.0854 0.83 18 15 808SW 6.3 4.0 0.197 £ 1012 371±950

2 B Rancho 1.3 0.0782 0.83 08 15 858NW 5.8 4.0 0.197 £ 1012

3 C Dorita 1.3 0.0854 0.83 09 15 858SW 6.0 4.0 0.197 £ 1012

4 D Laguna 1.3 0.0854 0.83 09 15 858SW 6.0 4.0 0.197 £ 1012

Higuito-Belen 5 A Escazu 2.63 0.1023 0.83 10 15 808NE 5.8 4.0 0.283 £ 1012 310

6 B Alajuelita 00 0.1023 0.83 09 12 Vertical 5.8 4.0 0.283 £ 1012

7 C Aserri 2.6 0.1023 0.83 11 15 808NE 5.8 4.0 0.283 £ 1012

Aguacaliente 8 A Tablazo 2.11 0.1023 0.83 08 12 808NE 5.5 4.0 0.283 £ 1012 260±683

9 B Coris 2.6 0.1186 0.83 12 15 808NE 6.2 4.0 0.283 £ 1012

10 C Paraiso 4.02 0.1186 0.83 18 15 758NE 6.3 4.0 0.283 £ 1012

Alajuela 11 A Grecia 14.0 0.1186 0.83 11 12 358N 6.0 4.0 0.197 £ 1012 260±683

12 B Itiquis 12.8 0.1186 0.83 17 12 408N 6.2 4.0 0.197 £ 1012

Virilla 13 A Virilla 1.76 0.0775 0.73 08 10 Vertical 6.0 4.0 0.283 £ 1012 330



contributions from Table 5 that a total length of 160 km

would be needed, divided into 17 fault segments each of

9 km length. Taken together, this would correspond to a

return (recurrence) time of about 90 years for Mw 6.0.

However, since a similar amount of energy release is

modeled to come from faults not yet speci®cally identi®ed,

we ®nd that this will reduce the recurrence time to about 40

years for Mw 6.0, in close correspondence with the historical

records.

7. Seismic hazard assessment for a selected zone

Seismic hazard was computed in terms of PGA for the

Central Valley Area. The results are presented below in

terms of smoothed PGA maps for the Central Valley

microzonation area. The PGA contour maps for annual

exceedance probabilities 2 £ 1022
; 1022 and 2 £ 1023 are

presented in Figs. 6±8, respectively.

For all of three annual probabilities, the results show a

southwest variation in the area studied. In the case of 1022,

the PGA increases from around 3.2 m/s2 in the northern part

to about 3.75 m/s2 in the southern part. The phenomena

responsible for the higher PGA values in southern San

Jose are the high activity rates on the seismic zones in the

area, together with the active faults modeled.

In addition to the zonation in a grid, PGA has also been

computed for the Central Park in San Jose city. The

results are for bedrock conditions and annual exceedance

probabilities corresponding to return periods of 10, 25,

50, 100 and 500 years (Table 7). Therefore the value

for a 100 years return period is 30% higher than
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Table 6

Moment release of the seismic sources. For the area zones the moment release was obtained from the seismicity catalogs, whereas the moment release for faults

was modeled with basis in observed fault dimensions and slip rates. ZMR� zone moment release in dyn/cm2; CV� Central Valley; ZE� percentage of zone

energy contribution; F. Syst� fault system name; F.Mo.R� fault moment release in dyn/cm2; FE� percentage of fault energy contribution relative to area

energy contribution (%); FET� percentage of fault energy contribution for the region (%)

Seismic zone ZMR (dyn/cm2) ZE (%) F. Syst. F.Mo.R (dyn/cm2) FE (%) FET (%)

North of CV 0.190 £ 1024 22 Alajuela 0.442 £ 1023 6 56

Lara 0.625 £ 1023 8

South of C.V. 0.335 £ 1024 37 Virilla 0.362 £ 1023 5 11

Higuito-Belen 0.356 £ 1024 41 Higuito-Belen 0.987 £ 1023 12 77

Aguacaliente Aguacaliente 0.770 £ 1023 20

Total 0.880 £ 1024 100 Total 0.418 £ 1024 51

Fig. 6. Expected PGA (m/s2) for the Central Valley microzonation area. Isolines represent PGA at the annual exceedance probability of 2 £ 1022
:



previously obtained at bedrock level for San Jose city by

Laporte et al [14]. The main reason for that increment is;

the usage of new attenuation relation of Schmidt et al.

[34], more local seismicity data up to 2.3ML, the local

seismotectonic model and the inclusion and use of active

faults in the model.

Since all the input model parameters were provided with

a central value and lower and higher extreme values with
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Fig. 7. Expected PGA (m/s2) for the Central Valley microzonation area. Isolines represent equal PGA values at the annual exceedance probability of 1022.

Fig. 8. Expected PGA (m/s2) for the Central Valley microzonation area. Isolines represent equal PGA values at the annual exceedance probability of 2 £ 1023
:



assigned probabilities (logic tree), the con®dence limits

could be computed along with the expected values. The

parameter ranges are given below.

b-value; center value ^ 0.15; with weights of 0.3, 0.4 and

0.3

N-value; divided and multiplied with 2.0; with weights of

0.3, 0.4 and 0.3

Max. magnitude; center value 20.3/10.2; with weights

of 0.25, 0.5 and 0.25

Depths; center value 20.3/10.2; with weights of 0.3, 0.4

and 0.3.

Fig. 9 shows the hazard curve for PGA in cm/s2 with 16

and 84% fractiles (corresponding to ^1s ).

7.1. Sensitivity of the seismic hazard input parameters

The sensitivity of the results to selected parameters in the

computational model was tested for the Cartago city site.

The test was done for the Cartago city site with hazard

contributions only from the seismicity zone in which

Cartago is located and only from one fault (the nearest

Aguacaliente fault). The testing consisted of computing

the hazard based on the correct parameter values, and then

introducing variation in one parameter to observe the

change in the PGA results. For example, the results when

the N-values were reduced by 50% were compared with

results from full N-values etc. Table 8 summarizes this

sensitivity.

This indicated that the right parameters (N, b, focal depth,

Mmax and Mmin) are crucial because a wrong parameters

estimate may signi®cantly change the result. It should be

noted that another parameter of vital importance is the s
value (scatter value) in the attenuation relation. For

ln(PGA), values between 0.5 and 0.7 have been used here,

in accordance to Schmidt et al. [34].

7.2. Ground motion response spectra

Equal hazard ground motion response spectra were devel-

oped at 5% damping for San Jose for annual exceedance

probabilities of 1022, 2 £ 10 22 and 2 £ 1023
: The approach

for developing pseudo-relative velocity (PSV) response

spectra was to compute PSV spectral ordinates for the

frequencies of 0.25, 0.50, 1.0, 2.0, 5.0, 10.0 Hz, and for

peak ground acceleration (PGA) de®ned at 40 Hz. The

resulting absolute PSV values for annual exceedance prob-

ability of 1022, 2 £ 1022 and 2 £ 1023 at 5% damping are

shown in Table 9 and the spectrum is shown in Fig. 10.

For hard- and soft-soil site conditions the absolute

spectra as well as PGA may be obtained by multiplying

the rock site spectral ordinates with appropriate ampli®-

cation factors. These factors may vary signi®cantly over

the Central Valley region, and are investigated in a study

parallel to the present one.

In the study by Laporte et al. [14], the equal hazard spec-

trum for a San Jose soil site for return periods of 50, 100,

500 and 1000 years was done. All of the spectra of Laporte

et al. [14] peak around 1 Hz, in contrast to the present results

that peak around 2 Hz. Again, the main reason for this

difference is that while Laporte et al. [14] have used an

attenuation relation estimated for all Central America

[35], in this study we have used an attenuation relation

estimated for Costa Rica alone [34]. In addition to that,

we are using an updated version of the catalog used by
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Table 7

PGA (m/s2) results for Central Park of San Jose City

Return period

(yr)

Bed rock maximum

acceleration (m/s2)

10 1.779

25 2.387

50 2.894

100 3.508

500 5.184

Fig. 9. PGA hazard curve (expected ^ 1s) for San Jose. Values are

calculated for hard rock sites.

Table 8

Sensitivity of results to selected input parameters in the model

Parameter Variation PGA (m/s2) Contribution (%)

Target PGA None 2.97

N N±N/2 2.19 26

b b±0.20b 3.11 5

Depth h 1 h/2 2.41 17

Minimum Mag Mmin 1 0.3 3.41 14

Maximum Mag Mmax 2 0.3 2.4 12



Laporte et al. [14] which comprises small earthquakes (2.3

and above) and a new seismotectonic model that includes

active faults.

Normalized ground motion response spectra at 5% damp-

ing were developed from the average San Jose spectrum.

These normalized spectra are evaluated to be representative

for hard rock sites in the Central Valley region and are listed

in Table 10 and shown in Fig. 11.

8. Conclusions

In the Central Part of Costa Rica the faulting has two

predominant orientations: northwest and northeast. Large

earthquakes in the country reactive this faulting generating

seismic sequences and swarms. Historic and recent

seismicity indicate that the faulting located in the borders

of the Central Valley is active and can generate seismic

events of 5±6 magnitude. Those seismic sources represent

a great hazard for the cities of the Central Valley.

The soils in the San Jose Metropolitan area will be

assessed in tasks parallel to this study, and preliminary

results from these studies indicate that most of San Jose

appears to be underlain by stiff silts and clays and therefore

could amplify the ground motion. In the present study,

however, the seismic hazard is estimated at bedrock level,

with PGA values from 3.2 to 3.75 m/s2 at exceedance prob-

ability 1022/year. Those values are 30% higher than
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Table 9

Absolute PSV spectral ordinates (m/s), for bedrock condition, at annual

exceedance probabilities 2 £ 1022
; 1022 and 2 £ 1023 for the city of San

Jose at 5% damping

Frequency (Hz) Annual exceedance probability

2 £ 1022 1022 2 £ 1023

0.25 0.092750 0.113430 0.174140

0.50 0.162380 0.196909 0.306541

1.00 0.182501 0.223179 0.344351

2.00 0.225211 0.277749 0.416101

5.00 0.164340 0.195739 0.293761

10.0 0.077440 0.092030 0.137360

40.0 0.011522 0.013964 0.020636

Table 10

Normalized PSV spectral ordinates (m/s), for bedrock condition, at annual

exceedance probabilities 2 £ 1022
; 1022 and 2 £ 1023 for the city of San

Jose at 5% damping

Frequency (Hz) Annual exceedance probability

2 £ 1022 1022 2 £ 1023

0.25 0.314250 0.317110 0.329437

0.50 0.550167 0.550490 0.579910

1.00 0.618336 0.623932 0.651439

2.00 0.763044 0.776490 0.787175

5.00 0.556808 0.547219 0.555733

10.0 0.262378 0.257283 0.259857

40.0 0.039039 0.039039 0.039039

Fig. 10. Absolute uniform hazard spectrum for the city of San Jose for

annual probabilities of 2 £ 1022
; 1022 and 2 £ 1023 for the Central Valley

region at 5% damping.

Fig. 11. Normalized uniform hazard spectrum for the city of San Jose for

annual probabilities of 2 £ 1022
; 1022 and 2 £ 1023 for the Central Valley

region at 5% damping.



previously obtained by Laporte et al. [14], due essentially

to: (1) new attenuation relations; (2) more local seismicity

data; and (3) the inclusion and use of active faults in the new

seismotectonic model.

The highest values for the expected hazard (PGA) were

obtained for the southern parts of San Jose and are in good

agreement with the main seismic source contribution and

the presence of shallow crustal active faults. Also, that

region is topographically most varied and therefore more

susceptible to landslides.

Equal hazard response spectra were computed for the

central part of San Jose, for frequencies between 0.25 and

40 Hz, and indicate a peak at around 2 Hz. The computed,

normalized spectra are evaluated as being representative for

the metropolitan area of the Central Valley at bedrock level.

The maximum velocity at 2 Hz for 2 £ 1023 annual excee-

dance probability was found to be 0.28 m/s for the 1022

probability level.

A sensitivity analysis has demonstrated the relative

importance of seismic parameter quality, as N, b, focal

depth, Mmax and Mmin.

In developing the source models in the study we have

studied in detail the moment release from each of the seis-

mic sources and totally for the region. The total moment

release for the region is 0.88 £ 1024 dyn/cm2 and

0.418 £ 1024 dyn/cm2 is generated by active faults.

However, a similar amount of energy release comes from

faults not yet identi®ed. From the total moment release a

return period of about 40 years for a magnitude 6.0 earth-

quake has been obtained for the studied area. This agrees

quite well with the historical records indicating a 35 ^ 6.0

year return period for magnitude 6.0.
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