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MSH3 modifies somatic instability and disease
severity in Huntington’s and myotonic
dystrophy type 1
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The mismatch repair gene MSH3 has been implicated as a genetic modifier of the CAG�CTG repeat expansion disorders

Huntington’s disease and myotonic dystrophy type 1. A recent Huntington’s disease genome-wide association study found

rs557874766, an imputed single nucleotide polymorphism located within a polymorphic 9 bp tandem repeat in MSH3/DHFR,

as the variant most significantly associated with progression in Huntington’s disease. Using Illumina sequencing in Huntington’s

disease and myotonic dystrophy type 1 subjects, we show that rs557874766 is an alignment artefact, the minor allele for which

corresponds to a three-repeat allele in MSH3 exon 1 that is associated with a reduced rate of somatic CAG�CTG expansion

(P = 0.004) and delayed disease onset (P = 0.003) in both Huntington’s disease and myotonic dystrophy type 1, and slower

progression (P = 3.86 � 10�7) in Huntington’s disease. RNA-Seq of whole blood in the Huntington’s disease subjects found

that repeat variants are associated with MSH3 and DHFR expression. A transcriptome-wide association study in the

Huntington’s disease cohort found increased MSH3 and DHFR expression are associated with disease progression. These results

suggest that variation in the MSH3 exon 1 repeat region influences somatic expansion and disease phenotype in Huntington’s

disease and myotonic dystrophy type 1, and suggests a common DNA repair mechanism operates in both repeat expansion

diseases.
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Introduction
Huntington’s disease and myotonic dystrophy type 1

(DM1) are autosomal dominant disorders caused by

CAG�CTG trinucleotide repeat expansions. Huntington’s

disease is characterized by a progressive movement dis-

order, cognitive impairment and psychiatric symptoms

(Bates et al., 2014), and DM1 by myotonia, muscular dys-

trophy, cognitive impairment, cardiac conduction defects

and endocrine dysfunction (Harper, 2001). No disease-

modifying treatments are available for either (Bates et al.,

2015; Meola and Cardani, 2015).

Huntington’s disease is caused by a (CAG)n repeat ex-

pansion in HTT exon 1 and DM1 by a (CTG)n expansion

in the 30 untranslated region (UTR) of DMPK (Brook

et al., 1992; Bates et al., 2014). In both, inherited repeat

length is the major determinant of disease course, correlat-

ing inversely with the age at onset and positively with

disease severity. The repeat is unstable, and expansion

during germline transmission results in genetic anticipa-

tion (Hunter et al., 1992; Bates et al., 2014). Repeat

tracts are also unstable in somatic cells, tending to

expand over time, particularly in Huntington’s disease

striatum (Kennedy et al., 2003) and DM1 muscle

(Ashizawa et al., 1993), the most prominently affected

tissues in each disease. Such expansion-biased, age-de-

pendent and tissue-specific somatic instability is thought

to contribute to disease onset and progression (Kennedy

et al., 2003; Shelbourne et al., 2007; Swami et al., 2009;

Morales et al., 2012).

In mouse models, the DNA mismatch repair proteins

MSH2 and MSH3 are essential for CAG�CTG repeat ex-

pansion, and their inactivation limits expansion events and

improves disease phenotype (van den Broek et al., 2002;

Foiry et al., 2006; Dragileva et al., 2009; Pinto et al., 2013;

Tome et al., 2013). In patients with DM1, a candidate gene

association study reported a coding single nucleotide poly-

morphism (SNP) (rs26279, p.A1045T) in MSH3 exon 23

that was associated with the rate of somatic expansion

(Morales et al., 2016). Genome-wide association studies

(GWAS) in patients with Huntington’s disease identified

variation in DNA repair genes that modify disease course,

and pathway analyses in each study further highlighted

DNA repair (GeM-HD, 2015; Moss et al., 2017; Lee

et al., 2017). Such variants also influence onset in other

CAG expansion diseases, suggesting a common mechanism

operates in conditions caused by repeat expansion

(Bettencourt et al., 2016). The lead variant in a recent

GWAS linking MSH3 with Huntington’s disease progres-

sion was the imputed SNP rs557874766, which nominally

results in Pro67Ala at the N-terminus (Moss et al., 2017).

However, rs557874766 is located within a 9 bp tandem

repeat in exon 1 of MSH3 and the 50 UTR of the dihydro-

folate reductase gene (DHFR) on the opposite strand. This

repeat is polymorphic in copy number (Nakajima et al.,

1995; Morales et al., 2016) and sequence (Morales,

2006), which led us to hypothesize that rs557874766

could be an alignment artefact. Additionally, the 500-bp

region flanking the MSH3 repeat is highly polymorphic,

containing six SNPs and a 1-bp indel. We conducted tar-

geted Illumina sequencing of the MSH3 exon 1 region in

218 Huntington’s disease and 247 DM1 subjects, which

allowed us to obtain accurate haplotype information for

the region. Using whole blood RNA-Seq in Huntington’s

disease, we investigated whether sequence variation at the

MSH3/DHFR locus influences their expression.

Materials and methods

Cohorts

The 218 Huntington’s disease subjects were from TRACK-HD
(Tabrizi et al., 2009). The DM1OPTIMISTIC cohort of 247 sub-
jects was from OPTIMISTIC (van Engelen and Consortium,
2015) and the independent DM1CostaRica cohort of 199 sub-
jects was previously reported in Morales et al. (2016).

Progenitor allele length

Progenitor pure CAG length for Huntington’s disease was
determined by MiSeq sequencing (Ciosi et al., 2018). Five sub-
jects were excluded because they were part of a twin pair
(n = 1) or the progenitor CAG length could not be unambigu-
ously identified (n = 4) (Ciosi et al., unpublished results). DM1
progenitor allele length was determined by small pool PCR
(van Engelen and Consortium, 2015; Cumming et al., in
press). DM1 patients were tested for CCG repeat interrup-
tions, known cis-modifiers of CTG repeat stability and disease
phenotype (Cumming et al., 2018, in press).

Phenotypes

Two phenotypes were common to both cohorts: age at onset
and rate of somatic expansion of the pathogenic CAG�CTG
repeat. Huntington’s disease age at onset represents onset of
motor symptoms (Tabrizi et al., 2009). DM1 age at onset was
subject self-assessment of the first occurrence of symptoms
likely related to DM1 (Cumming et al., in press). Somatic
CAG�CTG expansion in blood was previously quantified in
both cohorts (Ciosi et al., unpublished results; Cumming
et al., in press). For Huntington’s disease MiSeq data, the
measure of somatic expansion was the proportion of reads
in the sample that correspond to somatic expansions (reads
with more CAG repeats than the progenitor allele) relative to
the number of reads obtained for the progenitor allele (Ciosi
et al., unpublished results). For DM1, it was the difference in
number of repeats between the modal allele and the estimated
progenitor allele length (Cumming et al., 2018). In both co-
horts, relative rate of somatic expansion corresponds to the
variation in the measures of somatic expansion that is not
explained by age and CAG�CTG repeat length. Positive
values reflect a faster rate of somatic expansion.

Two phenotypes were only available for Huntington’s dis-
ease; progression score (Moss et al., 2017) and gene expres-
sion. Progression score was derived for 213 TRACK-HD
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subjects in Ciosi et al. (unpublished results), as described in
Moss et al. (2017). It measures typical Huntington’s disease
progression that is not explained by age and pure CAG repeat
length, with positive scores reflecting faster progression. Blood
MSH3 and DHFR expression levels were available for 108
Huntington’s disease subjects (Moss et al., 2017).

Illumina sequencing of MSH3 exon 1

MiSeq amplicon sequencing, adapted from Ciosi et al. (2018),
was used to genotype the MSH3 exon 1 repeat and flanking
variants (Supplementary Fig. 1). The region was amplified
using locus-specific primers incorporating Illumina indexed
adaptors (Supplementary Table 1) (Ciosi et al., 2018). PCR
was carried out using 10 ng of blood genomic DNA, 10%
DMSO, 1 mM of each primer, 1� Custom PCR master mix
(Thermo Scientific, SM0005), 0.048% (v/v) 2-mercaptoethanol
and 0.5 U of Taq polymerase (Sigma) in a total volume of
10 ml. Thermal cycling conditions were: an initial denaturation
at 96�C for 5 min, followed by 30 cycles of (96�C for 45 s),
(60�C for 45 s) and (70�C for 2 min), with a final extension at
65�C for 1 min followed by 70�C for 10 min. Six hundred
sequencing cycles were run 400 nt forward, 200 nt reverse.
Quality control confirmed 480% of bases had Phred quality
430.

Bioinformatic analyses

Genotyping was conducted on the University of Glasgow
Galaxy platform (heighliner.cvr.gla.ac.uk). Paired-end reads
were merged and aligned to multiple references corresponding
to potential 9 bp repeat alleles (Supplementary material), fol-
lowed by variant calling. For repeat homozygotes, haplotypes
were confirmed from .sam files using Tablet (Milne et al.,
2013). The Galaxy workflow is available at https://www.
myexperiment.org/workflows/5087.html. Conservation ana-
lysis used PhastCons and PhyloP (UCSC), with species se-
quence alignment in Clustal Omega.

Transcriptome-wide association
study

The transcriptome-wide association study (TWAS) method
of Gusev et al. (2016) was used to impute cortical gene ex-
pression from 452 dorsolateral prefrontal cortex samples
from the CommonMind Consortium (CMC, 2017) into the
TRACK-HD GWAS of Huntington’s disease progression
(n = 243) (Moss et al., 2017). Following the Gusev et al.
(2016) approach, we tested association between imputed cor-
tical gene expression and Huntington’s disease progression.

Statistical analyses

Linear regression modelling of genotype-phenotype correlation
was conducted in R (R Core Team, 2013). An additive genetic
model was used to score genotypes. For age at onset analysis,
we controlled for CAG�CTG repeat length in Huntington’s
disease and DM1, and for repeat interruptions in DM1
(Supplementary Table 4). Meta-analysis of somatic expansion
and age at onset in Huntington’s disease and DM1 was con-
ducted with METAL (Willer et al., 2010). PLINK 1.07 (Purcell

et al., 2007) was used to derive allele frequencies, Hardy-
Weinberg equilibrium (HWE) and linkage disequilibrium.
Haplotype relationships were visualized as a network using
median joining on NETWORK (Bandelt et al., 1999).

Data availability

Data are available from the corresponding author on request.

Results

Rs557874766 is an alignment artefact

We observed 16 MSH3 repeat alleles, differing in sequence

and length from three to nine repeats (Fig. 1A and

Supplementary Table 2). Alleles contained combinations

of five types of repeat units, with coding potential for pro-

line or alanine (Fig. 1A). They were numbered by repeat

length, suffixed alphabetically by frequency i.e. ‘3a’ repre-

sents the most common three-repeat allele.

The most common allele in both cohorts, 6a (Fig. 1B),

corresponds to the human reference sequence

(NC_000005.10, GRCh38.p12). Illumina sequencing re-

vealed that rs557874766 (Moss et al., 2017) was not a

SNP, but an alignment artefact resulting from the complex

9-bp repeat sequence (Fig. 1C). Individuals with the

rs557874766 minor allele instead carry a three-repeat

allele, 3a, the second most common allele observed in

both cohorts. Two subjects with Huntington’s disease

imputed as homozygous for the rs557874766 major allele

were determined to be heterozygous for the 3a repeat allele

by both Illumina and Sanger sequencing (Supplementary

Fig. 2), highlighting the importance of directly genotyping

such complex loci. We conclude that rs557874766 does

not exist in the form of an SNP and results from incorrect

alignment of the 3a allele to the reference 6a allele

(Fig. 1C).

The MSH3 exon 1 repeat region is poorly conserved be-

tween species, with mean scores of 0.29 [standard deviation

(SD) 0.41] and 0.25 (SD 0.91) in PhastCons and PhyloP,

respectively (Supplementary Table 3). Sequence alignment

of 20 mammalian reference genomes showed most have

two repeats (Supplementary Fig. 3). Together with a four-

and a five-repeat allele, the 3a allele has been observed in

gorillas and chimpanzees, suggesting 3a is an ancestral

allele in humans (Morales, 2006).

MSH3/DHFR variants are associated
with rate of somatic expansion and
disease phenotypes in Huntington’s
disease and DM1

The 3a allele correlated negatively with relative rate of

somatic expansion in subjects with Huntington’s disease

(P = 0.032) and showed similar effect direction, though

above nominal significance, in DM1 (P = 0.053) (Fig. 2
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and Supplementary Table 2). Additionally, 3a was asso-

ciated with delayed age at onset by 1.05 years

(P = 0.0029) and slower progression in Huntington’s dis-

ease by 0.52 units (P = 3.86 � 10�7), which corresponds

to 0.37 and 0.10 units per year on the UHDRS total

motor score and total functional capacity, respectively. In

DM1, the association between 3a and age at onset showed

a consistent effect direction, approaching significance

(P = 0.061). In meta-analysis, 3a was significantly asso-

ciated with relative rate of somatic expansion (P = 0.004)

and age at onset (P = 0.003) in Huntington’s disease and

DM1. Detailed analysis of the relationship between repeat

alleles and phenotypes (Supplementary Table 5) shows that

the 3a allele accounts for the reduced somatic expansion

rate, delayed onset and slower progression observed in

Huntington’s disease. The association with somatic expan-

sion appears to be driven by 3a homozygotes, whereas that

with progression seems to follow an additive pattern with

the number of 3a alleles. For onset, the pattern of associ-

ation is unclear. In DM1, the number of seven-repeat alleles

was associated with reduced expansion rate

(Supplementary Table 5).

In addition to testing repeat allele effects, we also as-

sessed correlation between flanking SNP genotypes and dis-

ease phenotypes. All the flanking variants were in HWE

(Supplementary Table 6) and in strong linkage disequilib-

rium with each other (Fig. 3B). Three variants

(rs151182735, rs10168 and rs2250063) were in nearly

complete linkage disequilibrium with the 3a allele, and as

such were as significantly associated with phenotypes

(Fig. 3A and Supplementary Table 6). All three are non-

coding variants 5’ to the repeat and their alternative alleles

are associated with reduced MSH3 and DHFR expression

in the prefrontal cortex (CMC, 2017) and in multiple tis-

sues in GTEx (GTEx, 2015) (Supplementary Table 7).

Three SNPs, rs1105524, rs1650697 and rs1677658, also

Figure 1 MSH3/DHFR 9bp tandem repeat allele structure and frequency observed in Huntington’s disease and DM1 cohorts.

(A) Schematic representation of the 9 bp tandem repeat alleles observed in this study and their coding potential. Repeat units are colour-coded by

DNA and amino acid sequence. Location of the repeat and flanking variants in relation to MSH3/DHFR locus are shown in the top panel. This locus

contains overlapping MSH3 exon 1 and DHFR promoter regions. For both MSH3 and DHFR, the 5’-untranslated region is shown in white and

coding sequence in light grey. The direction of transcription is indicated by arrows for each gene. (B) Repeat allele frequencies observed in

Huntington’s disease (HD) and DM1. Four common alleles, 3a, 6a, 7a and 8a, are observed in Huntington’s disease and DM1 cohorts at similar

frequencies. (C) Schematic showing potential misalignments of 3a and 6a alleles, resulting in the apparent SNP rs557874766, shown in red on the

lower alignment. Black marks in the top alignment represent mismatches that could be created in a similar manner as rs557874766, by mis-

alignment of the 3a and 6a repeat alleles.
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correlated with some phenotypes, though not uniformly

(Fig. 3A and Supplementary Table 6). Rs1105524 and

rs1677658 are non-coding variants, whereas rs1650697

corresponds to Ile79Val. All three are expression quantita-

tive trait loci (eQTL) for MSH3 and DHFR in the pre-

frontal cortex (CMC, 2017) and in multiple tissues in

GTEx (Supplementary Table 7). Previously, in a separate

DM1 cohort (DM1CostaRica), Morales et al. (2016) reported

association between both rs1677658 (P = 0.009) and

rs10168 (P = 0.031) and somatic expansion, though neither

survived correction for multiple testing for the candidate

SNPs analysed. However, the direction of effect for both

SNPs was the same as in the present study, and a signifi-

cant association in meta-analyses with the two DM1 co-

horts (rs1677658 P = 0.03, rs10168 P = 0.004) and all

three DM1 and Huntington’s disease cohorts (rs1677658

P = 8.85 � 10�4, rs10168 P = 3.37 � 10�4) suggests these

variants influence somatic expansion (Supplementary

Table 6). Morales et al. (2016) reported an association

between somatic expansion and age at onset, though the

direct effect of MSH3 genotype on age at onset was not

found to be significant. In the present study, meta-analyses

of the two DM1 cohorts (rs1677658 P = 0.009, rs10168

P = 0.04) and all three DM1 and Huntington’s disease co-

horts (rs1677658 P = 8 � 10�4, rs10168 P = 0.003) found

the MSH3 genotype was significantly associated with age at

onset (Supplementary Table 6). Meta-analyses of the three-

repeat allele with all three DM1 and Huntington’s disease

cohorts provide further support for its protective effect on

somatic expansion (DM1OPTIMISTIC + DM1CostaRica

P = 0.004, DM1OPTIMISTIC + DM1CostaRica + Huntington’s

disease P = 3.46 � 10�4) and age at onset (DM1OPTIMISTIC

+ DM1CostaRica P = 0.04, DM1OPTIMISTIC + DM1CostaRica

+ Huntington’s disease P = 0.003) (Supplementary Table 2).

The associations of SNPs with phenotypes were condi-

tioned on the effects of MSH3 repeat alleles

(Supplementary Table 8). As rs151182735, rs10168 and

rs2250063 perfectly correlated with 3a, their independent

effects could not be determined (Supplementary Table 6).

With the exception of rs1677658 (linkage disequilibrium

Figure 2 The number of MSH3 3a repeat alleles is associated with Huntington’s disease and DM1 phenotypes. Boxplots for three

measures of disease phenotype are shown: rate of somatic expansion corrected for the inherited CAG�CTG length in Huntington’s disease

(A) and for the inherited CAG�CTG length and variant repeats in DM1 (B); age at onset corrected for the inherited CAG�CTG length in

Huntington’s disease (C) and DM1 (D); progression score in Huntington’s disease (E). For each dataset, the diamond and horizontal line spanning

the diamond indicate the mean, the box the standard deviation and the whiskers the 95% confidence intervals of the mean. HD = Huntington’s

disease.
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with 3a: r2 = 0.610) and rs1650697 (linkage disequilibrium

with 3a: r2 = 0.143), whose alternative alleles were asso-

ciated with delayed and early age at onset, respectively in

the combined Huntington’s disease and DM1 meta-analysis

(P = 0.015 and P = 0.029; Supplementary Table 8), there

was no significant evidence for association between SNPs

and expansion rate, onset or progression independent of

repeat alleles.

Considering variants with minor allele frequency 40.1

and all of the repeat alleles, we observed 25 haplotypes

Figure 3 Variants at the MSH3/DHFR locus are associated with phenotypes in Huntington’s disease and DM1. (A) Bar charts

showing associations between variant genotypes and disease phenotypes: relative rate of somatic expansion and age at onset corrected for the

CAG�CTG length and progression score for Huntington’s disease, and rate of somatic expansion and age at onset corrected for the CAG�CTG

length and repeat interruptions for DM1. Each bar represents association for a single variant. Red dotted line represents the P = 0.05 significance

threshold. Variant location in relation to the MSH3 exon 1 region is shown in the bottom panel. White box = 5’ untranslated region; grey = coding

sequence; red = MSH3 repeat region; intron is shown by a black line. (B) Linkage disequilibrium heatmap for the seven variants flanking the MSH3

repeat. Colour intensity represents the D’ value for each SNP pair. R2 values are indicated in text for each variant pair. (C) Haplotype network for

eight haplotypes with frequency4 0.035 observed at the MSH3 exon 1 region. Circles represent different haplotypes. The size of the circle is

proportional to the number of individuals with a particular haplotype. Each haplotype is connected with the most similar haplotype by a line.

Length of the line represents the number of genotypes that are different between each two haplotypes. Circles are colour coded according to the

repeat allele found on the haplotype.
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in the region, named Hap1 to Hap25 (Supplementary

Table 9). The 3a repeat allele occurs on both Hap1 and

Hap2, which differ only in the presence of the rs1677658

alternative allele on the more common Hap2. Hap1 was

associated with reduced somatic expansion in DM1

(P = 0.032) and slower progression in Huntington’s disease

(P = 0.020), whereas Hap2 was associated with reduced

somatic expansion (P = 0.021) and delayed onset

(P = 4.03 � 10�5) in both Huntington’s disease and DM1,

and with slower progression (P = 1.64 � 10�5) and reduced

expression of MSH3 (P = 0.024) and DHFR

(P = 1.12 � 10�3) in Huntington’s disease (Supplementary

Table 9).

Overall, this analysis clarifies the sequence and variants

present in MSH3 exon 1 and demonstrates that MSH3

repeat variants are associated with disease phenotypes in

both Huntington’s disease and DM1.

MSH3 and DHFR expression in blood
is associated with repeat alleles

Each 3a allele was associated with reduced DHFR

expression (P = 2.48 � 10�4; Fig. 4C) and homozygosity

for 3a was associated with reduced MSH3 expression

(P = 0.0273; Fig. 4B), whereas each 7a or 8a allele

was associated with increased MSH3 expression

(P = 8.55 � 10�4 and P = 8.26 � 10�3, respectively). The

sum of MSH3 repeat lengths on both alleles appeared to

correlate with MSH3 (P = 7.00 � 10�3) and DHFR expres-

sion (P = 1.76 � 10�3), which would suggest increasing

repeat length increases expression of both (Supplementary

Fig. 4). However, a more detailed analysis of MSH3 repeat

alleles (Supplementary Table 5) shows the number of seven-

or eight-repeat alleles is associated with increased expres-

sion of MSH3 (P = 4.53 � 10�6), and that this explains the

apparent association with the sum of repeat lengths. In this

relatively small cohort, MSH3 (age at onset P = 0.446, pro-

gression P = 0.440) and DHFR (age at onset P = 0.911,

progression P = 0.284) expression in blood were not them-

selves directly associated with disease phenotype. MSH3

expression was not significantly associated with somatic

expansion (P = 0.625), whereas the association of DHFR

expression, while nominally significant (P = 0.049), did

not survive correction for the number of phenotypes tested.

In the detailed analysis, the number of three-repeat alleles

was associated with reduced DHFR expression

(P = 2.33 � 10�4; Fig. 4C), and this was sufficient to ex-

plain the apparent association of DHFR expression with

other repeat alleles (Supplementary Table 5), including

that observed with increasing total repeat length. DHFR

and MSH3 expression are correlated (r2 = 0.120,

P = 2.06 � 10�4; Fig. 4A). However, association between

DHFR and three-repeat alleles remains significant after cor-

recting for MSH3 expression (P = 7.51 � 10�4), and asso-

ciation between MSH3 and seven- or eight-repeat alleles

remains significant after correcting for DHFR expression

(P = 1.30 � 10�7). In the best-fitting model for DHFR ex-

pression, the alternative allele at rs1105524 (linkage dis-

equilibrium with 3a: r2 = 0.192) increases and rs1650697

decreases DHFR expression independently of the three-

repeat alleles (Supplementary Table 8). Otherwise, the

repeat allele is the major determinant of MSH3 and

DHFR expression, and there is no evidence of independent

SNP effects.

Figure 4 Association of the MSH3 3a allele with MSH3 and DHFR expression in Huntington’s disease whole blood. Whole blood

RNA-Seq in a subset of 108 Huntington’s disease subjects. (A) Significant correlation between MSH3 and DHFR expression levels (r2 = 0.120,

P = 2.06 � 10�4). Grey area around the blue regression line represents 95% confidence interval of the model. (B) Homozygosity for MSH3 3a

repeat allele is associated with lower MSH3 expression in blood (P = 0.028). (C) MSH3 3a repeat allele is associated with lower DHFR expression

(P = 2.33 � 10�4). Rpkm = reads per kilobase of transcript per million mapped reads. In boxplots, the diamond and horizontal line spanning the

diamond indicate the mean, the box indicates the standard deviation and the whiskers indicate the 95% confidence intervals of the mean.
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MSH3 expression in cortex is
associated with onset and progression
in Huntington’s disease

In a TWAS, increased expression of both MSH3 and

DHFR in prefrontal cortex (CMC, 2017) was associated

with faster progression in TRACK-HD (Moss et al.,

2017) at similar levels of significance (P = 2.52 � 10�6

and P = 4.08 � 10�6, respectively; Supplementary Table

10), making it difficult to distinguish which is more func-

tionally relevant. This ties in with the observation that

SNPs significantly associated with somatic expansion, age

at onset and progression (Supplementary Table 6) were

eQTLs for both MSH3 and DHFR in CMC data.

Notably, however, increased MSH3 expression was signifi-

cantly associated with early onset (P = 1.71 � 10�3) in a

TWAS of the GeM dataset (GeM-HD, 2015), while

DHFR expression was not significantly associated with

onset (Supplementary Table 10). This favours MSH3 over

DHFR expression as a modifier of Huntington’s disease

course.

Discussion
MSH3 has recently been identified as a genetic modifier of

somatic instability in DM1 (Morales et al., 2016), and pro-

gression in Huntington’s disease (Moss et al., 2017). The

MSH3 signal in the GWAS of Huntington’s disease pro-

gression was driven by an imputed SNP, rs557874766,

located within a 9 bp tandem repeat sequence in exon 1

of MSH3, which is also in the 50 UTR of DHFR on the

opposite strand. MSH3 and DHFR are organized head-to-

head, transcribed in opposite directions and are regulated

by the same promoter. Here we demonstrate that

rs557874766 is an alignment artefact and corresponds to

a three-repeat allele, 3a, which was the shortest repeat

allele observed and is likely ancestral. At the protein

level, in silico modelling predicts that 6a results in the

gain of a surface �-helix (Kallberg et al., 2012) at the N-

terminus of MSH3.

A total of 16 MSH3 repeat alleles were observed, varying

in sequence and length from three to nine repeats. Repeat

alleles 6a and 3a are the first and second most common in

this European cohort, though previous studies suggest a

seven-repeat allele may be second most common in East

Asian populations (Nakajima et al., 1995). In

Huntington’s disease, 3a was associated with reduced som-

atic expansion, delayed onset and slower progression. In

DM1, each 3a allele showed a trend towards reduced som-

atic expansion and delayed onset but was significantly asso-

ciated with both measures in meta-analysis of Huntington’s

disease and DM1. Longer seven-repeat alleles were asso-

ciated with reduced somatic expansion only in DM1.

Whether this reflects a subtle difference in MSH3 biology

between the two disorders, or simply a sampling error, re-

mains undetermined.

The MSH3 repeat lies between binding domains for

PCNA (Clark et al., 2000) and EXO1 (Schmutte et al.,

2001), both of which are involved in mismatch repair

(MMR) (Kleczkowska et al., 2001). PCNA is a sliding

clamp that participates in DNA replication, but in MMR

it delivers MSH proteins to mismatches and increases bind-

ing specificity (Flores-Rozas et al., 2000). EXO1 excises the

daughter strand after mismatch recognition, as well as

being involved in end resection during homologous recom-

bination (Goellner et al., 2015). The MSH3 repeat region is

poorly conserved between species, with other mammals

having between zero and five repeats. This lack of evolu-

tionary constraint suggests functional redundancy in the

MMR pathway and a lack of a major effect of N-terminal

MSH3 variation outside the context of repeat expansion

disease. Unlike other MMR components, germline hetero-

zygous MSH3 mutations are not associated with increased

risk of cancer, most likely because MSH2/MSH6 can also

initiate repair at replication errors (Edelmann et al., 2000;

Jiricny, 2006; Haugen et al., 2008).

Three non-coding variants 5’ of the repeat were in near

complete linkage disequilibrium with 3a, so it is not pos-

sible to determine their independent effects on disease

phenotypes. All three are associated with reduced MSH3

expression in multiple tissues, including cortex (CMC and

GTEx). Controlling for repeat alleles, no SNPs were signifi-

cantly associated with phenotypes, except the intronic

rs1677658 and the exon 1 rs1650697 variants, which con-

tributed to delayed or early onset, respectively in the com-

bined Huntington’s disease and DM1 dataset. Rs1677658

was associated with reduced MSH3 and DHFR expression

(CMC and GTEx), whereas rs1650697 was associated with

increased DHFR in Huntington’s disease blood, as well as

multiple tissues in GTEx. Hap2, the MSH3 haplotype most

significantly linked with reduced somatic expansion and

delayed onset in Huntington’s disease and DM1, and

with slower progression in Huntington’s disease, contains

the 3a allele, along with alternative alleles of non-coding

variants rs151182735, rs10168 and rs2250063, which are

in complete linkage disequilibrium with it, and rs1677658.

It is thus difficult to assess which (if any) MSH3 variants

(repeats or SNPs) are driving associations with disease

phenotypes, and further investigation in a larger sample is

warranted.

Whole blood transcriptomic analysis in a subset of the

Huntington’s disease patients found the 3a allele was asso-

ciated with reduced expression of MSH3 and DHFR, and

seven- or eight-repeat alleles with increased MSH3 expres-

sion. DHFR, which shares a promoter with MSH3
(Drummond, 1999), is a ubiquitously expressed enzyme

involved in purine, thymidylic acid and amino acid synthe-

sis, but has not previously been implicated in Huntington’s

disease pathogenesis. Our TWAS found that increased ex-

pression of MSH3 and DHFR in cortex are associated with

faster Huntington’s disease progression (Moss et al., 2017).
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While MSH3 expression was significantly associated with

early onset in our GeM TWAS (P = 1.71 � 10�3) (GeM-

HD, 2015), DHFR expression was not associated with dis-

ease course. This is consistent with Huntington’s disease

mouse brain, in which expression of MSH3, but not

DHFR, correlates with somatic expansion (Tome et al.,

2013). Neither MSH3 nor DHFR expression in blood

was significantly associated with somatic expansion, onset

or progression in this sample. However, investigation in a

larger sample, or in a more relevant tissue, such as stri-

atum, would be of interest.

Collectively, our results suggest the MSH3 3a repeat

allele reduces somatic expansion and improves phenotype

in both Huntington’s disease and DM1, potentially through

altering MSH3 expression levels. However, given the prox-

imity of the repeat region to MMR protein binding do-

mains, the 3a allele could also alter MSH3 function in

the recognition and repair of insertion-deletion loops,

double-strand breaks or single-strand annealing (Lyndaker

and Alani, 2009; Schmidt and Pearson, 2016). Repetitive

DNA sequences form unusual secondary structures such as

slipped strands, hairpin loops, G-quadruplexes and R-loops

(Mirkin, 2007; Neil et al., 2017), the stability of which

correlates with expansion (Gacy et al., 1995). MSH3 may

recognize these structures (Owen et al., 2005) and initiate

repair, during which out of register synthesis could result in

repeat expansion (Khan et al., 2015; Neil et al., 2017). This

preliminary study elucidates variation in MSH3 that modi-

fies Huntington’s disease and identifies the same signal in

an independent trinucleotide repeat disease. Though

beyond the scope of the present study, in the future it

will be important to replicate these findings in additional

independent cohorts for each disease. Together, these re-

sults suggest a common mechanism, involving somatic ex-

pansion, operates in vivo in distinct trinucleotide repeat

diseases to influence disease course. Therefore, modulation

of MSH3 has significant therapeutic potential in a range of

diseases caused by repeat expansions.
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