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Abstract

This document obtains two exact solutions to the anisotropic space-
time of Petrov D by using the model of a perfect fluid. These solutions
represent a scenario of a universe in which the pressure P and the ener-
getic density µ of the fluid are inversely proportional (Chaplygin’s type
P = −Q2/µ), where Q is a constant of proportionality. It is established
that the symmetry of those models, in the proximities when t → 0, is
equivalent to the analogues for the dust model, and might tend to be-
have as the solutions of the flat or vacuum LRS Kasner solution (Local
Rotational Symmetry). Although the solutions are not flat or vacuum
in any of the cases, in those proximities, the density tends to infinite
and with no pressure. When t→∞, the models tend to behave as the
isotropic flat model of the type FRWL. In the analysis of the Hubble
and the deceleration parameters obtained that in those solutions, the
Hubble’s constant and the deceleration parameter, depend on time and
manner in which their values, or tendency, significantly evolve. The
deceleration parameter q changes its sign as times passes, so that it
represents an initial deceleration process that, in continuity, constantly
changes to a process of acceleration.
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1 Introduction

Cosmology has become more dynamic considering the microwave radiation
obtained from COBE, WMAP, PLANCK, and the discovery of the universe
acceleration [1, 2]; these and other aspects have been discussed on [3].
Models from different equations and fluid states have been obtained using the
perfect fluid, see example [4], [5], where several scenarios of the Universe are
described, depending on the type of equation and the state. This has allowed
exact analytical solutions for some limited cases of equations or with metrics
that contain complex elements (gµν ∈ C). There have also been obtained so-
lutions considering a binary mixture of dark energy, or quintessence, and an
ideal fluid in conjoint movement [5], dark energy and dark mass with differ-
ent velocities [6]. For example, the investigation on gravitational waves in a
Bianchi-I space-time has been carried out fundamentally, but not restricted,
to the Kasner solution, and important differences between a symmetry of the
type Bianchi-I anisotropic and isotropic of the type of Robertson and Walker
have been determined. An important influence has been established by the
anisotropic expansion of space, on the gravitational waves and the influence
of the energy of these waves in the anisotropic space in expansion [7][8]; in
addition to the anisotropic role, in the coupling between gravitational waves
and density modes, and the density and perturbations in density as possible
causes of the formation of galaxies [9]. One of the fluid models that results
equivalent, at a certain time, to a fluid given by the state equation P = λ1µ,
where P and µ are the pressure and the energy density respectively, and λ1 a
constant and another time for P = λ2µ, so that the transition from one type
of state equation to the other is proportional and continuous to the pattern P
and µ is the gas model of Chaplygin [10], in the form P = −Q2/µ, where Q is a
constant. In this model [11], it has been obtained that in a FRWL space-time
of several scenarios of the universe are produced, and those are achieved when
using the dust model, at the beginning, and the dark energy model, when a
long time has passed. In addition, it is described a smooth transition from
a decelerated universe in expansion to the current time of cosmic accelera-
tion. The Chaplygin gas model is used for tachyon cosmological models with
a constant value of the potential space. As consequence, it is interesting to
study this model and its generalities [12] in several scenarios and cosmological
symmetries.

2 The Metric Interval

The metric interval that will be used is the anisotropic and homogeneous
Petrov D, close to LRS (Local Rotational Symmetry) used in Bianchi-I, and
follows the pattern [3]
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ds2 = Fdt2 − t2/3K(dx2 + dy2)− t2/3

K2
dz2, (1)

Where F and K are functions of t.

3 Solutions of the Einstein’s Equations for the

Chaplygin’s Fluid Model

The model of the perfect fluid used in cosmology represents a fluid without
viscosity, isotropic (P = P (µ)) and with no shear stresses, which can be
expressed as follows [13]

Tαβ = (µ+ P )uαuβ − gαβP, (2)

Where Tαβ is the stress energy tensor of the perfect fluid, uα is the tetradi-
mensional speed, gαβ is the metric tensor, µ and P are respectively the energy
density and the fluid pressure.
The state equation for the analyzed fluid will be taken as P = −Q2/µ (Chap-
lygin Fluid), where Q is a constant.
The components of the Einstein tensor Gβ

α = Rβ
α − 1

2
δβαR different from zero,

are

G0
0 =

4K2 − 9 t2K̇2

12t2K2F
, (3)

G1
1 = −

3KtK̇
(

2F − Ḟ t
)

+ 3Ft2
(

2KK̈ − 5K̇2
)

+ 4K2
(
Ḟ t+ F

)
12t2K2F 2

, (4)

G2
2 = G1

1, (5)

G3
3 = −

−6KtK̇
(

2F − Ḟ t
)
− 3Ft2

(
4KK̈ − K̇2

)
+ 4K2

(
Ḟ t+ F

)
12t2K2F 2

, (6)

It will be considered a fluid with tetradimensional speed uα = (u0, 0, 0, 0),
therefore, the components of the stress energy tensor (2) different from zero
are

T 0
0 = µ, (7)

T 1
1 = T 2

2 = T 3
3 = −P, (8)
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This implies that from the Einstein equations Gβ
α = κT βα , it must meet that

G1
1 = G3

3, so that from (4) and (6), it is obtained

K̇K
(

2F − Ḟ t
)
− 2Ft

(
−KK̈ + K̇2

)
= 0 (9)

So

K = K0e
C1

∫
F1/2

t
dt, (10)

Where K0 and C1 are constants. Without losing its generalities, the con-
stant K0 in (10) is considered equal to 1, and the constant C1 = ±2/3; this
represents two different models.
From the state equation P = −Q2/µ, it is obtained that G1

1 = −Q2/G0
0, and

from (4),(6) and (10) it is obtained the state equation, if it is satisfies that

−Ḟ t (F − 1) + F
(
(F − 1)2 + 9F 2Q2t4

)
= 0, (11)

which solution is

F =
1

1± 3t
√
α + t2Q2

, (12)

where α is an constant of integration.
The density and the pressure of (7) and (8), assuming that κ = 1 in the
Einstein equations, follow the patterns

µ = ±
√
α + t2Q2

t
(13)

And

P = ∓ Q2t√
α + t2Q2

(14)

In (13), the density is positive if its sign is positive and the time is taken as
positive, or if the sign before the equality is negative and the time is negative.
In both cases, there is an interval of time when g00 = F > 0 but µ < 0. If the
positive time is considered, it means that

F =
(

1 + 3t
√
α + t2Q2

)−1
,

and there is a time between

t ∈]
(

3α−
√

9α2 + 4Q2
)
/
(
6Q2

)
, 0],
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F is positive in that interval, although µ is negative or singular when t = 0,
but the components g11, g22, g33 are complex, so the time t will be considered
in the interval of t ∈ [0,∞[, for which the density is positive or singular when
t = 0.

For future analysis of the solutions, in the proximities with t = 0, it will be
used the Kretschmann invariant. The condition Krets < ∞ is required and
sufficient [14] for the finitude of all the invariants of an algebraic curvature,
and this solution takes the pattern

Krets = RαβγτR
αβγτ =

1

27

±32F 7/2 − 24FḞ t (F − 1) + 9Ḟ 2t2 + 4F 2 (−6F + 9F 2 + 5)

F 4t4
.

(15)

4 Analysis of the Solutions

The two possible solutions result in the same value for the density and the
pressure, and diverge from each other, mainly when t → 0. The prior is
observed in (12), when considering t→ 0; in this case F can get closer to

F =
1

1 + 3t
√
α

(16)

Which agrees with the solutions of the dust model [3]. When considering

(16) in 3
√
α = β, if ξ = 2

√
1+tβ
β

, then t = −4+ξ2β2

4β
, the solution can be expressed

as follows

ds2 = dξ2 −
(

1

2
ξ β ± 1

)4/3
(
dx′2 + dy′2 +

(
ξ β − 2

ξ β + 2

)±2
dz ′2

)
(17)

where x′ = 4±1/3β−1/3∓1/3x, analogous y, z′ = 4∓2/3β±2/3−1/3z. From the
solutions (17), it can be noticed that when t −→ 0, ξ −→ 2/β, therefore, it is
assumed ξ > 0 and noticeable that ξ −→ (βt + 2)/β, then the metric can be
expressed, returning to the time coordination t, with the pattern

ds2 −→ dt2 − t2/3±2/3(dx2 + dy2)− t2/3∓4/3dz2, (18)

The solution in the proximities with t = 0, is singular in all the cases. Al-
though in appearance the solution tends to a flat world when the negative sign
is chosen (C1 = −2/3) in (18), the Kretschmann invariant, when t −→ 0, tends
to Krets −→ 1/3β2t−2 −→ ∞, therefore it is singular. This model represents
a space-time that at the beginning when t = 0, extends one of its axis as an
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infinite tube, but with a very small radio.
When the sign is taken as positive (C1 = 2/3), the invariant tends toKrets −→
64/27t−4, which tends to the solution of the Kasner vacuum LRS (ED1) [3],
therefore, it is also singular when t = 0. This solution represents a space-time
that, at the beginning, had the shape of a very thin pancake with an infinite
radio.

When t → ∞, the solutions tend to behave as the solutions of the dark
energy model [3], for which P → −µ→ −Q.

If it is considered the following change of temporal coordinate t =
sinh(η

√
3Q)√

3Q
,

the metric tends to become an isotropic type with the pattern

ds2 ≈ ds isot
2 + dspert

2 (19)

ds isot
2 = dη2 − e2/3

√
3Qη
(
dx ′2 + dy′2 + dz ′2

)
(20)

dspert
2 = ±4

3

(
dx ′2 + dy′2 − 2 dz ′2

)
e1/3

√
3Qη

, (21)

where x′ = 2−1/3±1/3 (3Q)−1/6∓1/6 x, analogous y, z′ = 2∓2/3−1/3 (3Q)−1/6±1/3 z.
From the previous analysis, it is evident that dspert

2 decays faster, being this
solution prompt to isotropic, and close to

ds2 ≈ dη2 − e2/3
√
3Qη
(
dx ′2 + dy′2 + dz ′2

)
(22)

and it presents the characteristics of a space-time in De Sitter inflation in the
flat slicing coordinates.
The solution tends to be equivalent to the one of the dark energy model in an
isotropic and flat space-time of the type FRWL.

5 Hubble parameters and deceleration

The Hubble parameter, for the given symmetry, can be defined as [15]

H =
1

3
(Hx +Hy +Hz) =

1

3

(
˙√g11√

g00
√
g11

+
˙√g22√

g00
√
g22

+
˙√g33√

g00
√
g33

)
, (23)

where the point represents the derivative of t. For the solution (12) with
positive sign, it meets that

H =

√
1 + 3t

√
α +Q2t2

3t
. (24)

From (24), if t → 0, the parameters tends to infinite, and if t → ∞, H →√
Q/3; therefore, the value of Q can be determined through the parameter H
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when t→∞.
The deceleration parameter q is defined as in [15], with the pattern

q = −

(
1 +

Ḣ

H2
√
g00

)
= −

(
1 +

1

3
(Qx +Qy +Qz)

)
, (25)

where

Qx =
1

√
g00H2

(
˙√g11√

g00
√
g11

).

, Qy =
1

√
g00H2

(
˙√g22√

g00
√
g22

).

,

Qz =
1

√
g00H2

(
˙√g33√

g00
√
g33

).

.

The deceleration parameter for the analyzed solutions takes the pattern

q =
4
√
α + t2Q2 + 3 tα− 6 t3Q2

2
(

1 + 3 t
√
α + t2Q2

)√
α + t2Q2

, (26)

From (26), when t→ 0, the parameter q → 2, and when t→∞, it is q →

−1, which implies a change in the sign given in tchange =

√
2
√
B((B+3α)2+48Q2)

6QB
,

where

B =
3

√
1728αQ2 − 27α3 + 12

√
−768Q4 + 20304α2Q2 − 729α4Q.

For this reason, the two models C1 = ±2/3, present a common scenario in
relation to the parameters q and H; the possible universes at their beginnings
had a Hubble parameter that tends to infinite with the pattern H → 1/(3t)
and decays to a constant value with the form H →

√
Q/3 with time. In

this case, the q parameter indicates an expansion of the Universe, initially
decelerated, until the time t = tchange, and after accelerated; as time increases,
it approaches −1, which is generally consistent with some of the previously
mentioned observations Adam, Lima, Omer.

6 Conclusion

The two solutions for an homogeneous, anisotropic, and non static Petrov D
space-time with the model of the perfect fluid and with an equation of state,
where the pressure is inversely proportional to the energy density P = −Q2/µ,
and results in two possible scenarios. The first one, when the axis z expands
more intensely than the plane x, y, and when the opposite occurs.
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When analyzing details of interest, for example, at the beginning when
t = 0 or when t −→∞, it is obtained that for those models, the metric might
tend to be equivalent to the Kasner vacuum LRS when t −→ 0, if C1 = 2/3,
and it is singular when t = 0; in the other solution, if the negative sign is
taken as K, this tends to be equivalent to a flat world, but with a singularity
in t = 0. Both solutions tend to the spatial isotropic regime equivalent to
the dark energy model for a flat model of FRWL with time, and tend to be
equivalent to those obtained for a model of dust, with small time.
Both the Hubble and the deceleration parameter depend on time, which marks
a fundamental difference between the same parameters obtained for the flat
universe of FRWL, or the solution of the Kasner vacuum [15], where the de-
celeration parameter is constant for each type of model or for all of them in
Kasner’s case. In the resulting solutions, the parameters are time dependent,
so in certain limits they behave as the analogous obtained from the Kasner so-
lution and from other limits, as the analogous to the FRWL solution of the flat
model of dark energy, it exists a transitional path between them through time,
so that the parameter q changes its value and sign, which means that a period
of deceleration is presented in small values t, and then it changes to a pro-
cess of acceleration as time passes. This agrees with some of the observations
already stated in [16], [17] and [18].
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Annex

The integral M in (10) presents the following pattern

M = M1 −M∞

where M∞ = const ∈ C,

M1 = −R (t)
N2,4,1N2,1,4N2,1,3

(√
α + t2Q2 −

√
α− e2tQ

)2
(e1 − e4)

α

√
1 + 3

√
αt
√

1 + t2Q2

α

(√
1 + t2Q2

α

)
(e4 − e2) (e1 − e2) e2e1

M1 ∈ C (but M ∈ R) and

R (t) =
(
e2

2 + 1
)
e1F (N2,4,1, h) + Π (N2,4,1, j, h) e1e2 (e1 − e2)−

Π

(
N2,4,1,

e2j

e1
, h

)
(e1 − e2)

F (x, k) =
∫ x
0

dξ
(1−ξ2)(1−k2ξ2) is the incomplete elliptic integral of the first kind,

and Π (x, h, k) =
∫ x
0

(1−k2ξ2)−1/2dξ

(1−hξ2)
√

1−ξ2
is the incomplete elliptic integral of the third

kind.

Ni,n,k =

√√
α + t2Q2 (en − ei)−

√
α (en − ei)− ekQt (en − ei)√

α + t2Q2 (en − ek)−
√
α (en − ek)− eitQ (en − ek)

,

h =
√

j(e3−e2)
e3−e1 and j = e4−e1

e4−e2 the constants ek are the roots of the equation

x4Q + 6αx3 − 2x2Q + 6αx + Q = 0 so that the roots (usually complex)
are taken in an anticlockwise sense, growing with the index k = 1..4, when
graphed in a rectangular coordinate system x and y, where a root ek has the
pattern ek = xk + yki ; when roots are multiple of others(ek = Ael), it is first
taken the one with a lower absolute value.
The constant of integration M∞ has the pattern

M∞ = −
√
Q

3α

R∞L2,4,1L2,1,4L2,1,3 (1− e2)2 (e1 − e4)
(e4 − e2) (e1 − e2) e2e1

,
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where

R∞ =
(
e2

2 + 1
)
e1F (L2,4,1, h) + Π (L2,4,1, j, h) e1e2 (e1 − e2)−

Π

(
L2,4,1,

e2j

e1
, h

)
(e1 − e2)

and

Li,n,k =

√
(−1 + ek) (en − ei)
(−1 + ei) (en − ek)

.
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