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Smiling in the rain: Seven reasons to be positive about
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This commentary is dedicated to the memory of Lars-Christer Lundin
(1956-2012), Professor of Hydrology at Uppsala University, who was an
inspiration in being positive as a researcher and in seeing opportunities
rather than difficulties in the analysis and management of catchments.

Introduction

Over 20 years ago, the notion of ‘positive uncertainty’ was introduced in the
field of psychology (Gelatt, 1989). This was coincident to some developments
in the hydrological sciences (e.g. Beven and Binley, 1992; Grayson et al., 1992)
which laid the foundation for today’s continued efforts to explicitly
acknowledge and quantify uncertainties inherent in our modelling efforts.
‘Positive uncertainty’ urges moving beyond deterministic frameworks of the
past, but doing so not just by regrettably accepting that uncertainties are
inevitable, but by positively thriving in the new perspectives that accompany
this recognition (Gelatt, 1989). During a recent small workshop in Sweden —
while the rain was pouring down — we discussed some of the positive
developments in recent years that have resulted directly from explicit
recognitions of uncertainty in hydrological modelling. With the earlier paper
of Pappenberger and Beven (2006) in mind, we here summarise that
workshop and elaborate seven reasons to be positive about uncertainty in
hydrological modelling.

How have the hydrological sciences benefitted in the last 20 years from
the increased recognition of uncertainties, particularly in the modelling of
time series data? In our view, uncertainty estimation is a means to address
hydrologic research questions in an honest and robust way. There have
also been (and will continue to be) new research questions and
opportunities initiated by the recognition of what needs to be done to
quantify and then constrain uncertainties. This notion fits intrinsically with
the view of modelling as a learning process (Box, 1976), learning about the
nature of the uncertainties involved and the possibility of reducing them by
improving our models or our data.

Seven Reasons to be Positive About Uncertainty
Estimation
© We learn about data

Recent advances in quantifying uncertainties in modelling hydrological
time series have led to a renewed scrutiny of the characteristics of the
source data used for model input and calibration. Hydrology is a subject
that, despite its importance to human well-being, suffers from significant
measurement limitations (Klemes, 1986; Beven, 2002; Sivapalan et al.,
2003; Kirchner, 2006). Field and remotely sensed data are subject to
random and systematic errors whose characteristics may vary over time,
and the spatial and temporal commensurability (i.e. representativeness) of
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observations with modelled fluxes and storages is often an
issue. Even the most basic of hydrological variables, such
as rainfall and discharge, can be subject to significant
uncertainties and inconsistencies (Viney and Bates, 2004;
Stephens and Kummerow, 2007; Westerberg et al., 2010;
Hamilton and Moore, 2012; McMillan et al., 2012).

These uncertainties impact our possibilities to derive
inferences about hydrological processes and model
representations (e.g. Brath et al., 2004; Krueger et al.,
2010; Beven et al., 2011). The information content of a
hydrological dataset for model calibration depends on
when, how, and where these data were observed. For
example, a number of recent modelling studies have
shown that periodically sampled subsets of daily time
series data can contain much of the information needed to
calibrate a model (Vrugt et al., 2002; Juston ef al., 2009;
Seibert and Beven, 2009; Konz and Seibert, 2010). This
means that the reliability of model predictions in
ungauged areas can be significantly increased by taking
a few new measurements, but further research is needed
to provide guidance on how such measurements should be
made to optimise the information gain. In some cases,
additional data might not contribute to the improvement
of model performance, as in the study by Lerat et al.
(2012) when they tested adding flow data from nested
subcatchments in the calibration of a rainfall-runoff
model. Observational uncertainties can lead to
combinations of model input and output data that
are physically inconsistent or ‘disinformative’, and
lead to incorrect inference (Beven and Westerberg,
2011). On the other hand, apparent outliers in the
model residuals during periods of consistent and
informative data might be the most revealing in
testing model-structural hypotheses. This suggests
that we should be both positive and proactive about
finding ways of evaluating the information content of
calibration data independent of any particular model
structure (e.g. Beven et al., 2011).

McMillan ef al. (2012) recently initiated a charac-
terisation and catalogue of observational uncertain-
ties, employing information from dozens of previous
studies of precipitation, discharge, and water quality
data. There are also mow a growing number of
examples where estimation of uncertainty in the
model evaluation data is considered directly in model
calibration (e.g. Thyer et al., 2009; McMillan et al.,
2010; Westerberg et al., 2011). The increased
attention given to uncertainties in the observational
data and their role in hydrological inference, as
manifested in the recent literature, is a positive
development. It exemplifies Gelatt’s concept of
‘positive uncertainty’ — recognising the inherent
limitations and uncertainties in data make their use
in hydrological modelling more complex, but it
increases our possibilities to draw robust conclusions
about present and future hydrological behaviour.

Copyright © 2012 John Wiley & Sons, Ltd.

© We learn about models

We often use models as hypotheses about catchment
responses to be tested. While we obviously want to be right
for the right reasons, we also want to avoid being wrong
for the wrong reasons. Paradoxically, a model that fails to
represent our data may give the most positive outcome for
our learning. In analysing the error signal and the
behaviour of the model residuals, we can learn about the
model-structural representation of the hydrological
processes (Reusser and Zehe, 2011), but also about the
effect of observational uncertainties on the inference
(Krueger et al., 2010; Westerberg et al., 2011). We learn
less from models that do not fail, only that they are still
feasible hypotheses and can be used with some degree of
confidence in prediction. Models that are successful in
continuing evaluations will increase that confidence
(though not necessarily multiplicatively when a new
evaluation does not test a wider range of predictions than
already evaluated, see Chatfield, 1995; Beven ef al., 2008).
In the case of models that fail, however, we will need to
look for improvements to either the model concepts or the
data (e.g. Fenicia et al., 2008). Then we may be able to
improve the science.

The choice of the evaluation criteria against which we
compare the simulated and observed catchment
response is central for how much we can learn. A
positive development in this area is the recent emphasis
on accounting for uncertainties in evaluating how well
models can match relevant information about the
catchment response behaviour, extracted from the data
(Yadav et al., 2007; Blazkova and Beven, 2009;
Bulygina et al., 2009), but also from ‘soft information’
(Seibert and McDonnell, 2002; Winsemius et al., 2009).
Focusing on the functional behaviour of catchments
might also improve our opportunities to constrain
predictive uncertainty in ungauged basins and for
future changes in climate (Singh et al., 2011; Wagener
and Montanari, 2011).

© We produce more reliable and robust predictions
Obviously, the modeller is more likely to be right if
prediction bounds that specify the modelled uncertainty
are provided rather than single values. While very wide
prediction bounds might imply that a prediction is not
very helpful to the decision maker, the important
advantage of bounds is that the prediction uncertainty
is openly communicated (even if there may still be issues
about communicating the assumptions on which the
analysis is based, see Beven, 2012). Considering a large
number of possible parameter sets also makes results
more robust to epistemic error. When considering only
one ‘best’ parameter set, results might be over-
constrained by the choice of this single parameter set,
even if the predictions include estimation of uncer-
tainty. This is because the choice of a ‘best’ model will
depend on the particular realisation of epistemic error
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in the calibration data set. Such effects can be mitigated
when results are based on a large number of parameter
sets that will be more likely to give good results in
prediction when the realisation of epistemic error might
be different. Seibert and McDonnell (2010), for
instance, used a model approach to detect land-cover
effects on peak flows. They found that results could
vary greatly between different parameter sets, indicat-
ing both the existence and lack of detectable changes,
and robust results could only be achieved by the
consideration of many parameter sets.

© We learn about the value of additional data

Only if prediction uncertainties are quantified is it
possible to consider the feasibility of reducing those
uncertainties by using better (more informative) data,
different types of data, or different model structures as
part of the learning process. While again stressing the
importance of a prior evaluation of the information
content of data independent of any particular model
structure, different types of data may be valuable in
constraining the range of predictive models and conse-
quent uncertainty bounds. Several studies have used
uncertainty analysis to demonstrate the value of add-
itional data such as groundwater levels (e.g. Seibert, 2000;
Fenicia et al., 2008; Juston et al., 2009) and conservative
tracers (e.g. Birkel et al., 2010) to constrain model
simulations by providing information on internal state
variables. Brunner et al. (2012) discuss the value of
different types of observational data for the reduction of
the predictive uncertainty of a 1-D vadose zone model.
Other studies have suggested how a small amount of data
of a different type was more useful to constrain
uncertainties than a continuation of time series data of
the same type (e.g. Juston et al., 2010). Studies such as
these suggest positive ways that modelling with uncer-
tainty analysis can feedback towards more efficient and
focused data collection activities in the field.

© We can engender trust by recognising and communicating
uncertainties
Itis a common view amongst scientists that the public and
policy makers need, and want, certain (deterministic)
predictions (e.g. Frewer et al., 2003). However, commu-
nicating uncertainties and limitations of scientific know-
ledge can have a significant importance in gaining and
retaining the trust of the public and decision makers.
Failing to openly admit the limitations of knowledge can
cause severe distrust in both science and regulatory
institutions as, for example, in the case of the BSE crisis
(e.g. Jacob and Hellstrom, 2000). Hence, scientists have
much to gain from better risk communication. As
Wardekker ef al. (2008) say concerning communication
of uncertainties: ‘it is a matter of good scientific practice,
accountability and openness towards the general public’.

Copyright © 2012 John Wiley & Sons, Ltd.

The recognition of the need for communication of
uncertainties is not just a top-down process. The Luteijn
Commission, which was designated to evaluate the
calamity polders (i.e., emergency flood storage areas)
proposed as a spatial flood protection measure in the
Netherlands, to involve the local stakeholders and to
openly discuss uncertainties and assumptions, failed at
accomplishing these tasks. This failure led to massive
protests in Ooijpolder (one of the areas suggested for
controlled flooding). The protesters, through the use of
counter-experts, could successfully show that the know-
ledge base for the calamity polders was not sound and the
plans were abandoned (Roth and Warner, 2007).

If it is important to be realistic about prediction
uncertainties in decision making, an interesting issue arises
when the uncertainties cover a very wide range of potential
outcomes, as in the case of the groundwater pollution
vulnerability study for the County of Copenhagen reported
by Refsgaard et al. (2006) or the study of water-resources
planning by Hughes et al. (2008). Estimates can still be
considered in terms of some relative likelihood, but there
may be little confidence in deciding between outcomes. One
response to such a situation is to invest in trying to reduce
the uncertainties. Another is to take an alternative
approach to simple risk-based decision making, as has
been advocated for the case of climate change impacts by
Wilby and Dessai (2010) and Beven (2011), unless
uncertainties can be reduced. Hence, acknowledgement
of uncertainties opens up further research opportunities
and, hopefully, stimulates development of novel methods to
constrain them.

© We deepen academic understanding

In this comment, we stress uncertainty estimation as
part of a learning process, but does it have any bearing
on the education of students? Understanding risk and
uncertainty is of course important for the students to
correctly interpret scientific results, but it can also have
a positive effect on the deeper understanding of both
hydrological processes and models used for predictions.
High school students have been shown to appreciate
that there can be multiple mathematical representations
of a scientific phenomenon and that these can change
when new knowledge becomes available (Treagust
et al., 2002). Even so, from our own teaching
experiences, we have found that students can take
many views on hydrological models, from blind belief in
the model outcome to full scepticism towards the
outcome since ‘it’s just a model’. One hypothesis is
that the more complex the models become, the more
belief many students tend to put in the outcome, no
matter the suitability of the model to its intended
purpose. A lack of understanding of the limitations
and capabilities of models can result in a naive belief
in model outputs as facts (deterministic outcomes).
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However, by clearly showing students the uncertainties
involved in the modelling process, the teacher can aid
the process of getting a balanced picture of models as
hypotheses. In this way, overconfidence in model
results, and if proven wrong, subsequent disappoint-
ment and perhaps distrust of models as a tool, can be
avoided. One initiative in this direction is the educa-
tional model developed by AghaKouchak et al. (2012),
which through a graphical interface enables ensemble
streamflow simulations and sensitivity analysis to
introduce students to the concepts of uncertainty and
predictive power.

Hydrologists are working in a field which is becoming
increasingly interdisciplinary and therefore requires
better communication with non-hydrologists (Wagener
et al., 2012). Students with proper training in uncer-
tainty analysis will have a toolkit to scrutinise modelling
efforts and thereby contribute to decision-making
processes with substantiated claims of knowledge or
lack thereof. They will be well prepared for situations
where decision making will be based on assessments of
risk of potential outcomes rather than traditional norm-
based probability assessments. Proper training of the
new generation of hydrologists in uncertainty assess-
ments and communication of risk will be an important
part of their working skills and will most definitely have
positive effects on their future careers.

© Uncertainty estimation is getting easier
Increases in computational power, parallel processes,
and software mean that a wider range of models than
ever before can be applied within an uncertainty
estimation framework. There are still models (such as
gridded, multiple layer, global earth systems science
models) where run times are still too slow, but even
such models are now being run on an ensemble basis
for regional predictions (e.g. UKCP09) and even, for
coarser grid scales at global scale (www.climatepredic-
tion.net). There is still scope for improved software in
terms of both implementing different models and
searching the model space for acceptable or high
likelihood simulations more efficiently, but we can
expect that more and more models will be subjected to
uncertainty analyses. There are also improved and new
observational techniques that provide better data to run
and evaluate models, such as acoustic Doppler
measurements of stream discharges, X-band estimation
of rainfall, eddy correlation estimates of evapotrans-
piration, and remote sensing imaging for different
hydrologically relevant variables.

Scientists have much to gain from openly communi-
cating current knowledge, modelling results, and the
uncertainties involved. Pappenberger ef al. (2012), aware
of this importance, have recently conducted a study
aiming at improving the communication of probabilistic
flood forecasts and their associated uncertainty. The

Copyright © 2012 John Wiley & Sons, Ltd.

environmental virtual observatory (http://194.66.252.157/
evo/), founded by the UK National Environmental
Research Council, is another initiative in this direction,
making environmental data and modelling available for
the global community at all levels. Although the project is
still in an early phase, stakeholders and local communities
are already involved in evaluation of tools developed for
accessing catchment information, and the project has the
potential of becoming a novel web service for sharing and
investigating environmental data.

The Future is Bright

‘Does it seem paradoxical to be positive (comfortable
and confident) in the face of uncertainty (ambiguity and
doubt)? Yes. But that is exactly what a [hydrologist]’
will need in order to be a successful decision maker in
the future.” (Gelatt, 1989)

The future is, we believe, bright for the incorporation
of uncertainty estimation in hydrological modelling.
More and more agencies are becoming aware that it is
important to be open and transparent about decision
making, and this will often involve being open,
transparent, and honest about the uncertainties
involved. An implicit advantage is that the analyst is
then less likely to be wrong. We emphasise that
uncertainty estimation should not be the end point of
a project but should rather be part of a learning process
about how to represent the hydrology in a particular
place, including the cost-effective collection of addition-
al information that will help constrain both epistemic
and aleatory uncertainties. It should be expected that
there will continue to be multiple hypotheses about how
uncertainty estimation should be done. However, it is
clear that uncertainty assessments can have important
consequences for decision making, which in itself is
sufficient reason to be positive about the process.
However, here, we have elaborated seven additional
reasons to be positive about uncertainty estimation
in hydrological science and education — even on a
rainy day.
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