L^{3} : THE GEOMETRY OF PSEUDOQUATERNIONS

Graciela Silvia Birman*

3 de junio de 2004

Received: February 10, 1998

Abstract

We introduce pseudoquaternions as an effective tool to describe the vector analysis in L^{3}, and we use them to characterize null curves and null cubics in S_{1}^{2}.

Keywords: pseudoquaternions, vector analysis, null curves.

Resumen

Introducimos los pseudocuaterniones como una herramienta efectiva para describir el anlisis vectorial de L^{3}, y los usamos para caracterizar curvas nulas y cbicas nulas en S_{1}^{2}.

Palabras-clave: pseudocuaterniones, anlisis vectorial, curvas nulas.
AMS Subject Classification: 14H99

1. Introduction

Let L^{3} be the 3 -dimensional Lorentzian space with inner product of signature,,-++ , which will be denoted by dot.

In this paper we show that pseudoquaternions are an useful and natural tool to study the elementary geometry of L^{3} and we have used them to characterize unitary null curves in this space.

[^0]
2. Vector analysis in L^{3}

As a generalization of complex numbers related with the system of quaternions we find the pseudoquaternions [5], given by:

$$
\begin{equation*}
z=a+b i+c e+d f \tag{1}
\end{equation*}
$$

where $a, b, c, d \in \mathbb{R}$ and the complex units hold the following multiplication table:

$-i$	e	f
$i--1$	f	$-e$
$e--f$	1	$-i$
$f-e$	i	1

The conjugate pseudoquaternion of $z,(1)$, will be

$$
z^{*}=a-b i-c e-d f
$$

and its norm or modulus will be

$$
N(z)=a^{2}+b^{2}-c^{2}-d^{2}
$$

Trivially,

$$
z^{-1}=\frac{z^{*}}{N(z)}
$$

when it is possible, and also, if x and y are two pseudoquaternions we get

$$
(x \cdot y)^{*}=y^{*} \cdot x^{*} \text { and } N(x \cdot y)=N(x) \cdot N(y) .
$$

We say that a pseudoquaternion $z,(1)$, is pure if $a=0$.
Pure pseudoquaternions verify $z^{*}=-z$ and $N(z)=-z^{2}$.
The distance between two pure pseudoquaternions $z_{1}=b_{1} i+c_{1} e+d_{1} f, z_{2}=b_{2} i+$ $c_{2} e+d_{2} f$ is given by

$$
d\left(z_{1}, z_{2}\right)=\sqrt{-\left(b_{1}-b_{2}\right)^{2}+\left(c_{1}-c_{2}\right)^{2}+\left(d_{1}-d_{2}\right)^{2}}
$$

which coincides with the distance in L^{3}.
The pseudoquaternions i, e, f are associated to the orthonormal vectors I, E, F.
If we note the inner product by dot, we have

$$
I \cdot I=-1, \quad E \cdot E=1, \quad F \cdot F=1
$$

i.e., according to [3], I is timelike vector, E and F are spacelike vectors.

For all above we can identify the vectors of L^{3} with pure pseudoquaternions or equivalently, with real linear combination of i, e, f.

We want to define an exterior product in L^{3} on the natural way, keeping in mind its analogous in R^{3}.

Let $A=\left(a_{1}, a_{2}, a_{3}\right), B=\left(b_{1}, b_{2}, b_{3}\right)$ and $C=\left(c_{1}, c_{2}, c_{3}\right)$ be vectors in L^{3}.

Definition 1 The exterior product of A and $B, A \wedge B$, is the vector of L^{3} such that its inner product with C is the determinant of the matrix

$$
\left(\begin{array}{ccc}
a_{1} & -a_{2} & -a_{3} \\
-b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right)
$$

Equivalently, we say

$$
\begin{align*}
A \wedge B & =\operatorname{det}\left(\begin{array}{ccc}
i & e & f \\
a_{1} & -a_{2} & -a_{3} \\
-b_{1} & b_{2} & b_{3}
\end{array}\right) \\
& =\left(a_{3} b_{2}-a_{2} b_{3}\right) i-\left(a_{1} b_{3}-a_{3} b_{1}\right) e+\left(a_{1} b_{2}-a_{2} b_{1}\right) f \tag{2}
\end{align*}
$$

By straightforward computation we can verify
a) $A \wedge A=0$
b) $A \wedge B=-B \wedge A$
c) $\lambda A \wedge B=A \wedge \lambda B=\lambda(A \wedge B) \quad$ si $\lambda>0$
d) $A \wedge B \cdot B=A \wedge A \cdot A=0$
e) $(A+B) \wedge C=A \wedge C+B \wedge C$
f) $(A \wedge B) \wedge C=(A \cdot C) B-(B \cdot C) A$
g) If A, B, C are vectors in L^{3} and a, b, c its corresponding pure pseudoquaternions, it verifies

$$
A \wedge B \cdot C=\frac{1}{2}(a b c-c b a)
$$

h) Let A, B, C be future-pointing timelike vectors in $L^{3},[1] ; A, B, C$ are on line if and only if

$$
|(B-A) \wedge(C-A)|=0
$$

3. Unitary null curves

A curve $q(s)$ verifying $q^{\prime}(s) \cdot q^{\prime}(s)=0$ is called a null curve and if in addition satisfy $q(s) \cdot q(s)=1$ is called unitary null curve. A null frame in L^{3} is an ordered triple of vectors $\left(E^{1}, E^{2}, E^{3}\right)$ such that

$$
\begin{align*}
& E^{1} \cdot E^{1}=E^{2} \cdot E^{2}=0, \quad E^{1} \cdot E^{2}=-1, \quad E^{3} \cdot E^{3}=1 \\
& E^{1} \cdot E^{3}=E^{2} \cdot E^{3}=0 \quad \text { and } \operatorname{det}\left(\begin{array}{c}
E^{1} \\
E^{2} \\
E^{3}
\end{array}\right)= \pm 1 \tag{3}
\end{align*}
$$

Let $\left(E^{1}, E^{2}, E^{3}\right)$ be a null frame in L^{3}. The orthonormal vectors I, E, F are the associated orthonormal frame related to the null frame by

$$
I=\frac{1}{2}\left(E^{1}+E^{2}\right), \quad E=\frac{1}{2}\left(E^{1}-E^{2}\right), \quad F=E^{3} .
$$

We take

$$
E^{1} \wedge E^{2}=-E^{3}, \quad E^{2} \wedge E^{3}=E^{1} \quad \text { and } \quad E^{1} \wedge E^{3}=-E^{2}
$$

and we obtain

$$
I \wedge E=F, \quad E \wedge F=\frac{-(I+E)}{2}, \quad F \wedge I=\frac{(E-I)}{2}
$$

and the others vanish.
A rotation in L^{3}, around the origin, could be defined by the position of a null frame $\left(E^{1}, E^{2}, E^{3}\right)$ respect to the initial basis I, E, F.

From the rotation defined by a pseudoquaternion q, the vectors E^{i} are associated to the pseudoquaternions e^{i} by

$$
e^{1}=q^{*} i q, \quad e^{2}=q^{*} \text { e } q, \quad e^{3}=q^{*} f q .
$$

Explicity, if $q=q_{0}+q_{1} i+q_{2} e+q_{3} f$ we know that

$$
\begin{array}{ll}
q^{*}=q_{0}-q_{1} i-q_{2} e-q_{3} f & e q=q_{0} e-q_{1} f+q_{2}-q_{3} i \\
i q=q_{0} i-q_{1}+q_{2} f-q_{3} e & f q=q_{0} f+q_{1} e+q_{2} i+q_{3}
\end{array}
$$

and we get

$$
\begin{aligned}
e^{1} & =\left(q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2}\right) i+2\left(q_{2} q_{1}-q_{0} q-3\right) e+2\left(q_{0} q_{2}+q_{3} q_{1}\right) f \\
e^{2} & =-2\left(q_{0} q_{3}+q_{1} q_{2}\right) i+\left(q_{0}^{2}-q_{1}^{2}-q_{2}^{2}+q_{3}^{2}\right) e-2\left(q_{0} q_{1}+q_{2} q_{3}\right) f \\
e^{3} & =2\left(q_{0} q_{2}-q_{3} q_{1}\right) i+2\left(q_{0} q_{1}-q_{3} q_{2}\right) e+\left(q_{0}^{2}-q_{1}^{2}+q_{2}^{2}-q_{3}^{2}\right) f
\end{aligned}
$$

These are the components of the pseudoquaternions e^{i} as well as components of vectors $E^{i}, i: 1,2,3$.

At every point of an unitary curve se associate the null frame $\left(E^{1}, E^{2}, E^{3}\right)$ and following [3] we have the Frenet's equations:

$$
\begin{align*}
\frac{d E^{1}}{d s} & =-k_{1}(s) E^{1}+k_{2}(s) E^{3} \\
\frac{d E^{2}}{d s} & =-k_{1}(s) E^{2}+k_{3}(s) E^{3} \tag{4}\\
\frac{d E^{3}}{d s} & =k_{3}(s) E^{1}+k_{2}(s) E^{2}
\end{align*}
$$

The "curvatures. ${ }^{\text {are }}$

$$
k_{1}=\frac{-d E^{1}}{d s} \cdot E^{2}, \quad k_{2}=\frac{d E^{1}}{d s} \cdot E^{3}, \quad k_{3}=\frac{-d E^{3}}{d s} \cdot E^{2}
$$

and in terms of the pseudoquaternion q and its derivated

$$
\begin{align*}
& k_{1}=2\left(-q_{0}^{\prime} q_{3}+q_{0} q_{3}^{\prime}-q_{2} q_{1}^{\prime}+q_{1} q_{2}^{\prime}\right) \\
& k_{2}=2\left(q_{3}^{\prime} q_{1}-q_{0} q_{2}^{\prime}+q_{2} q_{0}^{\prime}-q_{3} q_{1}^{\prime}\right) \tag{5}\\
& k_{3}=2\left(-q_{3} q_{2}^{\prime}-q_{2} q_{3}^{\prime}-q_{0} q_{1}^{\prime}-q_{1} q_{0}^{\prime}\right)
\end{align*}
$$

Also we find that (5) are the relative components (respect to the null frame $\left(E^{1}, E^{2}, E^{3}\right)$) of the instant rotation vector, [4],

$$
H=-k_{2} E^{1}+k_{3} E^{2}-k_{1} E^{3}
$$

since $\frac{d E^{i}}{d s}=H \wedge E^{i}, i: 1,2,3$.
The curve $q=q(s)$ with s no proper time parameter, can be represented by the pseudoquaternion $q=q_{0}(s)+q_{1}(s) i+q_{2}(s) e+q_{3}(s) f$, with the condition $q \cdot q=1$ and $q^{\prime} \cdot q^{\prime}=0 \quad\left(q^{\prime}=\frac{d q}{d s}\right)$.

We will suposse that the $q_{i}(s)$ are C^{5}, as [2].
At every point we can attach a null frame $\left(Q^{1}, Q^{2}, Q^{3}\right)$. Without loss of generality we can choose Q^{1} as an scalar multiple of q^{\prime}.

As $Q^{i}=Q^{i}(s)$ we can write

$$
\frac{d Q^{i}}{d s}=\sum_{j} w_{j}^{i} Q^{j}
$$

with $w_{1}^{1}=w_{2}^{2}=w_{2}^{1}=w_{1}^{2}=w_{3}^{3}=0, w_{3}^{2}=-w_{1}^{3}, w_{3}^{1}=-w_{2}^{3}$.
Now the Frenet's equations are

$$
\begin{align*}
\frac{d Q^{1}}{d s} & =w_{3}^{1} Q^{3} \\
\frac{d Q^{2}}{d s} & =w_{3}^{2} Q^{3} \tag{6}\\
\frac{d Q^{3}}{d s} & =-w_{3}^{2} Q^{1}-w_{3}^{1} Q^{2}
\end{align*}
$$

On the natural way, we can consider w_{3}^{1} as curvature and w_{3}^{2} as torsion.
Comparing (4) and (6) we obtain $k_{1}(s)$ must be zero and from [2], theor. 6.1 the curve is a null straight line. We also obtain $w_{3}^{1}=k_{2}$ and $w_{3}^{2}=k_{3}$ and according to $[3]\left(E^{1}, E^{2}, E^{3}\right)$ become a Cartan frame and the curve is called a Cartan-framed curve.

In order to know about k_{2} and k_{3} we study the osculating sphere in L^{3}, i.e., the sphere passing through four consecutive points of a curve.

Keeping in mind that dot means the inner product of signature,,-++ , the equation of this sphere is

$$
(x-c) \cdot(x-c)-r^{2}=0
$$

where x is a generic point of the sphere, c its center and r its radius.

It is well known that necessary and sufficient condition that the surface $f(s)$ has contact of order n at the point P with the curve is that at P the relation hold:

$$
f(s)=f^{\prime}(s)=\ldots . .=f^{(n)}(s)=0 \quad \text { and } \quad f^{(n+1)}(s) \neq 0
$$

In our case $n=3, f(s)=(x-c) \cdot(x-c)-r^{2}$ and the relations becomes

$$
\begin{aligned}
(x-c) \cdot Q^{1} & =0 \\
k_{2}(x-c) \cdot Q^{3} & =0 \\
(x-c) \cdot\left(-k_{2} k_{3} Q^{1}-\left(k_{2}\right)^{2} Q^{2}+k_{2}^{\prime} Q^{3}\right) & =0
\end{aligned}
$$

We find $(x-c) \cdot\left(k_{2}\right)^{2} Q^{2}=0$ then $k_{2}=0$.
The center is $c=x+Q^{1}$ and the radius is zero.
For all above, we summarize in the following theorem.
Theorem 1 The curvatures (5) of a null curve is S_{1}^{2} are $k_{1}=k_{2}=0$ or equivalently, the null curves in S_{1}^{2} are null straight lines and there not exist osculating sphere of a null spherical curve in L^{3}.

At [2], pages 240 and 234, we find that a null cubics is a curve with $k_{1}=1$ and $k_{2}=k_{3}=0$, thus

Corollary 1 There does not exist null cubics in S_{1}^{2}.

Referencias

[1] Birman, G.; Nomizu, K. (1984) "Trigonometry Lorentzian geometry", Amer. Math. Monthly, 91(9).
[2] Bonnor, W.B. (1969) "Null curves in a Minkowski space time", Tensor N.S. 20: 229242.
[3] Graves, L.K. (1979) "Codimension one isomtric immersions between Lorentz spaces", Transactions of the Amer. Math. Society, 252: 367-392.
[4] Santaló, L.A. (1974) "Curvas y cuaterniones", Revista de la Unión Matemática Argentina 27(1): 41-52.
[5] Yaglom, I.M. (1968) Complex numbers in geometry. Academic Press, New York.

[^0]: * CONICET, Depto. de Matemática, Fac.de Ciencias Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, 7000 - Tandil - Argentina.

