SOME ASPECTS IN N-DIMENSIONAL ALMOST PERIODIC FUNCTIONS III

Vernor Arguedas* Edwin Castro ${ }^{\dagger}$

Received/Recibido: 2 Apr 2004

Abstract

The properties of almost periodical functions and some new results have been published in [CA1], [CA2] and [CA3] In this paper we show some new definitions in order to analize some singularities. For this functions we find some uniqueness sets in \mathbb{R} and \mathbb{R}^{n}. The paper finishes analizing the relation of this functions and the function sinc.

Keywords: Almost periodic functions, structure theorem, Radon transform.

Resumen

Las propiedades de las funciones cuasiperiódicas y algunos resultados nuevos se han presentado en [CA1], [CA2] y [CA3]. En este artículo variamos un poco la definición para incluir cierto tipo de singularidades y encontramos para estas funciones algunos conjuntos numerables de unicidad en \mathbb{R} y en \mathbb{R}^{n}. El artículo termina analizando la relación entre estas funciones y la función sinc.

Palabras clave: Funciones cuasiperiódicas, teorema de estructura, transformada de Radon.

Mathematics Subject Classification: 42A75,43A60,35A22,46F12.

[^0]
1 Some notations and reminders

Elementary properties of some sets of almost periodic functions have been published in [Ca], [CO], [A-P], [BO], [COR] This paper is a natural continuation of [CA1], [CA2] and [CA3]. We keep the basic notations and results.

Let us summarize some important results:
$f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is an almost periodic function if $\forall \varepsilon>0$ there is a N-dimensional vector L whose entries are positive and satisfies that $\forall y$ in \mathbb{R}^{N} there is an T in the N-dimensional box $[y, y+L]$ (component wise) such that $|f[x+T]-f[x]|<\varepsilon$ for all x in \mathbb{R}^{N}.

Let $x \in \mathbb{R}^{N}, x[[i]]$ denotes the i-th component of x. We write $x>0$ if $\left.x[i]\right]>0$, $i=1, \ldots, N$.

If x, y are in \mathbb{R}^{N} we write:

$$
|x-y|:=\left(\begin{array}{c}
|x[[1]]-y[[1]]| \\
\vdots \\
|x[[N]]-y[[N]]|
\end{array}\right)
$$

In the case of the usual functions sin, cos, \exp, sinc, we write: $\sin : \mathbb{R}^{N} \rightarrow \mathbb{R}$ as

$$
\sin \left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{N}
\end{array}\right):=\sin \left(x_{1}\right) * \ldots * \sin \left(x_{N}\right)
$$

and the same definition holds for the other functions. In general we extend in the multiplicative way any finite family of functions.

A set $E \subset \mathbb{R}^{N}$ is called relatively dense (r.d) if there is an $L \in \mathbb{R}^{N}, L>0$ such that for all $a \in \mathbb{R}^{N},[a, a+L] \cap E \neq \emptyset$.

There are many examples of r.d sets, for instance:

- \mathbb{Z} and $p \mathbb{Z}$, wsich that $p \in \mathbb{R}$ and $p \notin \mathbb{Z}$, are $\operatorname{r.d}$ in \mathbb{R}.
- $\mathbb{Z}^{N}, p_{1} \mathbb{Z} \times \ldots \times p_{N} \mathbb{Z}, p_{i} \notin \mathbb{Z}, i=1, \ldots, N$ are r.d in \mathbb{R}^{N}.
- If A is an r.d set in \mathbb{R}^{N} and B is an r.d set in \mathbb{R}^{M} then $A \times B$ is an r.d set in \mathbb{R}^{N+M}.
- If A is an r.d set in \mathbb{R}^{N} and $\pi_{i}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is the i-th projection then $\pi_{i}[A]$ is an r.d set in \mathbb{R}.
- If $f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is an isometry then $f[A]$ is an r.d set for any A r.d set in \mathbb{R}^{N}.
- Let G in \mathbb{R}^{N} a discrete non trivial additive subgroup then G is r.d. also $a+G$ is r.d. for all a in \mathbb{R}^{N}.
$C_{b}\left(\mathbb{R}^{N}, \mathbb{R}\right)$ denotes the set of all bounded functions from $\mathbb{R}^{N} \rightarrow \mathbb{R}$ endowed with the norm $\|\cdot\|_{\infty}$
$f\left[x_{-}+m\right]$ denotes the function $x \rightarrow f[x+m], m$ fixed.

We use the following definition:
Let $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be an almost periodic function; f is said to have Bochner compact range (BCR) if for any N-dimensional sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ there is a subsequence $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ and $x_{0} \in \mathbb{R}^{N}$ such that $f\left[x_{-}+x_{n_{k}}\right] \rightarrow f\left[x_{-}+x_{0}\right]$ uniformly when $k \rightarrow \infty$.

We proved in those papers results like:

- Let $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be a continuous function, f is almost periodic iff $A=\left\{f\left[x_{-} \pm y\right]\right.$, $\left.y \in \mathbb{R}^{N}\right\}$ is relatively compact in $C\left(\mathbb{R}^{N},\|\cdot\|_{\infty}\right)$.
- f is almost periodic iff for any sequence $\left(y_{n}\right)_{n \in \mathbb{N}}$ there is a subsequence $\left(y_{n_{k}}\right)_{k \in \mathbb{N}}$ and a function $g: \mathbb{R}^{N} \rightarrow \mathbb{R}$ such that $f\left[x_{-}+y_{n_{k}}\right] \rightarrow g$ in $C\left(\mathbb{R}^{N},\|\cdot\|_{\infty}\right)$.
- Let $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be a uniformly continuous bounded function, $\left(y_{n}\right)_{n \in \mathbb{N}} \subset \mathbb{R}^{N}$ be a sequence such that $f\left[x_{-}+y_{n}\right] \rightarrow g\left[x_{-}\right]$uniformly, and let $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \mathbb{R}^{N}$ be a sequence such that $x_{n} \rightarrow x_{0}$. Then $f\left[x_{-}+y_{n}+x_{n}\right] \rightarrow g\left[x_{-}+x_{0}\right]$.
- Let $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be a continuous bounded function, and let $E \subset \mathbb{R}^{N}, E$ r.d and $\bigcup_{y \in E}\left\{f\left[x_{-}+y\right]\right\}$ relatively compact in $C_{b}\left(\mathbb{R}^{N},\|\cdot\|_{\infty}\right)$. Then f is uniformly continuous
- (Haraux condition) Let $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be a continuous bounded function, $E \subset \mathbb{R}^{N}$, E r.d and $\cup_{y \in E}\left\{f\left[x_{-}+y\right]\right\}$ relatively compact in $C_{b}\left(\mathbb{R}^{N},\|\cdot\|_{\infty}\right)$, then f is almost periodic.
- Let $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be an almost periodic function that it attains its maximum and minimum. Then for any sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ there is a subsequence $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ and $x_{0} \in \mathbb{R}^{N}$ such that $f^{\prime}\left[x_{-}+x_{n_{k}}\right] \rightarrow f\left[x_{-}+x_{0}\right]$ uniformly.
- Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an almost periodic function, f is periodic if and only if f has Bochner compact range.

2 Periodic and almost periodic functions and its relations to some sets

It is well known that any non trivial additive subgroup G of \mathbb{R}^{N} such that for all $x>0$, there exists $g \in G$ with $0<g<x$ (lexicographic) is dense in \mathbb{R}^{N}. From that result it follows immediately that $\{n+m * r\}$ is dense in \mathbb{R} with n, m integers and r irrational. Without difficulties it is easy to prove the same result in \mathbb{R}^{N} with n, m in \mathbb{Z}^{N} and r in $\mathbb{R}^{N}, r[[i]]$ irrational for $i=1, \ldots, N, m * r$ denotes the componentwise multiplication. Interesting though is that from the above results it follows that:

- $\{\sin (n), n \in \mathbb{Z}\}$ and $\{\cos (n), n \in \mathbb{Z}\}$ are dense in $[-1,1]$.
- $\{|\sin (n)|, n \in \mathbb{Z}\}$ and $\{|\cos (n)|, n \in \mathbb{Z}\}$ are dense in $[0,1]$.
- $\{\sin (n), n \in G\}$ and $\{\cos (n), n \in G\}$ are dense in $[-1,1]$, where G is any non trivial additive subgroup of \mathbb{R} such that for all $x>0$, there is $g \in G$ with $0<g<x$.

The above statements can be formulated in \mathbb{R}^{N}, for example: $\left\{\sin (n), n \in \mathbb{Z}^{N}\right\}$ is dense in $[-1,1]$.

Definition 1 Let G be any discreet non trivial additive group of $\mathbb{R}^{N} . L \subset \mathbb{R}^{N}$ is called a lattice -determined by G - if $L=G$ or there exists $a \in \mathbb{R}^{N}$ with $L=a+G$.

It is easy to prove that any n-dimensional lattice is r.d.
In \mathbb{R} a lattice G has the form: $G=a+p \mathbb{Z}$, for a, p in \mathbb{R}.
Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be two periodic, non trivial, continuous functions, then f / g is a continuous function except for a lattice $L, L=\{x \in \mathbb{R} / g(x)=0\}$.

If f, g have measurable periods T_{1}, T_{2}, then f / g is periodic-measurable means $T_{1} / T_{2} \in \mathbb{Q}$-.

If f, g have no measurable periods then f / g is almost almost periodic (a.a.p). Here, non measurable means $T_{1} / T_{2} \notin \mathbb{Q}$-.

Let $A_{p}:=\{g: \mathbb{R} \rightarrow \mathbb{R}, g$ continuous of period $p\}$.
Theorem 1 If p in \mathbb{R} is an irrational number then \mathbb{Z} is a uniqueness set for A_{p}.
Proof: $B=\{n+m * p / n, m \in \mathbb{Z}\}$ is dense in \mathbb{R}. Then $f(x=n+m * p)=f(n)$ for all $n, m \in \mathbb{Z}$.

Theorem 2 Let $f \in A_{p}$, with a uniqueness set E, then $f\left(x_{-}+z\right) \in A_{p}$ for all $z \in \mathbb{R}$ with the same uniqueness set E.

As a matter of fact sometimes if $f \in A_{p}, f$ an odd function, there is $z \in \mathbb{R}$ with $f\left(x_{-}+z\right)$ an even function.

Some examples are:

- $\sin \left(x_{-}\right)$and $z=\pi / 2$;
- $\sum_{k=0}^{p} a_{k} \sin ((2 k+1) x)$ and $z=\pi / 2, a_{k} \in \mathbb{R}, k=0, \ldots, p$.
- For the odd function: $\sin \left(x_{-}\right)+\sin \left(2 x_{-}\right)+\sin \left(3 x_{-}\right)+\sin \left(4 x_{-}\right)$there is not such a z.

Some graphics illustrate this situation in Figures 1, 2 and 3.
Theorem 3 If we take in consideration in A_{p} only the even functions we obtain that \mathbb{N}_{0} is a uniqueness set for this class of functions.

As examples we have:

- $\left\{\sin (n), n \in \mathbb{N}_{0}\right\}$ is dense in $[-1,1]$.
- $\left\{\cos (n), n \in \mathbb{N}_{0}\right\}$ is dense in $[-1,1]$.
- $\left\{|\sin (n)|, n \in \mathbb{N}_{0}\right\}$ is dense in $[0,1]$.
- $\left\{|\cos (n)|, n \in \mathbb{N}_{0}\right\}$ is dense in $[0,1]$.

Figure 1: $\sin (x)+\sin (3 * x)$.

Figure 2. $\sin (x)+\sin (3 * x)+\sin (5 * x)$.

Figure 3: $\sin (x)+\sin (2 * x)+\sin (3 * x)+\sin (4 * x)$.

In the case $p \in Q$ we get:
Theorem 4 If p in \mathbb{R} is a rational number then $\mathbb{Z} r, r$ irrational, is a uniqueness set for A_{p}.
\mathbb{Z} and $\mathbb{Z} r$ are lattices. We may summarizes the result as: let f be a continuous function of period p then there is a lattice L which is a uniqueness set for A_{p}.

This statement can be extended to the set of functions: $B_{p}:=\left\{f / g \mid f, g \in A_{p}\right\}$. There are discontinuous functions on this set.

We introduce now the sets:

$$
A P_{p}:=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f \text { almost periodic }\}
$$

and the set of a.a. functions $B B_{p}$,

$$
B B_{p}:=\left\{f / g \mid f, g \in A P_{p}\right\} .
$$

Actually, those sets are vector spaces over \mathbb{R}

For instance we get: $\left\{\tan (n), n \in \mathbb{N}_{0}\right\}$ is dense in \mathbb{R}.
In the n-dimensional case there are several definitions of the concept of periodic function, but we work with the R-periodic concept: $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is an R-periodic function if there are N linearly independent vectors $e_{k}, k=1, \ldots, N$ such that: $f\left(x+e_{k}\right)=f(x)$, $\forall x \in \mathbb{R}^{N}$. The vectors $e_{k} k=1, \ldots, N$ are called periods of f.

We get that if f is R-periodic and all the e_{k} in the definition are irrational then $\sum_{k=1}^{N} \mathbb{Z} e_{k}$ is an uniqueness set for the set of functions: $A_{e_{i}, \ldots, e_{N}}:=\left\{f: \mathbb{R}^{N} \rightarrow \mathbb{R}\right.$ is a continuous R-periodic function, with periods $\left.e_{k}, k=1, \ldots, N\right\}$ and for $B_{e_{i}, \ldots, e_{N}}:=\left\{f / g \mid, f, g \in A_{e_{i}, \ldots, e_{N}}\right\}$; of course there are discontinuous functions on this set.

We have an inmediate generalization of Theorem 2.
Theorem 5 Let $f \in A_{e_{i}, \ldots, e_{N}}$ with a uniqueness set E, then $f\left(x_{-}+z\right) \in A_{e_{i}, \ldots, e_{N}}$ for all $z \in \mathbb{R}^{N}$ with the same uniqueness set E.

Theorem 6 Let $f \in A_{e_{i}, \ldots, e_{N}}$ then there exists a lattice L such that L is a uniqueness set of $A_{e_{i}, \ldots, e_{N}}$.

3 The relation between sinc and $A_{p}, B_{p}, A P_{p}$, and $B B_{p}$

Theorem 7 Let L be a numerable uniqueness lattice of a function f in A_{p} or $A P_{p}$, $L=\mathbb{Z} h$. Then $\sum_{k \in L} f(k h) \operatorname{sinc}\left(\frac{\pi}{h}(x-k)\right)$ is convergent toward f. When $f \in A_{p}$ this convergence is uniform. When $f \in A P_{p}$ this convergence is uniform when restricted to compact sets. Over \mathbb{R}^{N} it holds the same result.

Proof: A detailed proof will appear elsewhere.
In an schematic way we proceed as follows: We associate to f a function $f_{c} \in C_{c}(\mathbb{R})$ and apply the Fourier band limited theory and Wiener-Paley like theorem.

A point wise proof in one variable is: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous periodic function of period π, let us consider the case f even.

Let $a_{n}\left(x_{-}\right):=f(n) \operatorname{sinc}(\pi(x-n))+f(-n) \operatorname{sinc}(\pi(x+n)), n \in \mathbb{N}$, then $a_{n}\left(x_{-}\right)=(-1)^{n} 2 \frac{f(n)}{\pi} \sin (\pi x) \frac{x}{x^{2}-n^{2}}$ from this follows the convergence over compact sets of $\sum_{n=0}^{\infty} a_{n}\left(x_{-}\right)$toward a function g. It follows immediately that $g(n)=f(n)$ for all $n \in \mathbb{Z}$ then $f=g$.

In the odd case we have: $a_{n}\left(x_{-}\right):=f(n) \operatorname{sinc}(\pi(x-n))+f(-n) \operatorname{sinc}(\pi(x+n)), n \in \mathbb{N}$, then: $a_{n}\left(x_{-}\right)=(-1)^{n} 2 \frac{f(n)}{\pi} \sin (\pi x) \frac{n}{x^{2}-n^{2}}$ from this follows the point wise convergence.

In the general case of a continuous periodic function f of period π we get that: $f\left(x_{-}\right)=\frac{f(x)+f(-x)}{2}+\frac{f(x)-f(-x)}{2}, \frac{f(x)+f(-x)}{2}$ is an even periodic function and $\frac{f(x)-f(-x)}{2}$ is an odd periodic function, by using the preceding method we get the result. The choice of the period π is irrelevant, the same with respect to the choice of the lattice \mathbb{Z}.

At this moment we do not know what happens to $\sum_{k \in L=\mathbb{Z} * p} f(k p) \operatorname{sinc}\left(\frac{\pi}{p}(x-k)\right)$ when f belongs to B_{p} or $B B_{p}$.

However, it is that a function f in $B B_{p}$ has not necessarily the property that for any sequence $\left(x_{n}\right) \in \mathbb{R}$ there is a subsequence $\left(x_{n_{k}}\right)$ such that $f\left(x_{-}+x_{n_{k}}\right) \rightarrow g$.

An easy counterexample is: $f\left(x_{-}\right):=\frac{\sin (\sqrt{2} x)}{\sin (x)}$.
We define: $x_{1}=\lfloor 2 \pi\rfloor, x_{2}=\lfloor 2 * 2 \pi\rfloor+0 . d_{1}, \ldots, x_{n}=\lfloor n * 2 \pi\rfloor+0 . d_{1} \ldots d_{n-1}$, where $0 . d_{1} \ldots d_{n-1}$ denotes the $n-1$ decimal expansion of the number $n * 2 \pi$.

4 Some graphical examples

Let us see the graphics in the interval $[-2 \pi, 2 \pi]$.

Figure 4: $\sum_{k=-5}^{5} \frac{\sin (k) * \sin (\pi *(x-k))}{\pi *(x-k)}$.

Figure 5. $\sin (x)$.

Figure 6: $\sum_{k=-5}^{5} \frac{\sin (k) * \sin (\pi *(x-k))}{\pi *(x-k)}$.
Figure 7. $\sum_{k=-10}^{10} \frac{\sin (k) * \sin (\pi *(x-k))}{\pi *(x-k)}$.

See the case of the tangent in $(-\pi / 2, \pi / 2)$ in Figure 10.

Figure 8: $\sum_{k=-10}^{10} \frac{\sin (k) * \sin (\pi *(x-k))}{(\pi *(x-k)}$.
Figure 9. $\sum_{k=-5}^{5} \frac{\tan (k) * \sin (\pi *(x-k))}{(\pi *(x-k)}$.

Figure 10: $\tan (x)$.
Figure 11. $\sum_{k=-100}^{100} \frac{\tan (k) * \sin (\pi *(x-k))}{\pi *(x-k)}$.

References

[A-P] Amerio, L.; Prouse, G. (1971) Periodic Functions and Functional Equations. Van Nostrand Reinhold Company, New York.
[Bo] Bohr, H. (1951) Almost Periodic Functions. Chelsea Publishing Company, New York.
[Be] Besicovitch, A.S. (1954) Almost Periodic Functions. Dover Publications Inc, New York.
[Bl] Blot, J. (1994) "Variational methods for the almost periodic Lagrangian Oscilations", Cahiers Eco et Maths C.E.R.M.S.E.M 9644.
[Bo2] Bochner, S. (1992) Collected Papers of Salomon Bochner, Part2. A.M.S., Providence RI.
[Ca] Castro, E. (1994) "Funciones periódicas, cuasi periódicas y clasificación de funciones", Revista de Matemática: Teoría y Aplicaciones 1(1): 73-86.
[CA1] Castro, E.; Arguedas, V. (1998) "Funciones *-periódicas", VI Encuentro Centroamericano de Investigadores Matemáticos, Managua: 41-49.
[CA2] Castro, E.; Arguedas, V. (2000) "Algunos aspectos teóricos de las funciones casiperiódicas N-dimensionales", Revista de Matemática: Teoría y Aplicaciones 7(12): 165-174.
[CA3] Castro, E.; Arguedas, V. () "N-dimensional almost periodic functions II", Revista de Matemática: Teoría y Aplicaciones,
[Co] Cooke, R. (1981) "Almost periodic functions", Amer. Math. Monthly 88(7): 515-525.
[Cor] Corduneanu, C. (1989) Almost Periodic Functions. Chelsea Publishing Company, New York.
[Fi] Fink, A.M. (1977) Almost Periodic Differential Equations. Lectures Notes in Mathematics 377, Springer Verlag, New York.
[Fis] Fischer, A. (1996) "Structure of Fourier exponents of almost periodic Functions and periodicity of almost periodic functions", Mathematica Bohemica 3: 249-262.
[Ha] Haraux, A. (1987) "A simple almost-periodicity criterion and applications", Journal of Differential Equations 66: 51-61.
[Mu] Muntean, I. (1990) Analiza Functionala: Capitole Speciale. Universitatea BabesBolyai, Cluj-Napoca.
[Na] Natterer, F. (1996) "Algorithms in Tomography", Muenster.
[Sch] Schanze, T. (1995) "Sinc interpolation of discrete periodic signals", IEEE Transactions of Signal Processing 43(6): 1502-1503.
[Sm] Smith, J. Digital Audio Resampling Home Page
http://ccrma-www.stanford.edu/~jos/resample/

[^0]: *CIMPA, Escuela de Matemática, Universidad de Costa Rica, 2060 San José, Costa Rica. E-Mail: vargueda@amnet.co.cr
 ${ }^{\dagger}$ CIMPA, Escuela de Matemática, Universidad de Costa Rica, 2060 San José, Costa Rica. E-Mail: Hyperion32001@yahoo.com

