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1. Introduction

The existence of a group scheme classifying all finite torsors over a given scheme X was 
first conjectured by Grothendieck in [12, Chapitre X]. It was first Nori who proved it 
(cf. [13] and [14]) and called it the fundamental group scheme (FGS). In fact in his 
thesis [14], Nori gave two possible ways to construct the FGS. In the first method, he 
constructed it for a connected, proper and reduced scheme X defined over a perfect2 field 
k equipped with a section x ∈ X(k), as a k-group scheme π(X, x) naturally associated 
to the neutral tannakian category of essentially finite vector bundles over X. In the 
second method he assumes X to be reduced and connected but not necessarily proper, 
with arbitrary underlying field k, such that X has at least one k-rational point x. With 
these assumptions he proves the existence of π(X, x) by showing that the category of all 
finite pointed torsors over X is cofiltered which is a necessary and sufficient condition 
for existence of FGS [14, Proposition 2]. Clearly his second method works in much 
more general set-up than the first one. The second method has also been generalized for 
schemes defined over Dedekind schemes (see [10], [4]). More precisely the main result in 
[4] is the existence of π(X, x) when X → S is separated, faithfully flat, of finite type and 
either for all s ∈ S, Xs is reduced, or for all x ∈ X\Xη, Ox is integrally closed (here η
denotes the generic point). Under extra assumptions a quasi-finite version πqf(X, x) has 
also been studied, i.e. a fundamental group scheme classifying all the quasi-finite pointed 
torsors over X.

After Nori’s work the next step was to carry forward FGS construction for non-reduced 
pointed schemes defined over a field or more generally over a Dedekind scheme S with a 
section x ∈ X(S). It is known that the category of all finite torsors over a non-reduced 
scheme X defined over S is not cofiltered in general ([15, Remark 1.3. (iii)]). In [2], 
the first author made an attempt to construct FGS in this setting by showing that the 
category of finite pointed Galois torsors (see Definition 2.1) is cofiltered. Unfortunately 
proof in [2] contains a mistake, in fact here we give an actual counterexample to his 
claim (cf. Example 2.3). In this paper we keep the same idea of [2] i.e. considering Galois 
torsors instead of taking all of them but in a larger category of pro-finite torsors. Only 
in this new environment we are able to show that there exists a Galois torsor (which 
will be called universal) dominating all the finite Galois torsors (cf. Theorem 3.4). The 
structural group scheme of this universal torsor will be denoted by ℵ(X, x) and called 
the pseudo-fundamental group scheme (PFGS) of X at the point x. In general this 
new object PFGS need not be unique though any two such PFGS are dominated by 
a third one. However, in [5] Borne and Vistoli generalized the notion of Nori’s FGS to 
fundamental gerbe, which applies to schemes, algebraic stacks, and more generally to a 
fibered category even in absence of rational points. Using Nori’s approach they proved 

2 In [3] it has been pointed out that the perfectness assumption for the field k was only needed to ensure 
that H0(X, OX) = k, so instead of considering only perfect fields one can take any field k with the additional 
assumption on the scheme X that H0(X, OX) = k.
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that a fibered category X has a fundamental gerbe if and only if it is inflexible [5, 
Theorem 7. and 7.13].

It is clear that whenever X admits a fundamental group scheme π(X, x) then it 
coincides with ℵ(X, x), up to a unique isomorphism. It is natural to wonder how the 
natural morphism π(Xred, x) → ℵ(X, x) behaves, provided π(Xred, x) exists. In the étale 
case this morphism is known to be an isomorphism (cf. [12, I, Théorème 8.3]). We will 
discuss this at the end of §3.1.

In [6], Borne and Vistoli proved that for a fibered category X , under some mild as-
sumptions, has a virtually abelian and a virtually unipotent fundamental group gerbe. 
Those are pro-algebraic (not necessarily pro-finite) group gerbes. The techniques used in 
this paper will also work in this general setting. In particular this allows us to construct 
a universal torsor dominating all the Galois objects in the category of pointed algebraic 
torsors (i.e. those torsors whose structural group scheme is affine and of finite type), im-
plying the existence of a algebraic pseudo-fundamental group scheme ℵ(X, x)alg satisfying 
similar properties. This is the biggest possible affine torsor over X, thus dominating all 
the others constructed so far. The importance of introducing ℵ(X, x)alg is also the pos-
sibility to have a finer invariant than π(X, x); indeed in Lemma 3.6 we show that if X is 
a smooth and connected projective scheme over a field k, then ℵ(X, x)alg is trivial if and 
only if X is a point. It may thus be useful to study this object from an anabelian point 
of view. Moreover, as pointed out in [6], an algebraic (not pseudo) fundamental group 
scheme does not exist in general: this means that there is no (unique) universal torsor 
dominating all the algebraic affine torsors, but if we are willing to give up on the unicity 
of our (uni)versal object, then we can find a biggest torsor dominating all the others. 
Furthermore, again, the same techniques are used in §3.2 to define a non pointed version 
of pseudo-fundamental group schemes in the pro-finite and the pro-algebraic environ-
ments. In the classical case Nori used two properties very crucially to prove existence 
and uniqueness of the fundamental group scheme π(X, x). One is underlying scheme X
is reduced and other is torsors are finite and pointed. This helped him to prove that 
the category of finite torsors is cofiltered, hence the existence of the π(X, x)-universal 
torsor [13, Chapter II, Proposition 2]. Whereas our approach allows us to drop these 
two strong conditions and we show the existence of ℵ(X) which classifies all pro-finite 
torsors having the desired universal property. The generality of our method also allows 
us to construct such object ℵ(X)alg in pro-algebraic setting. This last construction also 
represents an alternative to the fundamental groupoid schemes and fundamental gerbes
already considered in [9] and [5] respectively when we want to bypass the existence of a 
rational point.

2. Preliminaries

Let S be any Dedekind scheme (e.g. the spectrum of a field or a discrete valuation 
ring) and η = Spec(K) be its generic point. Let X be a scheme over S endowed with 
a S-valued point x : Spec(S) → X. A triple (Y, G, y) over X is a fpqc-torsor Y → X, 
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under the (right) action of a flat affine S-group scheme G together with a S-valued point 
y ∈ Yx(S). The morphism between two triples (Y, G, y) → (Y ′, G′, y′) are morphisms of 
S-schemes α : G → G′ and a G-equivariant morphism β : Y → Y ′ such that β(y) = y′. 
The category whose objects are triples (Y, G, y) with the additional assumption that 
G is finite and flat is denoted by P(X). We denote by Pro − P(X) the pro-category 
of P(X) whose objects are projective limits of objects in P(X) and as usual for any 
two objects (Y, G, y) = lim←−−i

(Yi, Gi, yi), (T, M, t) = lim←−−j
(Tj , Mj , tj) in Pro − P(X)), 

morphisms between them is given by

Hom ((Y,G, y), (T,M, t)) = lim←−−
j

lim−−→
i

HomP(X) ((Yi, Gi, yi), (Tj ,Mj , tj)) .

P ro − P(X) is a full subcategory of the category P(X) whose objects are triples of 
torsors under the action of affine and flat group schemes. The same is true for Pro −
Palg(X), where Palg(X) is the category of triples (Y, G, y), as before, with the only 
difference that G is now flat and affine.

Definition 2.1. We say that an object (Y, G, y) of P(X) (resp. of Pro −P(X)) over X is 
Galois relatively to P(X) (resp. to Pro − P(X)) if for every triple (Y ′, G′, y′) of P(X)
(resp. of Pro − P(X)) and every morphism (Y ′, G′, y′) → (Y, G, y) the group scheme 
morphism G′ → G is faithfully flat (or, equivalently the morphism Y ′ → Y is faithfully 
flat). The full subcategory of P(X) (resp. of Pro −P(X)) whose objects are Galois triples 
is denoted by G(X) (resp. G(X)′). In a similar way we define Galg(X) and Galg(X)′ as 
full subcategories of P(X) and Pro −P(X) respectively.

Notice that a Galois triple is minimal in the sense that any morphism (Z, H, z) →
(Y, G, y) where (Y, G, y) is Galois and H → G is generically a closed immersion is nec-
essarily an isomorphism. Full details of its construction will be given in Proposition 2.9.

Remark 2.2. A projective limit of objects of G(X) denoted as Pro −G(X) is an object of 
G(X)′ [[11], section 8.3.8]. We can restate this saying that Pro −G(X) is a full subcategory 
of G(X)′. It is not clear to us if the inclusion functor is essentially surjective.

If the category G(X) was cofiltered we could easily deduce the existence of a universal 
torsor projective limit of all the objects in G(X) (unique up to a unique isomorphism). 
Unfortunately it is not true in general when X is not reduced. Indeed we provide an 
example where an object of G(X) where X = Spec(k[x]/x2) has a non trivial automor-
phism, which implies that G(X) is not cofiltered:

Example 2.3. Here we show that if X = Spec(k[x]/x2), where k is a field of characteris-
tic 2, the category G(X) is not cofiltered. It is sufficient to find a k-group scheme G and a 
pointed G-torsor Y in G(X) and an automorphism (in G(X)) different from the identity. 
We choose G := α2 = Spec(k[x]/x2) and Y := Spec(k[x, y]/(x2, y2 + x)) is a G-torsor 
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pointed in the origin. It is not trivial as for all a ∈ k[x]/x2, x �= a2. A non-trivial pointed 
α2 torsor is therefore necessarily Galois. The right action of G on Y can be described as 
a coaction as follows:

ρ : k[x, y]/(x2, y2 + x) → k[x]/x2 ⊗k k[x, y]/(x2, y2 + x)
x �→ 1 ⊗ x

y �→ x⊗ 1 + 1 ⊗ y

and this action is giving the following isomorphism making Y a G-torsor:

k[x,y]
x2,y2+x ⊗k[x]/x2

k[x,y]
x2,y2+x → k[x]

x2 ⊗k
k[x,y]

x2,y2+x

1 ⊗ x �→ 1 ⊗ x

1 ⊗ y �→ 1 ⊗ y

y ⊗ 1 �→ x⊗ 1 + 1 ⊗ y.

Now we consider the morphism of k[x]/x2-algebras

ϕ# : k[x, y]/(x2, y2 + x) → k[x, y]/(x2, y2 + x), y �→ x + y

and we observe that it commutes with the coaction as (id ⊗ ϕ#)ρ = ρϕ#. The induced 
morphism of X-schemes ϕ : Y → Y and the identity morphism on G give a morphism 
in G(X), different from the identity. Hence G(X) is not cofiltered.

Remark 2.4. The existence of the above counter-example can be also seen as a conse-
quence of a more general fact: If Y → X is a G-torsor with G being commutative and 
connected then any g ∈ G(X)\1G(X) is a G-equivariant automorphism of Y over X which 
sends the (unique) k-point maps to itself. We choose to give the above constructional 
proof because of its simplicity.

We recall the following well known definition from category theory which will be used 
crucially in this paper.

Definition 2.5. A skeleton of a category C is a full subcategory Sk(C) in which every 
object in C is isomorphic to an object in Sk(C) and no distinct objects in Sk(C) are 
isomorphic in C.

Theorem 2.6. A skeleton of C always exists. Every skeleton of C is equivalent to C.

Proof. Cf. [1], Proposition 4.14. �
Definition 2.7. A S-morphism i : Y → Z is said to be a generically closed immersion if 
its restriction iη : Yη → Zη to η is a closed immersion. When S is the spectrum of a field 
that simply means that i is a closed immersion.
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Remark 2.8. A S-morphism of group schemes G → G′ can be factored into a faithfully 
flat morphism G → Q, a model map3 (i.e. generically an isomorphism, as defined for 
instance in [7]) Q → M and a closed immersion M → G′. When S has dimension 0 then 
Q → M is an isomorphism.

Proposition 2.9. Given an object (Y, G, y) of Pro −P(X), there exists an object (T, H, t)
of G(X)′ and a morphism (T, H, t) → (Y, G, y) where T → Y (or equivalently H → G) is 
a generically closed immersion. We say in this case that (T, H, t) is contained in (Y, G, y).

Proof. Let CY denote the category whose objects are (A, H, a, f) where (A, H, a) is an 
object in Pro−P(X) and f : A −→ Y is a generically closed immersion in Pro−P(X)
which takes the point a to y. By abuse of notation we denote an object in CY by (A, f). 
We first need to prove that isomorphism classes of objects in CY forms a set. First 
we claim that the possible such H’s forms a set, indeed the coordinate ring of H are 
sub-algebras of quotients of the coordinate ring of generic fiber of G. Given such a H → G

we have to deal with the possible H-torsors Q with a map Q → Y . Choose a presentation 
H = lim←−−q

Hq. From the map H → G = lim←−−i
Gi we find indexes qi and maps Hqi → Gi. 

The Hqi-torsor induced by the Qi’s of finite type over X and as a map of the Gi-torsor 
induced by Y . Since the set of q’s is given we have a set of possible Q. Since sections 
Q(S) are a set, we are done.

Now we need to prove that between two objects (A, f) and (B, g) there is at most one 
morphism: indeed if such a morphism exists then it turns out to be generically closed 
immersions h : A −→ B such that following diagram commutes:

A

h

f
Y

B

g

Note that the only endomorphism of any object in CY is the identity: it is easy to ver-
ify over the generic point η of S then we observe that since A is flat, then the same 
holds globally. Then the isomorphism classes of objects of CY form a partially ordered 
set. It is now an easy application of Zorn’s Lemma the existence of a minimal element 
(Ymin, Gmin, ymin) in Pro − P(X). To show that it is Galois, assume it is not, then 
there exists (as recalled in Remark 2.8) a triple (U, M, u) in Pro − P(X) and a mor-
phism (U, M, u) → (Ymin, Gmin, ymin) which is not faithfully flat. Hence it will factor 
through a faithfully flat morphism (U, M, u) → (U ′, M ′, u′) and a generically closed im-
mersion (U ′, M ′, u′) → (Ymin, Gmin, ymin) contradicting the minimality, so we can set 
(T, H, t) := (Ymin, Gmin, ymin)). �
3 Notice that a model map is not in general a monomorphism: monomorphisms are stable after base 

change, and special fibers of model maps are often not monomorphisms.
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Corollary 2.10. Given two objects (Yi, Gi, yi) in G(X)′, i = 1, 2, there exists an object 
(Y3, G3, y3) ∈ G(X)′ with morphisms (Y3, G3, y3) → (Yi, Gi, yi), for i = 1, 2.

Proof. It is sufficient to consider (Y1×X Y2, G1×SG2, y1×k y2) and then to take a Galois 
triple contained in it following Proposition 2.9. �
Remark 2.11. Note that in the proof of Proposition 2.9 we have not used any property 
of finite group schemes. Therefore instead of working with P(X) we can work with 
Palg(X) and the proof of Proposition 2.9 goes through exactly in similar fashion, hence 
the Corollary 2.10.

3. The pseudo-fundamental group scheme

We first study the problem of the existence of a group scheme classifying all finite (resp. 
affine and of finite type) torsors in the “classical” case of pointed schemes, considering 
maps between torsors sending the marked point of the source torsor to the marked point 
of the target. For this reason at the end of §3.1 we will be able to compare ℵ(X, x) to 
π(Xred, x), the latter being Nori’s fundamental group scheme. In §3.2 we will provide a 
short overview on the category of non pointed torsors.

3.1. The case of pointed torsors

Definition 3.1. The S scheme X has a pseudo-fundamental group scheme (PFGS) ℵ(X, x)
if there is a triple ( ̂X, ℵ(X, x), ̂x) in the category G(X)′ such that for each object (Y, G, y)
in G(X) there is a morphism ( ̂X, ℵ(X, x), ̂x) → (Y, G, y). In this case ̂X is called the 
universal ℵ(X, x)-torsor over X pointed in x̂.

Remark 3.2. Though the PSGS may not be unique whenever ( ̂X, ℵ(X, x), ̂x) and ( ̂X ′,

ℵ(X, x)′, ̂x′) are two PFGS triples for X then there exists a third one ( ̂X ′′, ℵ(X, x)′′, ̂x′′)
dominating both. This is an easy consequence of Corollary 2.10. However this does not 
imply the existence of a (even) bigger one dominating all of them. Moreover if the PFGS 
of X is known to be finite then all the universal triples are of course all isomorphic (but 
the isomorphism may not be unique unlike in Nori’s case). For finite type torsors one can 
similarly define the algebraic pseudo-fundamental group scheme (APFGS) ℵalg(X, x) as 
an object ( ̂Xalg, ℵalg(X, x), ̂x) in Galg(X)′.

Definition 3.3. For two triples (Y1, G1, y1) and (Y2, G2, y2) in G(X)′ (resp. Galg(X)′) we 
say that (Y1, G1, y1) dominates (Y2, G2, y2) if there exists a (maybe not unique) morphism 
(Y1, G1, y1) → (Y2, G2, y2).

Theorem 3.4. Let X be a scheme over S with a S-valued point x. Then X has a PFGS 
(resp. APFGS) ℵ(X, x) (resp. ℵalg(X, x))).
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Proof. The proof for the existence of PFGS and APFGS are exactly similar. Here we 
give a proof for the existence of PFGS. In order to simplify the discussion we only 
consider finite and pro-finite torsors, discussion on (pro-)algebraic torsors will be identical 
(mutatis mutandis). Moreover a triple (Z, G, y) (a G-torsor Z pointed in y over x) will 
simply be denoted by Z. Let us consider Sk(qG(X)) the skeleton of the quotient category 
(with one single morphism) of G(X), the latter being the category of Galois finite torsors. 
We put on I := Ob(Sk(qG(X))) (which is a set) a well order (Ob(Sk(qG(X))), ≺):

Z1, Z2, ..., Zα, ...

then we argue like this: we call Z ′
2 a torsor in G′(X) dominating both Z1 and Z2 (it 

always exists by Corollary 2.10). Then we call Z ′
3 a torsor in G′(X) dominating both Z ′

2
and Z3 and we go on like this thus obtaining a chain in G′(X). Applying the functor 
Sk ◦ q we obtain a chain of morphisms

... → Z ′
β → ... → Z ′

α → ... → Z ′
3 → Z ′

2 → Z1(†)

in Sk(q(G′(X))). Without loss of generality we can assume that Z ′
i’s are distinct. This 

because in Sk(q(G′(X)), for any two object A and B, A = B if and only if Hom(A, B)
and Hom(B, A) are both nonempty. Lifting the chain † to any chain in G′(X) we com-
pute the projective limit Ẑ. Since Pro(Pro(P (X))) is equivalent to Pro(P (X)) ([8], 
Theorem 2.17) Ẑ is an element of Pro(P (X)) and by applying Proposition 2.9 we can 
assume it to be an element of G(X)′. �

Let now X be a connected S-scheme of finite type with a given section x ∈ X(S). Let 
Xred be its reduced part. As precised in §1 we assume that for Xred we are able to build 
the fundamental group scheme π(Xred, x); this is always possible when dim(S) = 0. We 
choose a PFGS ℵ(X, x) and a universal ℵ(X, x)-torsor ̂X → X, pointed in x̂ ∈ ̂Xx(k). 
We consider its pullback ̂XX over X and the unique morphism of torsors

ϕred : XN → ̂X

where XN → X is the (“N” stands for Nori) universal π(Xred, x)-fundamental group 
scheme. Though in characteristic 0 this morphism is known to be an isomorphism, in 
positive characteristic this is no longer true: for instance when S = Spec(k), k being 
a field with char(k) = 2, X = Spec(k[x]/x2), in Example 2.3 we recalled that over 
X = Spec(k[x]/x2) there are non trivial Galois pointed torsors while over Xred = Spec(k)
there are only trivial pointed torsors. So in this case ϕred is trivially a closed immersion. 
In general we have the following:

Proposition 3.5. Let X be any affine scheme of finite type over a Dedekind scheme S, 
endowed with a section x ∈ X(S). And let Xred its reduced part, for which we assume it 
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admits a fundamental group scheme π(Xred, x). Let moreover ℵ(X, x) be a PFGS of X
then the morphism i : Xred → X induces a closed immersion

ϕred : π(Xred, x) → ℵ(X,x).

Proof. This follows essentially from [2, Section 3.2], indeed we know that every finite 
torsor over Xred can be extended over X, then in particular we get a morphism q :
ℵ(X, x) → π(Xred, x) such that q ◦ ϕred = idπ(Xred,x). This implies that ϕred is a closed 
immersion. �

In a similar way one can study the morphisms between ℵalg(Xred, x) and ℵalg(X, x).

Lemma 3.6. If X is a smooth and connected projective scheme over a field k then 
ℵalg(X, x) is trivial if and only if X = Spec(k).

Proof. If X is not a point it is sufficient to consider the closed immersion j : X → P
n
k , 

some n ∈ N, and to observe that j ∗ (OP
n
k
(1)) is a non trivial line bundle. This gives rise 

to a non trivial Gm-torsor Y over X. �
This is false and well known for π(X, x): for instance π(Pn

k , x) is known to be trivial.

3.2. The case of non pointed torsors

In §1 we made clear that we first defined the pseudo fundamental group scheme 
giving a S-valued point x on X in order to compare it to Nori’s fundamental group 
scheme whose constructions (both the tannakian and the pro-finite) always need a given 
point. However when we work over non algebraically closed fields or Dedekind schemes it 
can be useful to have a similar object even when such a point does not exist. The reader 
certainly observed that the proofs of §3.1 still holds if the base scheme X and torsors are 
not pointed. Without repeating the proofs we only introduce new definitions and recall 
the main properties following same arguments of §3.1. Here T (X) and Pro −T (X) will 
denote respectively the category of finite torsors over X and that of pro-finite torsors 
over X.

Definition 3.7. We say that an object (Y, G) of Pro − T (X) is Galois if for every object 
(Y ′, G′) of Pro − T (X) and every morphism (Y ′, G′) → (Y, G) the group scheme mor-
phism G′ → G is faithfully flat (or, equivalently the morphism Y ′ → Y is faithfully flat). 
The full subcategory of Pro − T (X) whose objects are Galois is denoted by F(X).

Definition 3.8. X has a global pseudo-fundamental group scheme ℵ(X) if there is a pair 
( ̂X, ℵ(X)) in the category F(X) such that for each object (Y, G) of F(X) there is a 
morphism ( ̂X, ℵ(X)) → (Y, G). In this case ̂X is called the universal ℵ(X)-torsor over X.
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Again it is clear by this definition that whenever ℵ(X) and ℵ(X)′ are two distinct 
global pseudo-fundamental group schemes then we have two (maybe not unique) faith-
fully flat morphisms ℵ(X)′ → ℵ(X) and ℵ(X) → ℵ(X)′ whose compositions are not 
necessarily automorphisms.

Theorem 3.9. Let X be a scheme over a Dedekind scheme S. Then X has a global pseudo-
fundamental group scheme ℵ(X).

In a similar way one can define the global algebraic pseudo-fundamental group scheme
ℵalg(X) (with a obvious meaning) of a scheme X without specifying the existence of a 
section x ∈ X(S) and verify that the statements just recalled still hold. The following 
remark will conclude the paper:

Remark 3.10. When S is the spectrum of an algebraically closed field, x ∈ X any point 
and we assume that X has a fundamental group scheme π(X, x) then it is not difficult 
to prove that π(X, x) and ℵ(X) are isomorphic.
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