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Phospholipases A
2
(PLA

2
) are key enzymes for production of lipid mediators. We previously demonstrated that a snake venom

sPLA
2
named MT-III leads to prostaglandin (PG)E

2
biosynthesis in macrophages by inducing the expression of cyclooxygenase-2

(COX-2). Herein, we explored the molecular mechanisms and signaling pathways leading to these MT-III-induced effects. Results
demonstrated that MT-III induced activation of the transcription factor NF-𝜅B in isolated macrophages. By using NF-𝜅B selective
inhibitors, the involvement of this factor inMT-III-induced COX-2 expression and PGE

2
production was demonstrated.Moreover,

MT-III-induced COX-2 protein expression and PGE
2
release were attenuated by pretreatment of macrophages with SB202190,

and Ly294002, and H-7-dihydro compounds, indicating the involvement of p38MAPK, PI3K, and PKC pathways, respectively.
Consistent with this, MT-III triggered early phosphorylation of p38MAPK, PI3K, and PKC. Furthermore, SB202190, H-7-dihydro,
but not Ly294002 treatment, abrogated activation of NF-𝜅B induced byMT-III. Altogether, these results show for the first time that
the induction of COX-2 protein expression and PGE

2
release, which occur via NF-𝜅B activation induced by the sPLA

2
-MT-III in

macrophages, are modulated by p38MAPK and PKC, but not by PI3K signaling proteins.

1. Introduction

PLA
2
s play key roles in numerous cellular processes in

physiological and pathological conditions by regulating the
release of arachidonic acid (AA), a precursor of important
lipid mediators [1]. Secretory phospholipases A

2
(sPLA

2
s)

constitute a superfamily of enzymes classified into various
groups (IB, IIA, IIC, IID, IIE, IIF, III, V, and X) on the
basis of their source, amino acid sequence, and biochemical
characteristics. Among them, group IIA sPLA

2
includes

mammalian inflammatory-type and viperid snake venom
sPLA
2
[2]. A group IIA Asp49 sPLA

2
, named myotoxin-

III (MT-III), isolated from Bothrops asper snake venom [3],

has been shown to promote marked local inflammatory
events in several experimental models [4–7]. Some of these
events are induced by inflammatory mediators, such as
eicosanoids, produced by inflammatory cells [4]. In addition,
we previously showed that this sPLA

2
is capable of inducing

cyclooxygenase-2 (COX-2) protein expression and stimu-
lating AA and prostaglandin (PG)D

2
, PGE

2
production,

when incubated with macrophages in culture [8]. Despite the
importance of prostanoids in the regulation of inflammatory
events induced by sPLA

2
s, and the relevance of macrophages

in this response, the signal transduction pathways that lead to
MT-III-promoted biosynthesis of PGs andCOX-2 expression
in macrophages are unknown.
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PGE
2
is synthesized by both the constitutively expressed

COX-1 and the inducible COX-2 enzymes. COX-1 is present
in most tissues [9] and is responsible for generating PGs for
diverse physiological and pathological functions [10]. COX-
2, in turn, can be constitutively expressed in some tissues
but, normally, is inducible under inflammatory conditions in
several types of cells [11–14]. This expression is regulated at
both the transcriptional and posttranscriptional levels. The
promoter region of the COX-2 gene contains several binding
sites for transcription factors includingNF-𝜅B, CREB, C/EBP,
andAp-1 [13, 15, 16]. Of these,NF-𝜅B is themain transcription
factor involved in COX-2 gene expression in macrophages
during inflammatory processes [17, 18]. The involvement of
NF-𝜅B in COX-2 expression and PGE

2
production induced

by group IIA Asp49sPLA
2
s is unknown, stressing the need

to perform studies on this matter. Furthermore, it has been
demonstrated that COX-2 expression correlates with the
activities of intracellular signaling proteins such as p38
mitogen-activated protein kinase (p38MAPK) [19, 20], phos-
phoinositide 3-kinase (PI3K) [21, 22], and protein kinase C
(PKC) [21, 23] in macrophages activated by several stimuli.
However, the roles of these kinases in group IIA sPLA

2
-

induced COX-2 expression have not been yet investigated in
macrophages.

Since the production of lipidmediators is highly regulated
by a variety of extracellular stimuli, it is relevant to study
how the sPLA

2
s target their action to generate PGs, especially

with regard to the expression of COX-2, a major isoform
responsible for the production of PGE

2
in inflammatory

conditions. In this study the mechanisms by which the
sPLA
2
MT-III activates macrophages leading to expression of

COX-2 and release of PGE
2
were investigated, with focus

on the involvement of NF-𝜅B and the signaling pathways
proteins p38MAPK, PI3K, and PKC.

2. Materials and Methods

2.1. Reagents. PGE
2
enzyme immunoassay kits and rabbit

polyclonal anti-murine COX-2 antibodies were purchased
fromCaymanChemical (AnnArbor,MI, USA);mousemon-
oclonal anti-rat 𝛽-actin antibody was from Sigma Aldrich
Co. (St. Louis, MO, USA); peroxidase-conjugated secondary
sheep anti-mouse or donkey anti-rabbit antibodies were from
GE Healthcare (Buckinghamshire, UK). SN50, SB202190,
Ly294002, H7-dihydro were purchased from Calbiochem-
Novabiochem (La Jolla, CA, USA). Antibodies against
phospho-p38MAPK, p38MAPK, phospho-PI3K, PI3K, and
phospho-PKC were from Cell Signaling Technology (Dan-
vers, MA). Antibody against PKC was from Santa Cruz
Biotechnology (Santa Cruz, CA). RPMI 1640 and TPCK
were purchased from Sigma Aldrich. Ethanol grade p.a. was
obtained from Merck (Darmstadt, Germany). The salts used
were purchased from Merck, GE Healthcare and Bio-Rad
(Hercules, CA).

2.2. Animals. Male Swiss mice (18–20 g) were used. Animals
were housed in temperature-controlled rooms, with a rel-
ative humidity of 65.3 ± 0.9% and 12 h dark-light period,
and received water and food ad libitum. The animals and

research protocols used in this study followed the guidelines
of the Ethical Committee for Use of Animals of Instituto
Butantan, SP, Brazil (CEUAIB, Protocol number 592/09), and
international policies of experimental animal care. All efforts
weremade tominimize the number of animals used and their
suffering.

2.3. Phospholipase A
2
(MT-III). MT-III was isolated from

Bothrops asper venom by ion-exchange chromatography
on CM-Sephadex C-25 using the conditions described by
Lomonte and Gutiérrez [24], followed by RP-HPLC on a
C8 semipreparative column (10 × 250mm; Vydac) eluted at
2.0mL/min with a 0–70% acetonitrile gradient containing
0.1% (v/v) trifluoroacetic acid, during 30min, on an Agilent
1200 instrument monitored at 215 nm. Homogeneity of the
final preparation was assessed by analytical RP-HPLC on
a C4 column (4.6 × 150mm) using a 0–60% acetonitrile
gradient. The absence of endotoxin contamination in the
MT-III preparation was demonstrated by the quantitative
Limulus amebocyte lysate (LAL) test [25], which revealed
undetectable levels of endotoxin (<0.125 EU/mL).

2.4. Resident Peritoneal Macrophages Collection and Culture.
Resident peritoneal macrophages were harvested by washing
the peritoneal cavity with 2mL of apyrogenic saline solution.
Aliquots of the washes were used to count total cell numbers
in a Neubauer chamber after dilution (1 : 20, v/v) in Turk’s
solution. For adhesion, aliquots of either 1 × 106 or 3 ×
10
6 cells/mL were added to 24- and 6-well polystyrene

culture plates, respectively, and incubated for 3 h, in RPMI
1640 medium supplemented with 1% of L-glutamine and
100 𝜇g/mL of garamicine, at 37∘C and 5% CO

2
atmosphere.

Nonadherent cells were removed by vigorous washing three
times with glutamine-free RPMI 1640. By this procedure,
peritoneal cells, which were initially composed of 40–50%
of F4/80 positive cells and more than 30% of CD19 positive
cells, became enriched in F4/80 positive cells (more than
90% of the adhered cells). MT-III (0.4 𝜇M) was added to
macrophages in culture. This concentration was previously
shown as noncytototoxic but stimulatory of macrophages
functions [5, 8, 26]. At selected time intervals (0.5, 1, and
4.5 h), the plates were centrifuged at 500 g for 6min at
22∘C. The predominance of macrophages, constituting more
than 95% of cells in the washes, was confirmed by light
microscopic analysis of smears stained with Hema3 (Fisher
Scientific Company, Middletown, VA). Where appropri-
ate, the following inhibitors were used: 2.5𝜇M TPCK (N-
𝛼-tosyl-L-phenylalanine chloromethyl ketone arachidonyl
trifluoromethyl ketone) and 50 𝜇g/mL of SN50, selective
inhibitors ofNF-𝜅B activation; 1𝜇MSB202190, an inhibitor of
p38MAPK; 25 𝜇MLy294002, an inhibitor of PI3K; 20𝜇MH7-
Dihydro, an inhibitor of PKC. All the above inhibitors were
added 60min before stimulation of macrophages with MT-
III or RPMI (control). Cells treated with either inhibitors or
MT-III or both were analyzed for viability by the tetrazolium-
based (MTT) colorimetric assay. No significant changes
in cell viability were registered with any of the above
agents or the vehicle at the concentrations used (data not
shown).
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2.5. Quantification of PGE
2
Concentration. Concentration of

PGE
2
was determined by enzyme immunoassay using com-

mercial kits. The extraction of the prostaglandin was per-
formed on Sep-Pak C18 columns (Waters Corporation, Mil-
ford, MA) and eluted with ethanol. In brief, 50𝜇L aliquots of
each extracted sample were incubated with the eicosanoids
conjugated with acetylcholinesterase and the specific rabbit
antiserum in 96-well plates were coated with anti-rabbit IgG
mouse monoclonal antibody. After addition of the substrate,
the absorbance of the samples was recorded at 405 nm in a
microplate reader (Labsystems Multiskan), and concentra-
tions of PGE

2
were estimated from standard curves.

2.6. Western Blotting. COX-2 proteins were detected in peri-
toneal leukocytes or in cultured macrophages by Western
blotting. Aliquots of 1 × 106 cells were lysed with 100𝜇L
of sample buffer (0.5M Tris-HCl, pH 6.8, 20% SDS, 1%
glycerol, 1M 𝛽-mercaptoethanol, and 0.1% bromophenol
blue) and boiled for 10min. The samples were subjected
to SDS-polyacrylamide gel electrophoresis (SDS-PAGE) on
10% bisacrylamide gels overlaid with a 5% stacking gel.
Proteins were then transferred to nitrocellulose membrane
(GE Healthcare, Buckinghamshire, UK) using a Mini Trans-
Blot (Bio-Rad Laboratories, Richmond, CA, USA). The
membrane was blocked for 1 h with 5% w/v nonfat dry
milk in Tris-Buffered Saline-Tween 20 (TTBS) (20mMTris,
100mMNaCl, and 0.5% Tween 20) and incubated with pri-
mary antibodies against COX-2, COX-1 (1 : 1500 and 1 : 500,
resp.), and 𝛽-actin (1 : 2000). For the study of expression and
activation of protein kinases by MT-III, the membrane was
blocked for 1 h in 5% w/v BSA in TTBS and incubated with
antibodies against either phospho-p38MAPK, p38MAPK,
phospho-PI3K, PI3K, or phospho-PKC, and PKC at 4∘Cwith
gentle shaking, overnight. The membrane was then washed
and incubated with appropriate secondary antibody conju-
gated to horseradish peroxidase. Detectionwas accomplished
using the enhanced chemiluminescence method according
to instructions of the manufacturer (GE Healthcare, Buck-
inghamshire, UK). Densities of the bands were determined
by aGS 800Densitometer (Bio-Rad Laboratories, Richmond,
CA) using the image analysis software Quantity One (Bio-
Rad Laboratories, Richmond, CA).

2.7. Electrophoretic Mobility Shift Assay (EMSA). NF-𝜅B
binding capacity was assessed by EMSA. Nuclear extracts
from peritoneal adherent cells (3 × 106 cells/well) were
obtained as previously described [27], and protein concen-
tration was determined according to the Bradford method
[28]. NF-𝜅B binding capacity was evaluated as previously
described [29]. Briefly, end-labeled [𝛾-32P] ATP oligonu-
cleotides containing an NF-𝜅B consensus-binding site (5-
AGTTGAGGGGACTTTCCCAGGC-3) were incubated for
20min at room temperature with 5𝜇g of nuclear extract pro-
tein. DNA-protein complexes were then separated on a 5.5%
nondenaturing polyacrylamide gel using a running buffer of
45mM Tris, 45mM borate, and 1mM EDTA buffer. The gels
were vacuum-dried (80∘C) and subjected to autoradiography.
The blots were analyzed by scanner densitometry (STORM
840, Dynamic Molecular, Sunnyvale, CA, USA). Results are

expressed relative to the control condition (unstimulated
control).

2.8. Statistical Analysis. Results are expressed as mean ±
SEM. Differences among groups were analyzed by one-way
analysis of variance (ANOVA) followed by Tukey’s test or
by the Student’s 𝑡-test. Values of probability lower than 5%
(𝑃 < 0.05) were considered significant.

3. Results

3.1.MT-III ActivatesNF-𝜅B in IsolatedMacrophages. Initially,
it was verified whetherMT-III induces activation of NF-𝜅B in
peritoneal isolatedmacrophages. As demonstrated in Figures
1(a) and 1(b), a rapid activation of NF-𝜅Bwas induced byMT-
III since a marked nuclear activation was detected at 30min
of incubation as compared with control cells. This is a rapid
event since after one hour of incubation with MT-III, neither
NF-𝜅B activation nor DNA binding was observed (Figures
1(c) and 1(d)).

3.2. NF-𝜅B Is Involved in COX-2 Expression and PGE
2
Produ-

ction Induced by MT-III in Isolated Macrophages. The par-
ticipation of the transcription factor NF-𝜅B on COX-2
protein expression and PGE

2
production induced by MT-

III was investigated using specific inhibitors of this path-
way. The compound TPCK, which prevents the activation
of NF-𝜅B, abrogated both COX-2 expression (Figures 2(a)
and 2(b)) and PGE

2
production (Figure 2(e)) in MT-III-

stimulated macrophages. Pretreatment of cells with SN50,
a cell permeable peptide that competes specifically with
NF-𝜅B subunit p50 for the translocation from the cytosol
into the nucleus [30], significantly reduced MT-III-induced
COX-2 protein expression (Figures 2(c) and 2(d)) and PGE

2

production (Figure 2(e)) in resident macrophages by 50%
and 30%, respectively. Taken together, our data demonstrate
that NF-𝜅B is involved in both COX-2 protein expres-
sion and PGE

2
production induced by MT-III in isolated

macrophages.

3.3. MT-III Promotes p38MAPK, PI3K, and PKC Phosphory-
lation in Isolated Peritoneal Macrophages. We next verified
whether MT-III causes phosphorylation in kinases that acti-
vate important signaling pathways formacrophages function.
As shown in Figures 3(a), 3(d), and 3(g), unstimulated
macrophages showed a basal phosphorylation on all kinases
investigated. Treatment of isolated macrophages with 0.4 𝜇M
MT-III resulted in a 3- to 5-fold time-dependent increase
in p38MAPK, PI3K, and PKC phosphorylation over the
corresponding control cells p38 (Figures 3(a) and 3(b)) and
PI3K (Figures 3(d) and 3(e)) phosphorylation was detectable
as early as one min and was sustained at least for 15min.
PKC phosphorylation was also detectable and peaked at
one min and remained detectable at 15min after MT-III
addition (Figures 3(g) and 3(h)). Altogether, the above data
demonstrate thatMT-III rapidly activates phosphorylation of
protein kinases in macrophages, without altering total p38,
PI3K, and PKC (Figures 3(c), 3(f), and 3(i)).
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Figure 1: MT-III activates NF-𝜅B in macrophages in culture. (a, c) Macrophages nuclear extracts were prepared and assayed for 𝜅B probe
activity with 32P-labeled double-stranded oligonucleotide 𝜅B by EMSA. (b, d) Densitometric analysis of NF-𝜅B band intensities. Results are
expressed as mean ± SEM from three experiments. ∗𝑃 < 0.05 as compared with control value. NS: nonspecific band; C: control; NC: negative
control.

3.4. Effect of Inhibition of Protein Kinases on PGE
2
Production,

COX-2 Expression, and NF-𝜅B Activation Induced by MT-
III. It has been previously reported that protein kinases
participate in the signaling under group IIA sPLA

2
s stimuli

[31, 32]. To assess the role of kinases in the described actions
of MT-III, we determined the effects of the specific inhibitors
of p38MAPK, PI3K, and PKC (SB202190, Ly294002, and
H7-Dihydro, resp.) on MT-III-stimulated PGE

2
release in

macrophages. MT-III-induced COX-2 protein expression
(Figures 4(a) and 4(b)) and increments in PGE

2
(Figure 4(c))

by macrophages were inhibited by SB202190, Ly294002, and
H7-dihydro when compared to macrophages after 4.5 h of
treatment with MT-III and pretreated with vehicle. Unstim-
ulated macrophages showed a weak basal COX-2 protein
expression when pretreated with or without inhibitors of
kinases (Figures 4(a) and 4(b)). We have previously shown
that resident macrophages have enhanced MT-III-induced
COX-2 andPGE

2
production dependent onNF-𝜅Bactivation

[33]. Next, to determine whether the activation of this
transcription factor ismediated by kinase signaling pathways,

we tested the effect of specific inhibitors of kinases on NF-𝜅B
activation by MT-III. Pretreatment of resident macrophages
with SB202190 and H7-dihydro, but not Ly294002, com-
pletely inhibited MT-III-induced activation of NF-𝜅B. Taken
together, these results suggest that MT-III-stimulated COX-
2 expression, PGE

2
synthesi,s and NF-𝜅B activation are

mediated through the activation of distinct protein kinases,
such as p38MAPK and PKC pathways.

4. Discussion

In this study we examined the effect of the Asp49 sPLA
2

MT-III, isolated from Bothrops asper snake venom, on
macrophage activation and themechanisms throughwhich it
stimulates COX-2 expression and PGE

2
production. Several

lines of evidence clearly established that NF-𝜅B regulates the
expression of several inflammatory mediators and enzymes
[34]. The data shown herein demonstrate that MT-III acti-
vates NF-𝜅B. We also show that this pathway is important
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Figure 2: NF-𝜅B is involved in COX-2 expression and PGE
2
release induced by MT-III in macrophages. Resident peritoneal macrophages

(1 × 106 cells) were pretreated with TPCK (2.5𝜇M) or SN50 (50 𝜇g/mL) and incubated during 4.5 h with MT-III (0.4 𝜇M). (a, c) Western
blotting of COX-2 and 𝛽-actin (loading control) of cells pretreated with SN50 or TPCK. (b, d) Densitometric analysis of immunoreactive
COX-2 band intensities. (e) PGE

2
was quantified in culture supernatants by enzyme immunoassay (see Section 2). Results are expressed as

mean ± SEM from 3 experiments. ∗𝑃 < 0.05 as compared with control value.

for COX-2 expression and PGE
2
release in response to this

toxin since incubation of macrophages with the inhibitor
of I𝜅B phosphorylation (TPCK) blocked MT-III-induced
COX-2 expression and PGE

2
release. The involvement of

NF-𝜅B as the mechanism underlying MT-III-induced upreg-
ulation of COX-2 expression was further confirmed by

results with inhibition of NF-𝜅B nuclear translocation site
by the compound SN50, which markedly reduced MT-III-
induced COX-2 expression and PGE

2
synthesis. Thus, MT-

III activates downstream pathways required for upregulation
of COX-2 expression through activation of NF-𝜅B. Our data
are in agreement with findings that a recombinant group IIA
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Figure 3: p38MAPK, PI3K, and PKC phosphorylation induced by MT-III in isolated peritoneal macrophages. Resident peritoneal
macrophages (1 × 106 cells) were incubated during 1, 5, and 15min with MT-III (0.4𝜇M). (a, d, and g) Western blotting of p-p38MAPK,
p38MAPK, p-PI3K, PI3K, p-PKC, PKC, and 𝛽-actin (loading control). (b, c, e, f, h, and i) Densitometric analysis of immunoreactive band
intensities. Results are expressed as mean ± SEM from 3 experiments. ∗𝑃 < 0.05 as compared to time 0.

sPLA
2
induced the activation of NF-𝜅B in the macrophage

cell line Raw 264.7 [31]. To our knowledge, this is the first
demonstration of the existence of a link between NF-𝜅B
and a group IIA sPLA

2
leading to expression of COX-2 and

production of PGE
2
.

Despite various efforts to study in detail the inflammatory
mechanisms triggered by group IIA Asp49 sPLA

2
, the signal

transduction mechanism is still unclear. In particular, it is
not well understood how the signal transduction pathways
are started by extracellular MT-III stimuli in peritoneal
macrophages, since no receptors or acceptors of group IIA
snake venom sPLA

2
have been described. Since protein

kinases are part of the signal transduction pathways which
connect inflammatory and other extracellular signals with

intracellular responses, such as protein synthesis, we inves-
tigated the role of some protein kinases which have been
shown to participate in COX-2 upregulation induced by
inflammatory and infectious stimuli, such as PKC [21, 23],
p38MAPKs [19], and PI3K [21, 22]. Our data demonstrate, for
the first time, that a type IIA Asp49 sPLA

2
from snake venom

is able to activate phosphorylation of these kinase proteins
in isolated macrophages. Next, by using pharmacological
approaches, we investigated the role of these kinases in PGE

2

release and COX-2 expression. It was found that MT-III
effects in macrophages are regulated by specific signaling
pathways and that the signaling proteins p38MAPK and
PKC are distinctly involved in COX-2 expression, PGE

2

release, and activation of NF-𝜅B. Our data are consistent with
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Figure 4: Effect of inhibition of p38MAPK, PI3K, and PKC on COX-2 expression, PGE
2
production, and NF-𝜅B activation induced by MT-

III. Resident peritoneal macrophages (1 × 106 cells) were pretreated with either SB202190 (1𝜇M), Ly294002 (25𝜇M), or H7-dihydro (20 𝜇M)
and incubated during 4.5 h with MT-III (0.4 𝜇M). In electrophoretic mobility shift assay (EMSA), resident macrophages (3 × 106 cells) were
pretreated with kinases inhibitors and incubated during 30min withMT-III (a)Western blotting of COX-2 and 𝛽-actin (loading control). (b)
Densitometric analysis of immunoreactive COX-2 band intensities. (c) PGE

2
was quantified in culture supernatants by enzyme immunoassays

(see Section 2). (d) Nuclear extracts were prepared and assayed for 𝜅B probe activity with 32P-labeled double-stranded oligonucleotide 𝜅B
using EMSA. (f) Densitometric analysis of NF-𝜅B band intensities. Results are expressed as mean ± SEM from 3 experiments. ∗𝑃 < 0.05 as
compared with control values. NS: nonspecific band; C: control.
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other studies in which activation of p38MAPK is a critical
link in inflammation, cytotoxicity, and lipid body formation
induced by type IIA sPLA

2
from both human [32] and snake

venoms [26, 35]. In this context, some works confirmed that
p38MAPK-NF-𝜅B pathway is an important component of
cellular signal transduction, especially in regulating inflam-
matory genes [36, 37] and that p38MAPK specific inhibitors
greatly attenuate NF-𝜅B nuclear translocation [38, 39], COX-
2 expression, and PGE

2
release [40].

Similarly, the observation that production of PGE
2
and

expression of COX-2 via NF-𝜅B in murine macrophages
activated by MT-III is dependent on the PKC pathway agrees
with other studies in that the groups IIA and VsPLA

2
activate

PKC signaling protein in some cell types [41, 42]. It also agrees
with the observation that this protein kinase is required for
PGE
2
biosynthesis, COX-2 expression, and NF-𝜅B activation

in both RAW 264.7 cells and mouse peritoneal macrophages
upon inflammatory stimuli [43, 44]. In contrast, we showed
that blockade of MT-III function with PI3K inhibitor is
sufficient to suppress both PGE

2
production and COX-

2 expression but is unable to suppress NF-𝜅B activation.
The observation that PI3K is critically involved in MT-III-
induced COX-2 and PGE

2
production is consistent with

previous reports that PI3K pathway is recruited for COX-
2 expression under different inflammatory conditions [45,
46]. Since the effect of MT-III on COX-2 expression and
PGE
2
release could be explained by an upregulation of 𝜅B-

dependent transcription inmurinemacrophages, we hypoth-
esize that some of the signaling pathways activated by MT-
III are also exerted through another regulatory element(s),
because this sPLA

2
still induces the activation ofNF-𝜅B in the

presence of PI3K inhibitor. It is suggested that, besidesNF-𝜅B,
MT-III leads to the activation of other types of transcription
factors. In agreement with this hypothesis, there are reports
that PI3K is required for cAMP response element-binding
(CREB) or activator protein-1 (AP-1) activation by different
stimuli for downstream COX-2 protein synthesis [47, 48].
Although our results have identified selected downstream
pathways regulating key steps involved in the biosynthesis
of COX-2 expression and PGE

2
synthesis induced by MT-

III, the mechanism of sPLA
2
-IIA-mediated PI3K and other

protein kinases activation involved in COX-2 upregulation,
remains to be determined.

5. Conclusions

The involvement of distinct pathways mediated by p38MA-
PK/NF-𝜅B and PKC/NF-𝜅B is essential for MT-III-induced
PGE
2
release via COX-2 protein. Moreover, our results indi-

cate that there is no crosstalk between PI3K phosphorylation
and NF-𝜅B activation implicated in MT-III COX-2 expres-
sion and PGE

2
production in our experimental conditions.

Taken together, the results presented provide new insights
into the mechanisms involved in the production of PGE

2

through the COX-2 pathway by further defining distinct
signaling pathways induced by an Asp49 IIA sPLA

2
from

snake venom.
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