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INTRODUCTION 
 

Biological systems rely on the DNA RNA protein information transfer paradigm that 

determines the phenotype of an organism . The comprehensive 

or global assessment of a set of molecules, which requires interpretation of molecular intricacy and 

- (Subramanian, Verma, Kumar, 

Jere, & Anamika, 2020). Classical -omics levels refer to genomics, transcriptomics, proteomics, and 

metabolomics, but the spectrum of omics has been extended to other biological data such as 

epigenomics, phenomics, perturbomics, lipidomics, venomics, and many others.     

The current high throughput nature of these techniques, as well as their increased accessibility 

in terms of time and cost, have triggered the volume of information that can be gathered in 

individual studies including multiple omics levels, -

. 

Multi-omics can provide a greater understanding of the flow of information in biological 

systems, from the original biological set-up or condition (genetic, environmental, or developmental) 

to the functional consequences or relevant interactions (Civelek & Lusis, 2014; Hasin, Seldin, & Lusis, 

2017). This makes it possible to draw more comprehensive conclusions on the biological processes 

in which these data sets must be integrated and analyzed as a holistic system 

2020). Also, integrated approaches that combine individual omics data help to bridge the gap from 

genotype to phenotype, are considered a promising strategy to understand the complexity of 

biological systems and unravel the mechanisms underlying the biological condition of interest 

(Civelek & Lusis, 2014; Subramanian et al., 2020).  
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In this context, in this work, a comprehensive multi-omics approach was implemented to study 

molecular determinants of antibiotic tolerance in a model of Pseudomonas aeruginosa, including 

genomics, transcriptomics, perturbomics, proteomics, and phenomics as main omics levels.  

 

Antibiotic resistance and tolerance 

Antimicrobial resistance is the ability of a microbe to grow in an inhibitory concentration of an 

antibiotic, explained by inherited mechanisms (Berti & Hirsch, 2020; Brauner, Fridman, Gefen, & 

Balaban, 2016).  Tolerance is generally used to describe the ability of microorganisms to survive 

transient exposure to bactericidal antibiotics, which can be inherited or not, with a reduced rate of 

antimicrobial killing, and often achieved by slowing down the cell growth (Berti & Hirsch, 2020; 

Brauner et al., 2016). 

Antibiotic resistance is a major threat to public health because it compromises the 

administration of appropriate antibiotic therapy. This reduces the therapeutic options to treat 

infections, increasing patient morbidity and mortality (Farajzadeh Sheikh et al., 2019; Woodford, 

Turton, & Livermore, 2011), as well as it causes an increase in the costs of health services. The 

situation is aggravated by the emergence of strains resistant to multiple antibiotics (Firme, Kular, 

Lee, & Song, 2010), the knowledge limitation of interactions with pathogens and mechanisms of the 

action of antimicrobial agents, and the reduced development of new antibiotics (Brazas, Brazas, 

Hancock, & Hancock, 2005). The use of antibiotics below the minimum inhibitory concentration 

(MIC) or sub-inhibitory concentration also contributes to antibiotic resistance as it selects pre-

existing resistant organisms and allows the strains to continue growing (McVicker et al., 2014). Since 

sub-inhibitory antibiotic concentrations are found in many natural environments, bacteria can 

naturally trigger mechanisms of tolerance and resistance (Andersson & Hughes, 2014). However, 
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the fundamental mechanisms of bacterial response to antibiotics have not been fully elucidated 

(Stewart et al., 2015).  

Since in this study we consider not only inherited mechanisms (genomic level, focused on 

resistance) but also transcriptomic and phenotypical observations using sub-inhibitory antibiotic 

concentrations (with mechanisms than can be rela

Ciofu & Tolker-Nielsen (2019) to refer to all the molecular responses that 

the bacterial face when exposed to antibiotics.    

 

Pseudomonas aeruginosa AG1 (PaeAG1) 

Pseudomonas aeruginosa is an opportunist and versatile pathogen able to survive in a wide 

variety of environments (Klockgether et al., 2010). With a large genome (6-7.5 Mb), P. aeruginosa 

strains have a large proportion of the genome (>8%) dedicated to regulatory functions (Cabot et al., 

2016) resulting in a consequent diversity of metabolic capabilities and responses to stress. Because 

of these features, P. aeruginosa is responsible for infections among immunocompromised hosts (Lu 

et al., 2016) and nosocomial infections (Fernández, Corral-Lugo, & Krell, 2018). However, the 

treatment of P. aeruginosa infections is challenging due to its many intrinsic and acquired 

mechanisms of resistance (Toval et al., 2015), resulting in significant morbidity and mortality. 

According to the World Health Organization (WHO), resistance to carbapenems in P. aeruginosa, 

Acinetobacter baumannii, and Enterobacteriaceae family is considered a critical issue in the context 

of antibiotic resistance, being classified as Priority 1 group (World Health Organization, 2017).  

In Costa Rica, the isolation of carbapenem-resistant P. aeruginosa strains is relatively common 

in some major hospitals, up to 63.1% of prevalence, as previously reported (Toval et al., 2015), much 

higher than the frequencies observed in other countries (Hong et al., 2015). The Costa Rican strain 

P. aeruginosa AG1 (PaeAG1) was identified as the first report of a P. aeruginosa isolate carrying both 
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VIM-2 and IMP-18 genes encoding for Metallo- -lactamases (MBLs) enzymes, both with 

carbapenemase activity (Toval et al., 2015). Later, another isolate from the United Kingdom with 

the same enzymes was reported (Turton et al., 2015).  

PaeAG1 was grown from a sputum sample of a patient from the Intensive Care Unit in the San 

Juan de Dios Hospital (San José, Costa Rica) in 2010. This strain has resistance to multiple antibiotics 

-lactams (including carbapenems), aminoglycosides, and fluoroquinolones, being only 

sensible to colistin.  

 

Figure 1. General workflow to study molecular determinants of antibiotic tolerance in the high-risk P. 
aeruginosa AG1 by a multi-omics approach. This study is based on five main steps: genome assembly and 
annotation, pan-genome analysis and integrons architecture, proteomic profiling after antibiotics exposure, 
identification of core perturbome, and the response to ciprofloxacin at transcriptomic and phenomic levels. 
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The first analysis of the genes in PaeAG1 by Sanger sequencing (primer walking method) 

confirmed that VIM-2 and IMP-18 genes are encoded in class 1 integrons (NCBI accessions KC907378 

and KC907377) (Toval et al., 2015). In addition, at the phenomic level, preliminary comparison to 

the reference strain (P. aeruginosa PAO1) showed that PaeAG1 has particular features after 

exposure to different antibiotics, including pigment production, biofilm formation, phage plaque 

induction, and others (Chinchilla, 2018; Toval et al., 2015).   

 

The multi-omics approach to study PaeAG1 

In view of the genomic and phenomic features of PaeAG1, we were interested in studying 

PaeAG1 in-depth using a multi-omics approach. To address this, the strategy was developed in five 

main steps, each one concretized as a scientific paper and a chapter in this thesis (Figure 1).  

First, genome sequencing was done using short and long-read technologies. Although a 

reference genome is available for the P. aeruginosa group (strain PAO1), a de novo strategy to 

assemble (or to build) the PaeAG1 genome was required since it was initially estimated that PaeAG1 

has ~ 1.0 Mb additional of DNA sequence in its genome.  

 

Figure 2. Definition of the 3C criterion: Contiguity, Correction and Completeness. Benchmarking of multiple 
assemblies can be done using metrics related to the number of pieces obtained vrs expected (contiguity), the 
fidelity of the assembly compared to the actual sequence (correction), and the ability to construct a minimum 
set of expected genes, vital to the species (completeness). More details in Chapter 1.   
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As detailed in Chapter 1, a benchmark of non-hybrid (using a single DNA sequencing 

technology) and hybrid (using both short and long-read data) assemblers was required to select the 

optimum model. To make this possible, the 3C criterion (i.e. contiguity, completeness, and 

correctness) was conceptualized as a set of metrics that can be used to benchmark genome 

assemblies and select the best approach (Figure 2). 

The final assembly (GenBank CP045739), using a hybrid approach, revealed that PaeAG1 has 

not only the expected gene content for the P. aeruginosa group but also specific elements that are 

absent in the reference genome: 57 genomic islands (corresponding to ~ 1.0 Mb DNA sequence and 

>1000 genes) harboring the two complete class 1 integrons, six prophages, mobile genetic elements, 

and some virulence factors (Figure 3). Besides, PaeAG1 has 58 resistance genes, a not functional 

CRISPR-Cas system (which may explain the high content of genomic islands), and a molecular 

genotyping profile of a high-risk sequence type 111 (ST-111) strain. 

 

Figure 3. Assembly and annotation of P. aeruginosa AG1 genome. Circularized genome showing genomic 
islands harboring phages, integrons and other elements. Details in Chapter 1 and (J.-A. Molina-Mora, Campos-
Sánchez, Rodríguez, Shi, & García, 2020).  
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These particular results are key components of the multi-omics approach with the subsequent 

analyses. If a mapping to the reference genome had been selected instead of a de novo assembly, 

the gene content of the extra 1.0 Mb DNA sequence could not have been revealed. In this regard, 

Chapter 2 focuses on the two PaeAG1 integrons and Chapter 5 reveals the role of phages in the 

response to ciprofloxacin. Importantly, these integrons and phages are absent in the reference 

genome. 

In order to describe the landscape of the genomic regions associated with the two integrons of 

PaeAG1, a comparative genomic strategy was performed as a second main step (Chapter 2). It was 

first demonstrated that VIM-2 and IMP-18 are inducible genes under exposure to carbapenems 

using RT-qPCR. We then described the phylogenetic relationships among all the complete genomes 

of P. aeruginosa strains using a pan-genome analysis. This led to identify not only the core and the 

accessory genome for this group, but also other strains sharing the PaeAG1 genomic islands. 

Phylogenetically related strains were also classified as ST-111 clones, but a variant profile of the 

PaeAG1 genomic island content was found in other strains. ST-111 is a lineage that belongs to the 

high-risk group in P. aeruginosa (Oliver, Mulet, López-Causapé, & Juan, 2015), which is frequently 

associated with epidemics where multidrug resistance confounds treatment (Petitjean et al., 2017). 

Many P. aeruginosa high-risk clones carry genomic determinants of antibiotic resistance such as 

carbapenemases or extended- -lactamases (Oliver et al., 2015). 

Since PaeAG1 has special genomic features regarding antibiotic multi-resistance, with the 

carbapenemase activity by the VIM-2 and IMP-18 genes, the profile of genomic island content in 

phylogenetically related genomes was used to gain insights into the evolution and landscape of 

genomic regions around the MBL-carrying integrons of PaeAG1. Thus, specific genomic regions 

associated with the two integrons were reconstructed and characterized to compare the gene 

content and architecture in close genomes (Figure 4).  
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Figure 4. Architecture of the genomic regions containing the MBL-carrying integrons. The genomic 
region containing the old-acquaintance VIM-2-carrying integron is also present in other ST-111 strains. The 
architecture of the IMP-18-carrying integron and surrounding regions is shown with an arrangement that is 
reported here for the first time. Details in Chapter 2 (J.-A. Molina-Mora, Garcia-Batan, & Garcia, 2020). 

 
The genomic region associated with the VIM-2-carrying integron (identified as an In59-like 

element, INTEGRALL-database http://integrall.bio.ua.pt/) was completely found in the other two 

ST-111 strains, being considered as an old-acquaintance integron. In the case of the IMP-18-carrying 

integron, the integron architecture and a surrounding genomic region have never been reported 

before. The IMP-18-carrying integron was considered as a new element and registered as a mobile 

element In1666. 



9

 
 

Jointly, the chromosome assembly and the comparative genomics were able to define the 

molecular arsenal of PaeAG1 at the genomic level, including multiple genomic determinants of 

virulence, mobile elements, and antibiotic resistance genes. On the other hand, in the context of 

antibiotic resistance, different assays have been performed in PaeAG1 to study its tolerance to 

antibiotics. Antibiotic susceptibility testing was reported before (Chinchilla, 2018; Toval et al., 2015) 

and an MBLs differential expression has been tested not only to carbapenems as demonstrated in 

Chapter 2 but also to other antibiotics (Chinchilla, 2018).  

At the proteomic level, the protein content in PaeAG1 under exposure to antibiotics was 

investigated. 2-dimensional gel electrophoresis (2D-GE) analysis was implemented using different 

imaging and machine learning algorithms, as presented in Chapter 3. The pipeline to analyze 2D-GE 

images has been also implemented to study two PaeAG1 subclones C25 and C50, as shown in the 

Two-Dimensional Gel Electrophoresis Image 

Analysis of Two Pseudomonas aeruginosa Clones (José Arturo Molina-Mora, Chinchilla-Montero, 

Castro-Peña, & García, 2020).  

 

 

Figure 5. Clustering analysis of the proteomic profiling of PaeAG1 exposed to ciprofloxacin (CIP), imipenem 
(IPM) and tobramycin (TOB) antibiotics. Under CIP exposure, the proteomic profile after CIP exposure 
remains close to the control, unlike TOB and IPM. Details in Chapter 3 (Jose Arturo Molina-Mora, Chinchilla-
Montero, Castro-Peña, & Garcia, 2020). 
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Figure 6. Assessment of PaeAG1 growth curves after treatment with ciprofloxacin (CIP), imipenem (IPM) 
and tobramycin (TOB) using different concentrations. Concentration-dependent effects were evidenced for 
CIP but not for the other antibiotics (Jose Arturo Molina-Mora et al., 2020).  

 

For PaeAG1, results reveal that the global proteomic profile after exposure to a sub-inhibitory 

ciprofloxacin (CIP) concentration remains close to control (LB medium, without antibiotics), 

contrasting with the results obtained with tobramycin and imipenem, as shown in Figure 5. This 

means that the effects of ciprofloxacin at the proteomic level are fewer than the changes given by 

other antibiotics. This is an interesting finding when we compare growth curves. Growth curves 

showed a particular concentration-effect for PaeAG1 when exposed to sub-inhibitory CIP 

concentrations, but not to other tobramycin (TOB) or imipenem (IPM) antibiotics (Figure 6) at sub-

inhibitory concentrations. Thus, to investigate the association between the PaeAG1 growth and sub-

inhibitory CIP concentrations, two main transcriptomic analyses were performed: i) the 

identification of core perturbome in the P. aeruginosa group and ii) transcriptomic profiling of 

PaeAG1 after exposure to CIP. 

As detailed in Chapter 4, the study of the molecular response to diverse perturbations 

(including CIP), term as perturbome, was carried out for P. aeruginosa with the reference strain. 

This makes it possible to generate the landscape of the central regulatory mechanisms of the stress 

response at the transcriptomic level in this bacterial group. Tolerance to stress conditions is vital for 

organismal survival, including bacteria under diverse environmental conditions (including 

antibiotics) (DeLong, 2012). Thus, to identify the core perturbome of P. aeruginosa, a machine 
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learning approach was implemented to recognize gene expression patterns among public 

transcriptomic data sets, similar to other studies (Cornforth et al., 2018; Glaab, Bacardit, Garibaldi, 

& Krasnogor, 2012; Ma, Xin, Feldmann, & Wang, 2014; Zhao et al., 2016). In this regard, only a few 

studies have used machine learning methods on biological data to describe the effects of multiple 

perturbations in complex biological systems (Bermingham et al., 2015; Caldera et al., 2019) and so 

far none in P. aeruginosa.  

In a subsequent analysis, the specific case of CIP exposure was used to standardize a systems 

biology pipeline to build large-scale molecular networks, as shown in the Supplementary Material 2 

Gene Expression Dynamics Induced by Ciprofloxacin and Loss of LexA Function 

in Pseudomonas aeruginosa PAO1 Using Data Mining and Network Analysis (J.A. Molina-Mora, 

Campos-Sanchez, & Garcia, 2018).  

 

Figure 7. Distribution of core perturbome of P. aeruginosa on a basal network of functional associations. 
Pleiotropic effects are revealed for core perturbome genes. The support indicates the number of algorithms 
that identified a gene as a relevant element of the perturbome. Details in Chapter 4 (J. Molina-Mora et al., 
2020).   
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The analysis of the central molecular response to perturbations, by both machine learning and 

large-scale networks, showed that the stress response is pleiotropic in P. aeruginosa, composed of 

at least 118 genes, of which 46 have strong support. Specific effects on gene networks were 

reflected as changes in gene expression profiles and the complexity of molecular regulation.  

With the identification of the landscape of the core perturbome for P. aeruginosa, the study 

was resumed with the particular response to CIP in PaeAG1, as the final main step (Chapter 5). The 

knowledge of the core perturbome was necessary to differentiate the pathways and responses that 

are shared by other perturbations, but more importantly, to identify the exclusive responses to CIP 

in PaeAG1. As detailed before, growth reduction was evidenced for this strain as sub-inhibitory CIP 

concentrations were increased. Thus, we identified the transcriptomic determinants associated with 

the response to CIP in PaeAG1. To address this, we used transcriptomic profiling by RNA sequencing 

and network analysis by applying a top-down systems biology approach.  

In order to study in detail the performance of different approaches for transcriptomic data 

analyses four different pipelines were assessed. Benchmarking of all pipelines was done using 

bioinformatics and biological criteria according to the genome analysis, phenotypes, and expert 

knowledge (Figure 8). The pipeline using EDGE-pro was selected as the best one using different 

criteria according to body coverage and mapping. See Chapter 5 for details. With these pipelines, 

transcriptomic determinants were identified.   
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Figure 8. Benchmark of four pipelines for RNA-Seq data analysis to study PaeAG1 after CIP exposure. 
Pipelines using mapping to the genome or transcriptome with different quantification steps were 
implemented to identify differentially expressed genes in PaeAG1 after exposure to CIP.   

 

Transcriptomic determinants included classical elements of the core perturbome for P. 

aeruginosa with down-regulation of pathways related to energy metabolism, ribosomal activity, and 

DNA metabolism, most of them related to bacterial growth reduction. Also, an exclusive feature, 

the phage induction, was suggested due to the up-regulation of phage genes creating two well-

defined clusters at a network level (Figure 9).   
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Figure 9. Large-scale network of differentially expressed genes of PaeAG1 after CIP exposure. Multiple 
elements of virulence, phage, and pathways were found to be modulated by the antibiotic, revealing 
pleiotropic effects at the transcriptomic level. Details in Chapter 5 (Jose Arturo Molina-Mora et al., 2020).   

 
To validate CIP effects on phage induction, we applied a phage plaque assay (at a phenomic 

level) that showed an exponential induction as CIP was increased. Since these phages are absent in 

the reference genome, again, the de novo genome assembly was a critical step to obtain biological 

insights for PaeAG1. Although PaeAG1 is resistant to CIP, a sub-inhibitory concentration of this 

antibiotic can induce a pleiotropic effect at a transcriptomic level, including pathways of the core 

perturbome and phage induction. In the last case, with the subsequent bacterial cell lysis, the 

reduction on the growth curve is explained by CIP in a concentration-dependent manner. This 
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phenomenon is particular to CIP and not found for imipenem or tobramycin, as it was shown in this 

study. 

Phage induction by CIP can be used as a complementary strategy to fight Pseudomonal 

infections. The fact that PaeAG1 phages are resident elements of the genome and not exogenous 

elements as in other studies (Fothergill et al., 2011; Kamal & Dennis, 2015), represents an advantage 

to eventual further implementations. In the context of another study in our group, these results of 

phage induction were tested in an in vivo murine model (Morales-Berrocal, 2016). Very promissory 

results have been obtained under CIP injection after P. aeruginosa infection, in which mortality of 

infected mice was reduced from 70% to 30% and bacteria quantification dropped-off in organs, but 

a significant increment in phage counts was evidenced (Figure 10). Specific details will be eventually 

presented as part of another work. Future studies will also evaluate the modulation of the CIP 

response using genetic engineering (knock-out, knock-down, and the like), other omics approaches 

(proteomics, ChIP-Seq, etc), and other in vivo models.   

In summary, by using a multi-omics approach, it was able to study molecular determinants of 

antibiotic tolerance in PaeAG1. Genome assembly using a benchmark strategy led to building a high-

quality sequence. A de novo approach allowed assembling around 1.0 Mb of sequence that is absent 

in the reference genome. These exclusive regions are composed of 57 genomic islands harboring 

two MBL-carrying integrons, phages, and many other genes. Comparison to all available complete 

sequences showed that the genome could be grouped by MLST profile, including a clear ST-111 

cluster containing PaeAG1. In addition, a landscape of genomic regions surrounding integrons was 

described in which an IMP-18-carrying integron was characterized for the first time. Multi-resistance 

profile, antibiotic resistance genes, the MLST profile, clusters of the pan-genome analysis, and the 

architecture of integrons define the genomic determinants of PaeAG1.  
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Figure 10. Preliminary results of the in vivo murine model to evaluate phage induction by CIP as a strategy 
to fight Pseudomonal infections. Upon CIP treatment, the mortality of infected mice was reduced, including 
reduction of bacteria quantification and increased phage counts in organs.  

 

In order to study the central response to perturbations in the P. aeruginosa group, the core 

perturbome, and to identify gene expression patterns, we used a machine learning approach. 

Pathways of energy metabolism, ribosomal activity, DNA metabolism, and others were enriched. 

Similar findings of enriched pathways were obtained for the specific case of PaeAG1 exposed to CIP, 

but particular genes (absent in the reference strain, such as phage genes) were also identified. Phage 

induction upon CIP treatment, suggested by phage genes up-regulation, was validated at a 

phenomic level. Particular key genes, gene clusters, and pathways were recognized as 

transcriptomic determinants of antibiotic tolerance in PaeAG1.  

Together, these genomic and transcriptomic elements are molecular determinants of antibiotic 

tolerance and resistance in PaeAG1, which in part define the high-risk condition of this strain that 

enables it to conquer nosocomial environments with a multi-resistance profile.  
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JUSTIFICATION 
 

This research proposal aims to fill an information gap regarding the molecular determinants 

associated with tolerance and resistance to antibiotics at the genomic and transcriptomic levels in 

P. aeruginosa AG1. The initial studies determined that this bacterium has high-risk clone 

characteristics given its success in conquering nosocomial environments and its multi-resistance 

profile (including resistance to carbapenems). The latter case allows classifying PaeAG1 as a critical 

and priority 1 organism according to the WHO. 

Furthermore, because it was initially estimated that this bacterium contained an additional 1.0 

Mb of DNA sequence relative to the reference genome P. aeruginosa PAO1, a multi-omics strategy 

was established to avoid losing genomic information. This is expected to be a crucial point due to 

the particular PaeAG1 features that differentiate it from the reference strain. To this end, a de novo 

genome assembly and subsequent comparative genomic analyses can identify the genomic 

determinants associated with tolerance to antibiotics. After proteomic profiling using 2D-GE and 

comparison of response to antibiotics, the definition of the central response to disturbances or core 

perturbome in the P. aeruginosa group at the transcriptomic level allows identifying the metabolic 

pathways associated with the stress response. On account of the complexity and amount of data 

associated with this task, a machine learning strategy was required. For the specific case of PaeAG1 

with exposure to CIP, differential expression analyses were performed with RNA sequencing, large-

scale molecular network analysis, and experimental validation at the phenomic level. The particular 

genes, gene clusters, and metabolic pathways of the core perturbome in P. aeruginosa and the 

response to ciprofloxacin in PaeAG1 constitute the transcriptomic determinants of antibiotic 

tolerance in this strain. 

 



18

 
 

Taken together, these strategies of using a multi-omics approach (at the genomics, 

transcriptomics, perturbomics, proteomics, and phenomics levels), sequence bioinformatics 

analyses, machine learning, and systems biology, provided the required approach to identify and 

characterize the molecular determinants associated with tolerance to antibiotics in PaeAG1. 

 

RESEARCH QUESTION 
 

Which are the general genomic determinants and transcriptomic determinants associated with 

ciprofloxacin exposure in P. aeruginosa AG1 that mediate tolerance to antibiotics? 

 

HYPOTHESIS 
 

Molecular determinants that define antibiotic tolerance in P. aeruginosa AG1 can be identified and 

characterized at the genomic and transcriptomic levels using a multi-omic approach. 
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RESEARCH OBJECTIVES  
 

General objective  
 

To identify and characterize the genomic and transcriptomic determinants associated with 

tolerance to antibiotics in Pseudomonas aeruginosa AG1 using a multi-omics approach. 

 

Specific objectives 
 

1. To assemble and annotate the P. aeruginosa AG1 genome using a benchmarking strategy, 

in order to characterize the gene content and genomic determinants associated with its multidrug-

resistance and other phenotypes. 

2. To compare P. aeruginosa AG1 genome against other P. aeruginosa sequences using 

comparative genomics to describe pan-genome, phylogenetic relationships, genomic islands 

content, and architecture of genomic regions associated with the VIM-2- and IMP-18-carrying 

integrons. 

3. To identify genes associated with multiple perturbations in P. aeruginosa to describe 

transcriptomic determinants of the central molecular response (perturbome) using a machine 

learning approach.  

4. To identify transcriptomic determinants using RNA-Seq profiling and network analysis by 

a top-down systems biology approach to characterize the response to ciprofloxacin in P. aeruginosa 

AG1. 
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CHAPTER 1 
 

 

High quality 3C de novo assembly and annotation of a multidrug resistant ST-111 Pseudomonas 

aeruginosa genome: Benchmark of hybrid and non-hybrid assemblers 

 

Molina-Mora, J.-A., Campos-Sánchez, R., Rodríguez, C., Shi, L., & García, F. (2020). High quality 3C de novo 

assembly and annotation of a multidrug resistant ST-111 Pseudomonas aeruginosa genome: Benchmark of 

hybrid and non-hybrid assemblers. Scientific Reports, 10(1), 1392. https://doi.org/10.1038/s41598-020-

58319-6  

https://www.nature.com/articles/s41598-020-58319-6  
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Summary  

Genotyping methods and genome sequencing are indispensable to reveal genomic structure of 

bacterial species displaying high level of genome plasticity. However, reconstruction of genome or 

assembly is not straightforward due to data complexity, including repeats, mobile and accessory 

genetic elements of bacterial genomes. Moreover, since the solution to this problem is strongly 

influenced by sequencing technology, bioinformatics pipelines, and selection criteria to assess 

assemblers, there is no systematic way to select a priori the optimal assembler and parameter 

settings. To assembly the genome of P. aeruginosa strain AG1, short reads (Illumina) and long reads 

(Oxford Nanopore) sequencing data were used in 13 different non-hybrid and hybrid approaches. 

PaeAG1 is a multiresistant high-risk sequence type 111 (ST-111) clone that was isolated from a Costa 

Rican hospital and it was the first report of an isolate of P. aeruginosa carrying both VIM-2 and IMP-

18 genes encoding for metallo- -lactamases (MBLs) enzymes. To assess the assemblies, multiple 

metrics regard to contiguity, correctness and completeness (3C criterion, as we define here) were 

used for benchmarking the 13 approaches and select a definitive assembly. In addition, annotation 

was done to identify genes (coding and RNA regions) and to describe the genomic content of 

PaeAG1.  

Whereas long reads and hybrid approaches showed better performances in terms of contiguity, 

higher correctness and completeness metrics were obtained for short read only and hybrid 

approaches. A manually curated and polished hybrid assembly gave rise to a single circular sequence 

with 100% of core genes and known regions identified, >98% of reads mapped back, no gaps, and 

uniform coverage. The strategy followed to obtain this high-quality 3C assembly is detailed in the 

manuscript and we provide readers with an all-in-one script to replicate our results or to apply it to 

other troublesome cases. 
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The final 3C assembly revealed that the PaeAG1 genome has 7,190,208 bp, a 65.7% GC content 

and 6,709 genes (6,620 coding sequences), many of which are included in multiple mobile genomic 

elements, such as 57 genomic islands, six prophages, and two complete integrons with VIM-2 and 

IMP-18 MBL genes. Up to 250 and 60 of the predicted genes are anticipated to play a role in 

-lactamases, efflux 

pumps, etc). Altogether, the assembly and annotation of the PaeAG1 genome provide new 

perspectives to continue studying the genomic diversity and gene content of this important human 

pathogen.  
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High quality 3C de novo assembly 
and annotation of a multidrug 
resistant ST-111 Pseudomonas 
aeruginosa genome: Benchmark of 
hybrid and non-hybrid assemblers
José Arturo Molina-Mora1*, Rebeca Campos-Sánchez2, César Rodríguez1, Leming Shi3 & 
Fernando García1

Genotyping methods and genome sequencing are indispensable to reveal genomic structure of bacterial 
species displaying high level of genome plasticity. However, reconstruction of genome or assembly 
is not straightforward due to data complexity, including repeats, mobile and accessory genetic 
elements of bacterial genomes. Moreover, since the solution to this problem is strongly influenced by 
sequencing technology, bioinformatics pipelines, and selection criteria to assess assemblers, there is 
no systematic way to select a priori the optimal assembler and parameter settings. To assembly the 
genome of Pseudomonas aeruginosa strain AG1 (PaeAG1), short reads (Illumina) and long reads (Oxford 
Nanopore) sequencing data were used in 13 different non-hybrid and hybrid approaches. PaeAG1 is a 
multiresistant high-risk sequence type 111 (ST-111) clone that was isolated from a Costa Rican hospital 
and it was the first report of an isolate of P. aeruginosa carrying both blaVIM-2 and blaIMP-18 genes 
encoding for metallo-β-lactamases (MBL) enzymes. To assess the assemblies, multiple metrics regard to 
contiguity, correctness and completeness (3C criterion, as we define here) were used for benchmarking 
the 13 approaches and select a definitive assembly. In addition, annotation was done to identify 
genes (coding and RNA regions) and to describe the genomic content of PaeAG1. Whereas long reads 
and hybrid approaches showed better performances in terms of contiguity, higher correctness and 
completeness metrics were obtained for short read only and hybrid approaches. A manually curated 
and polished hybrid assembly gave rise to a single circular sequence with 100% of core genes and known 
regions identified, >98% of reads mapped back, no gaps, and uniform coverage. The strategy followed 
to obtain this high-quality 3C assembly is detailed in the manuscript and we provide readers with an 
all-in-one script to replicate our results or to apply it to other troublesome cases. The final 3C assembly 
revealed that the PaeAG1 genome has 7,190,208 bp, a 65.7% GC content and 6,709 genes (6,620 coding 
sequences), many of which are included in multiple mobile genomic elements, such as 57 genomic 
islands, six prophages, and two complete integrons with blaVIM-2 and blaIMP-18 MBL genes. Up to 250 
and 60 of the predicted genes are anticipated to play a role in virulence (adherence, quorum sensing 
and secretion) or antibiotic resistance (β-lactamases, efflux pumps, etc). Altogether, the assembly 
and annotation of the PaeAG1 genome provide new perspectives to continue studying the genomic 
diversity and gene content of this important human pathogen.

Genotyping methods and genome sequencing are indispensable to reveal genomic structure and evolution of 
bacterial clones with high resolution1. In this sense, production of large amounts of short sequencing data from 
genomes (reads) has been facilitated by continuous advances in Next Generation Sequencing (NGS) technologies. 
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This includes short read sequencing technologies (a few hundred bp read length) such as Illumina and long read 
sequencing technologies (several hundred kb read length) such as Pacific Biosciences (PacBio) single-molecule 
real-time (SMRT) and Oxford Nanopore Technology (ONT)2.

Using sequencing data, it is expectable that full-length chromosomes could be produced when the genome 
is fully sequenced and assembled3. However, reconstruction of genome or assembly is not straightforward due 
data complexity. This is a challenging problem that requires time and expertise4. If a reference genome is avail-
able, an assembly can be made by comparison or direct mapping, otherwise, a de novo assembly, in which only 
the information obtained from reads is used to reconstruct the genome, without prior knowledge of its organ-
ization5. In de novo assembly, sequences (reads) are grouped into contigs using graph based algorithms such 
as Overlap-Layout-Consensus, de Bruijn and greedy approaches5,6. Then contigs are assembled into scaffolds 
(supercontigs or metacontigs). Alternatively, some de novo assemblers use reference genomes to solve specific 
inconsistencies or for scaffolding5.

Reconstruction can be favored by some previous information, such as expected genome size, GC content 
and repetitive region content, as they help choose the best strategy to follow. Even though many algorithms to 
assemble genome by de novo approaches are available, performance is completely dependent on data (short or 
long reads, instruments, technology), genomic complexity (repeats, number of chromosomes or plasmids) and 
complementary algorithms (pre-processing, databases, annotations, etc)7. Therefore, for a specific genome and 
dataset, selection of the optimal assembly strategy to use is not a trivial task because there is no systematic way to 
determine which assembler and what parameter settings must be selected8.

Since a key first requirement in the study of genomes is accuracy9, short reads technologies are preferred 
because they produce high fidelity reads10. Also, the low cost and high accuracy of Illumina sequencing makes 
it well suited to high-throughput bacterial genomics10. However, genomes present complex repeat structures 
difficult to solve by different assemblers. As reported, if the repeats are longer than the reads, genomic regions 
sharing perfect repeats can be indistinguishable6. With this, resolving a full genome is a challenging issue for short 
reads approaches. Consequently, most available bacterial genomes are incomplete11, highly fragmented, and of 
low quality3.

Long reads, by contrast, can exceed the length of repeats in a typical bacterial genome, facilitating genome 
assembly10. Long reads technology offers an important advantage for complex genomes with high level of repeti-
tive elements or genome duplication7. Thus, use of long reads data has shown improvements in the context of de 
novo genome assemblies, rising contiguity, solving fragmented regions, and closing gaps12. However, these third 
generation sequencing methods deal with relatively high sequencing error8, which has been estimated up to 15% 
of random but also systematic errors10,12. In addition, long reads sequencing has a higher cost per base than that 
with Illumina platforms11.

Combination of reads of different length and from different sequencing platforms in so-called hybrid 
approaches often counterbalances the drawbacks of each method4. The growing interest in hybrid assemblies is 
justified by the popularity, cost and accuracy of short reads sequencing, plus the resolution capacity of repetitive 
regions and genomic structures of long reads10. In some cases, a hybrid approach is sufficient to produce a single 
and closed sequence of the microbial genome13. However, to accurately assemble a genome, neither the optimum 
combination and coverage of long and short reads, nor the minimum required length of long-reads are known 
a priori9. Due to this, hybrid and non-hybrid assembly must be individually evaluated with regard to select the 
best assembly conditions, and different metrics and tools are available for this purpose. However, no single or 
completely useful strategy is considered as universal and sufficient to benchmark assemblies3,14.

Benchmark of assemblies can be achieved using metrics related to contigs and scaffolds (contiguity), abil-
ity to complete the whole structure of the genome (completeness), and the accuracy of the assembly (cor-
rectness). Although most of studies of assemblies exploit these parameters to evaluate the performance of 
assemblers3,8,10,15–17, here we define the general assessment by “3C criterion” as all metrics required to evaluate 
and benchmark genome assemblies using contiguity, completeness and correctness metrics, as detailed:

t� Contiguity: It evaluates the assembly in terms of number and size of contigs and scaffolds6, the pieces found 
in an assembly. Metrics includes statistics related to maximum length, average length, combined total length, 
and contig N50 (length-weighted median of ordered contigs or scaffolds)2. However, contiguity metrics 
thereof need to be interpreted with caution due they do not contain information on assembly accuracy and 
completeness4.

t� Correctness: it refers to how well those pieces accurately represent the genome sequenced16 and, in general is 
acceptable that it is essential to prioritize correctness rather than contiguity12. However, correctness is diffi-
cult to evaluate if a preliminary reference genome is not available, which is a particular problem for de novo 
assembly6. Mapping and comparison to reference or draft genome (or a consensus sequence) can be used to 
detect misassemblies, including mismatches, indels, and misjoins8.

t� Completeness: it assesses how much of the genome is represented by the pieces of the assembly16. This implies 
the evaluation of ability to assembly not only all the genes, but also to solve all complicated regions, includ-
ing repetitive sequences and, if it is expected, circularization of genome. The most important metric for this 
case is the “completeness score”, calculated by the examination of single-copy orthologs conserved genes18. 
In addition, information of known sequences, unexpected variations in coverage, and remapping of reads 
allows to analyze the consistency of the genome and identification of potentially poorly assembled regions5,19.

Thus, to develop a strategy to assembly a bacterial genome using the non-hybrid and hybrid approaches as well 
as the 3C criterion, we used a ST-111 strain of Pseudomonas aeruginosa. P. aeruginosa is Gram-negative bacterium 
and a well-known opportunistic pathogen20. It is responsible for acute and chronic nosocomial and community 
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infections in immune-compromised patients21. However, the treatment of P. aeruginosa infections is challenging 
due many intrinsic and acquired mechanisms of resistance22, including the production of to β-lactamases antibi-
otic modifying enzymes and target alteration.

Multi-resistance in P. aeruginosa is becoming more and more serious, not only due resistance to classical 
β-lactams, aminoglycosides and fluoroquinolones, but also to resistance last resort treatments including car-
bapenems (β-lactams) and colistin, which causes great difficulties in clinical treatment23,24 and resistant to these 
antibiotics emerge as a final level of fight of bacteria which compromises infections treatments24. Many bacte-
rial clones with carbapenemase-producing features are recognized as high-risk clones25. A high-risk clone is a 
multidrug-resistant clone with highly efficient transmission and/or maintenance among humans or animals26, 
playing a major role in the spread of resistance in the hospital and other environments27 and a flexible ability to 
accumulate and switch resistance28. However, the term high-risk is not necessarily associated with severity26. A 
limited number of Pseudomonas aeruginosa genotypes (mainly ST-111, ST-175, and ST-235) are recognized as 
high-risk clones, and they are responsible for epidemics of nosocomial infections by multidrug-resistant or exten-
sively drug-resistant strains worldwide29.

In Costa Rica, isolation of carbapenem resistant P. aeruginosa strains is relatively common in some major 
hospitals as we reported before22, most of them carrying one blaVIM and one blaIMP allele carbapenemases and 
up to 63.1% of prevalence22, much higher than the frequencies observed in other countries30.

The Costa Rican multi-resistant strain P. aeruginosa AG1 (PaeAG1) was isolated from a sputum sample 
of a patient with pneumonia from the Intensive Care Unit of the San Juan de Dios Hospital (San José, Costa 
Rica) in 2010. PaeAG1 has a resistance phenotype to β-lactam (including carbapenems), aminoglycosides 
and fluoroquinolones, showing susceptibility only to colistin. In addition, PaeAG1 was identified as the first 
report worldwide of a strain carrying both blaIMP-18 (or IMP-18) and blaVIM-2 (VIM-2) genes, coding for 
metallo-β-lactamases (MBL) with carbapenemase activity22.

PaeAG1 is a high-risk clone with a genotyping profile ST-111, which includes strains with a phenotype 
extremely resistant to antibiotics, responsible for various types of infections in hospitals and rapid spread 
between the individuals29,31. Sanger sequencing confirmed that the blaVIM-2 and blaIMP-18 genes of strain AG1 
(Accessions KC907377 and KC907378) are encoded in class 1 integrons, likely in two different structures22. In 
addition, preliminary experimental assays suggested no existence of plasmids22.

We were interested in assembling and annotating the genome of the clinical isolate PaeAG1 due to its impor-
tance as a high-risk clone with multi-resistance to antibiotics and to identify molecular determinants related to 
the ability to conquer nosocomial environments, virulence and other phenotypes. Thus, the aims of our study 
were: (i) to assemble the PaeAG1 genome using short and long reads data by hybrid and non-hybrid multiple 
approaches, (ii) to benchmark assemblers and select the best genome assembly approach using the 3C criterion, 
and (iii) to annotate the PaeAG1 genome to characterize and identify general gene content and genomic determi-
nants associated with its multidrug-resistance and virulence phenotypes.

Methods
The general pipeline followed to assembly the PaeAG1 genome by hybrid and non-hybrid approaches is shown 
in Fig. 1. Complete details of settings of implemented algorithms are shown in supplementary material “Scripts 
for bioinformatics analysis”.

Bacterial isolate. The Costa Rican PaeAG1 strain was isolated in 2010 from a sputum sample of a patient 
with pneumonia from the Intensive Care Unit of the San Juan de Dios Hospital (San José, Costa Rica). This 
isolate has phenotypic resistance (AST-GN cards, bioMeriux Vitek) to β-lactams, aminoglycosides and fluoro-
quinolones, shows susceptibility only to colistin and expresses metallo-β-lactamase activity (E-test MBL strips, 
AB Biodisk), as reported22.

Bacterial growth and DNA isolation. PaeAG1 cells were grown overnight in Luria-Bertani broth (LB) 
medium at 37 °C with shaking. Then, cells were collected by centrifugation and genomic DNA was isolated with 
the QIAGEN DNeasy Kit (QIAGEN, UK) following the manufacturer’s instructions.

The yield of genomic DNA obtained was determined using a Nanodrop (Nanodrop 2000, Thermo Scientific, 
UK) and by Qubit Fluorometric Quantitation (Qubit 3.0 Fluorometer, Thermo Scientific). DNA integrity was 
verified by electrophoresis using 0.7% agarose gels.

Whole genome sequencing using short reads. Genomic DNA was sequenced using Illumina technol-
ogy (Illumina Inc.) at Macrogen, Korea. The sequencing library was prepared using TruSeq DNA Sample Prep 
kit with the standard Illumina DNA shotgun library preparation protocol. DNA fragmentation was achieved by 
ultrasonication, and then adapter ligation and PCR enrichment were done. Paired end reads of 101 bp were gen-
erated using a HiSeq. 2000 sequencing instrument. Sequence files were evaluated using FastQC v0.11.732 before 
and after trimming. Reads were trimmed (including adapters removal) using Trimmomatic v0.3833 to discard 
sequences with per base sequence quality score <30. After selection, 7.4 Gb of sequences were kept, with a 14 
million of pairs of reads and mean coverage >400X according to expected genome size (approx. 7 Mb).

Whole genome sequencing using long reads. Long reads from genomic DNA was sequenced using 
Oxford Nanopore technology by NextOmics, Wuhan-China. Sequencing libraries were prepared according to the 
ONT 1D ligation library protocolSQK-LSK109. FLO-MIN-106 flowcell and the standard 48-hour run script with 
active channel selection enabled were used to sequence reads in a GridION instrument. Poretools v0.6.034 was 
used to extract and evaluate reads by quality before and after trimming. Adapters were removed using Porechop 
v0.2.3 (github.com/rrwick/Porechop) and trimming was done using Filtlong v0.2.0 (github.com/rrwick/Filtlong). 
Reads with mean quality weight <10 and/or shorter than 1 kb were discarded. The final dataset consisted of 
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4.5 Gb of sequence, with 259,491 reads in total, a read mean length of 17,343 bp, a longest read of 201,659 bp, and 
a final mean coverage >560X.

Short reads genome assembly. Six de Bruijn graph based assemblers were used with default parameters 
and without reference guided option, if applicable. The classical assemblers included in the study were Velvet 
v1.2.1035, SPAdes v3.13.036, IDBA v1.1.337, and Megahit v1.1.338. Two newer assemblers were also included: 
SKESA v2.3.039 and Unicycler v0.4.711. To estimate the best k-mer length for genome de novo assembly for Velvet, 
KmerGenie 1.7051 was implemented40. Other algorithms selected best k-mer length values automatically, if 
needed. Assembly sequences were kept at contig level with minimum size of 1,000 bp.

Long reads genome assembly. Three graph-based long read assemblers were used: Canu 1.841, Flye 2.3.742 
and Unicycler v0.4.711. Default parameters and no reference genome nor alternative sequencing data were consid-
ered. Only contigs with size higher than 1,000 bp were kept.

Hybrid genome assembly. Three graph-based hybrid approaches were applied. Default parameters with-
out reference sequence were used to run IDBA-hyb v1.1.1 (https://github.com/loneknightpy/idba), Unicycler 
v0.4.711 and SPAdes v3.13.043. Only contigs with size higher than 1,000 bp were kept.

Figure 1. General bioinformatic pipeline to assemble, compare and annotate the Pseudomonas aeruginosa AG1 
genome using short and long reads as well as hybrid approaches.
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Scaffolding. Prior the final version of the genome assembly of PaeAG1, BLASTn (blast.ncbi.nlm.nih.gov/
Blast.cgi) was used to search closest genome according to contig sequences. All assemblies at contig level were 
assembled into scaffolds using the closest genome as reference sequences (P. aeruginosa strain RIVM-EMC2982, 
more details in Results) using MeDuSa v1.644. When final version was achieved, scaffolding and benchmarking 
was done using the definitive version of the PaeAG1 genome with same scaffolder.

3C Benchmark of approaches and selection of best assembly. Benchmark of all assemblers were 
done according to 3C criterion, as follow:

Contiguity. Genome assembly statistics about quality and contiguity were assessed using QUAST 5.0.114 at both 
contig and scaffold levels. Assembler outputs were compared with regards to total assembly length (expected: 
around 7 Mb), number of contigs/scaffolds (one sequence expected), N50 (expected: as large as possible, close to 
genome size), NG50 (as large as possible), and others.

Completeness. Four strategies were implemented to assess completeness. First, single copy ortholog gene sets 
were searched (expected: 100%) in the assemblies using the BUSCO tool45 within the gVolante plataform (https://
gvolante.riken.jp)18 and comparing gene content against 40 genes of the bacteria database (available at https://
busco.ezlab.org/v1/). We also checked the ability of the assemblers to reproduce the complete sequences of the 
two class I integrons of PaeAG1 previously obtained by Sanger sequencing (KC907377 and KC907378). The third 
analysis used Circlator19 to assess the replicon circularization achieved by assemblers that gave rise to single 
sequences (expected: a circular sequence). A last approach calculated the percentage of genomic and transcrip-
tomic reads mapping to each genome reconstruction (expected: >95% mapping). To this end, short and long 
reads were remapped to the assemblies using BWA 0.7.1746. In addition, 12 reads files from a RNASeq experiment 
(triplicates of same strain under four experimental conditions with or without ciprofloxacin) were mapped to the 
assemblies using HISAT2 v2.1.047. Qualimap v2.2.248 was used to calculate coverage and percentage of mapped 
reads, and comparison was done in a single report using MultiQC v1.749.

Correctness. Two strategies were used to evaluate correctness. The first one was to estimate error rates, check 
for uniform coverage, and detect false variants of short reads that mapped to the polished genome (see below, 
expected: 0% errors). This was done using Qualimap results. The second strategy was to calculate the percentage 
of identity of local alignments between known Sanger sequences (integrons, expected: 100% identity) of PaeAG1 
and the final assembly (BLASTn).

All above criteria were considered to select the best assembly. This draft genome was polished and curated 
(next section) and the new version was included as extra 13th assembly.

We used all quantitative data to run a Principal Components Analysis (PCA), which was implemented in R 
software v3.5.1 (www.r-project.org/) using the Carret package (caret.r-forge.r-project.org/). This let to compare 
global profiles and performance given by assemblers. The final version of genome assembly was also included as 
an independent unit.

De novo assembly graphs were visualized using Bandage v0.8.150. Finally, assembled sequences were visualized 
and compared against the final assembly using the BLAST Ring Image Generator (BRIG) tool v0.9551.

Curation and polishing of the definitive genome assembly. Final adjustments of selected genome 
assembly were made manually based on the assembly graph, read coverage and distribution. Pilon 1.2352 with 
BWA-mapped reads were implemented to automatically polish the assemblies. After this, a final polished assem-
bly was obtained. Remapping of short and long reads, as well as all metrics calculations and 3C criterion evalua-
tions were done again.

Comparative genome analysis. BLASTn of complete sequence was run again to find the closest genome, 
which jointly with the genome of the reference strain P. aeruginosa PAO1 were compared using Mauve v2.4.053 to 
determine the level of synteny and to describe global genomic structure.

Also, in order to compare the PaeAG1 genome with other ST-111 strains, a phylogenetic analysis was done 
using all the available complete sequences of ST-111 P. aeruginosa genomes. The reference strain P. aeruginosa 
PAO1 was also included. All the records were retrieved from Pseudomonas Genomes Database (PGDB, pseu-
domonas.com), and Roary program v3.12.054 was run with default parameters to establish relationships between 
strains using gene content by a pan-genome analysis. Scripts supplied with the program were used to create plots.

Whole genome annotation. For all assemblies, gene prediction and gene annotation was achieved using 
Prokka v1.13.355 and a custom database created with the genome of P. aeruginosa PAO1 and closest annotated 
strain to PaeAG1 as primary sources for annotation, or the default bacterial database provided with the software 
distribution. Also, Clusters of Orthologous Groups (COG), Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway were searched using EggNOG (http://eggnogdb.embl.de/)56 for all coding 
sequences (CDS).

Specific genome annotation. Specific annotation and searching for specific genomic determinants was 
only done for the definitive final assembly. Default parameters were used in all cases. In silico serotyping was 
done using Past v1.0 (https://cge.cbs.dtu.dk/services/PAst-1.0/) and multilocus sequence typing57 using MLST 
v2.0 (https://cge.cbs.dtu.dk/services/MLST/). Antimicrobial resistance genes were detected using RGI tool v5.1.0 
(Resistance Gene Identifier, https://card.mcmaster.ca/analyze/rgi) and ResFinder v3.2 (https://cge.cbs.dtu.dk/ser-
vices/ResFinder/). CRISPR-Cas arrays were investigated using CRISPRCasFinder v1.1.2 (https://crisprcas.i2bc.
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paris-saclay.fr/CrisprCasFinder/Index). Virulome was identified using Virulence Factor DataBase (VFDB, http://
www.mgc.ac.cn/VFs/).

For mobilome delimitation, genomic islands were identified using IslandViewer v4 (www.pathogenomics.
sfu.ca/islandviewer/). PHASTER was used to find prophages (phaster.ca/)58 and integrons were searched using 
IntegronFinder v2.059. The results of this series of searches were visualized in the genome using BRIG.

Results
In order to assembly the genome of P. aeruginosa AG1, an exhaustive workflow was implemented using hybrid 
and non-hybrid approaches, using Illumina short reads sequencing and Oxford Nanopore long reads sequencing 
data. General protocol is presented in Fig. 1. After sequencing and four bioinformatic steps, a single circular 
sequence was achieved and it was also annotated.

Benchmarking of hybrid and non-hybrid assemblers: a winner?. Using different approaches, the 
PaeAG1 genome assembly was evaluated using the 3C criterion. The final version was presented as a last case, 
cured and polished. The contiguity and completeness criteria were initially the most important for the selection of 
the draft assembly, and then, a final polishing strategy focused on ensuring correctness (see next section). A sum-
mary of the most important metrics related to these criteria is presented in Table 1. Metrics related to scaffolding 
were obtained using the final assembly as reference, although various attempts to create scaffolds were made with 
closely related genomes.

According to results of contiguity, the use of short reads only approaches shows a lower performance (89 to 
227 contigs and 1–10 scaffolds) compared to other approaches that exploit long reads (1 to 5 contigs and one scaf-
fold for all cases) or hybrid methods (1–121 contigs and 1–10 scaffolds). Performance profiles between assemblers 
are compared in Table 1 and Fig. 2. Short reads assemblies are similar to each other according to Table 1 and PCA 

3C Criterion Level and metrics

Short reads only approaches Long reads only approaches Hybrid approaches

Velvet SPAdes IDBA Megahit SKESA Unicycler Canu Flye Unicycler IDBA SPAdes Unicycler
Final 
assembly

Contiguity

Contigs 
assembly

Contigs 227 89 127 125 217 113 2 1 5 121 16 1 1
Total length 7027785 7094145 7090598 7103650 7047434 7074438 7121028 7209472 7465726 7092836 7188777 7189601 7190208
GC (%) 65.79 65.73 65.74 65.73 65.77 65.77 65.66 65.59 65.64 65.74 65.68 65.71 65.71
N50 65258 223421 170948 168521 68375 151417 4329427 7209472 7178173 141288 1593634 7189601 7190208
L50 33 11 14 14 34 15 1 1 1 15 2 1 1

Scaffolding

Scaffolds 1 10 10 10 2 1 1 1 1 10 10 1 1
N50 & NG50 7039385 7078855 7079244 7091835 7056837 7080238 7121028 7209472 7465826 7082290 7171429 7189601 7190208
Genome 
fraction (%) 97.714 98.362 98.293 98.484 98.054 98.382 99.381 99.991 100 98.356 99.717 99.992 100

NA50 177145 375326 491929 478607 708585 709611 4328063 7207242 7177177 477586 3956502 7189601 7190208
LA50 12 6 5 5 4 4 1 1 1 4 1 1 1
N's per 100 kbp 217.06 52.13 77.51 75.96 151.6 81.92 0 0 1.34 74.67 5.56 0 0

Correctness

Misassemblies 81 22 37 33 24 19 1 0 4 26 2 0 0
Unaligned mis. 
contigs 0 0 0 0 0 0 0 0 0 0 0 0 0

Mismatches 
per 100 kbp 6.56 2.42 4.88 1.61 1.84 0.48 35.94 28.01 101.21 3.68 11.33 0.07 0

Indels per 100 
kbp 6.49 0.41 0.67 0.28 1.79 0.34 324.66 284.54 186.53 1 1.14 0 0

Completeness

40 core genes 
(BUSCO)

Fragmented 
genes 0 0 0 0 0 0 4 9 9 0 0 0 0

Intact genes 40 40 40 40 40 40 20 13 23 40 40 40 40
Lost genes 0 0 0 0 0 0 16 18 8 0 0 0 0
Completeness 
score (strict, %) 100 100 100 100 100 100 50 32.5 57.7 100 100 100 100

Whole 
genome 
annotation

CDS 6574 6554 6543 6565 6540 6567 11229 9565 9089 6559 6605 6621 6620
Contigs 1 10 10 10 2 1 1 1 1 10 10 1 1
rRNA 2 5 5 5 3 3 12 12 12 4 14 12 12
tmRNA 1 1 1 1 1 1 0 1 0 1 1 1 1
tRNA 70 62 69 70 61 70 72 65 75 69 76 76 76

Completeness 
& correctness

Mean length of 
CDS (bp) 938.34 957.54 956.28 954.9 950.19 953.49 499.35 607.14 664.14 955.11 963.51 961.89 961.86

Integron 
blaVIM-2

Identity (%) 100.0 99.5 99.8 100.0 100.0 99.7 99.488 99.257 99.843 99.753 99.778 99.778 100
Coverage 0.5 0.7 0.6 0.4 0.5 0.6 1.0 1.0 1.0 0.6 0.9 0.9 1.0

Integron 
blaIMP-18

Identity (%) 100.0 100.0 100.0 100.0 100.0 100.0 99.515 98.744 99.728 100 100 100 100
Coverage 0.6 0.9 0.9 0.9 0.8 0.8 1.0 1.0 1.0 0.8 1.0 1.0 1.0

Table 1. Comparison of contiguity and annotation of P. aeruginosa AG1 genome assembly by different 
approaches*. *For some metrics, best and worst values are marked as bold or italics, respectively.
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(Fig. 2a). In the case of long reads approaches, hybrid or not, the performance was also similar to each other at 
this contiguity level. Differences depending on technology and assembly strategy are recognized according to 
metrics and global profiles in PCA, gaps in the assembly and graphs (Fig. 2).

Only two assemblers generated a single contig. One is a long reads only approach (Flye) and the other one is 
a hybrid assembler (Unicycler). The hybrid assembler IDBA obtained metrics equivalent to the mode without 
the use of long reads (short reads only with 127 contigs and 121 contigs for hybrid approach), and also simi-
lar to Megahit (125 contigs and other metrics). Velvet and SKESA had the higher contigs values, 227 and 217 
respectively.

The anticipated total genome length was similar among the 13 assemblers (7–7.2 Mb for all cases, except for 
long read only Unicycler with 7.4 Mb), while the N50 value tended to be much shorter for short reads assemblies 
(65–171 kb) compared to long reads (4.3–7.2 Mb). However, at the scaffold level N50 values were comparable 
among all cases (>7.0 Mb). At this same level, all assemblies covered virtually the entire final genome, although 
the lower performance was obtained for short reads only approaches (>97%).

As to correctness, long reads only were linked to high rates of mismatches (28–101 per 100 kb) and indels 
(186–324 per 100 kb), which were not solved by posterior polishing steps (as in Unicycler). Better values were 
obtained for other approaches using short reads, hybrid (0–11 mismatches and 1–1.14 indels) or not (0.48–6.6 
mismatches and 0.3–6.5 indels). In addition, although long reads only assemblies generated sequences of approx-
imately the same length as the other approaches, their annotations revealed high CDS numbers (9,089–11,229, 
which contrast with the 6,550–6,600 for short reads and hybrid approaches). Specific analysis of sequences 
showed a low median CDS size (average <600 bp) from long reads only assemblers compared to other cases with 
short reads only or hybrid (average 955 bp, which is an expected value for PaeAG1), suggesting fragmentation of 
CDS in the long reads assemblies.

Evaluation of 40 core genes using BUSCO tool and completeness score showed a 100% performance for short 
reads only and hybrid assemblers. However, in long reads only approaches it was possible to identify 13 to 23 core 
genes only (32.5–57.7%).

Regarding the PaeAG1 integron sequences obtained by Sanger sequencing, with a length greater than 2,500 bp 
and 3,000 bp, the assemblies of short reads only had low coverage (0.4–0.9), specifically in regions with repeti-
tions. On the other hand, models with long reads had the best performance (1.0 in all cases), and their use in the 
hybrid approaches improved the assembly of the aforementioned repetitive zones (0.9–1.0 for all cases, except 
IDBA with 0.6–0.8).

Figure 2. General comparison of P. aeruginosa AG1 genome assemblies. (a) Relationship between different 
assemblers by PCA using contiguity and annotation features. (b) Completeness evaluation and comparison 
for all different approaches using the final assembly as reference. (c) De novo assembly graph of three different 
approaches by short reads, long reads or hybrid assemblers. More details in Supplementary Fig. S1.
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Using all information, global profiles were compared the samples using a PCA. The full table used for PCA 
and the components values are provided in the “Supplementary Material PCA data”. As presented in Fig. 2a, these 
profiles show a separation between the profiles of the short reads only (green color) and the others, creating two 
clusters. Also, unpolished and polished Unicycler assemblies kept close, as might be expected.

Enhancing the winner: polishing of hybrid unicycler assembly. The assembly directly obtained from 
the hybrid Unicycler approach was selected as the winner for its better fulfilled the 3C criteria, and it was used for 
downstream analyses. However, a review of the assembly was required in evidence of: (i) missing coverage for one 
of the known integrons sequences (Table 1) and (ii) presence of a zone with irregular/non-uniform distribution in 
the remapping of long reads (Supplementary Fig. S1a -left). Due to this, a manual curation was required. Curation 
was carried out with the help of the known sequences of the integrons, assembly graphs, and the assemblies of 
long reads only (because long reads could assemble that region). A detailed explanation of the curation is pro-
vided in the “Supplementary Material Manual curation” file, including a graphical representation.

After curation with short reads, a final polishing step was carried out to guarantee completeness. Only 5 bases 
were modified, which is reflected in the mismatches rate (per 100 kbp) of Unicycler hybrid of 5/7,190,208*100 kb 
= 0.07 (Table 1). When remapping of reads was done, regular and uniform coverage was detected, even in the 
conflictive zone (Supplementary Fig. S1a-right). Furthermore, the known integron sequences showed complete 
identity and coverage (Table 1, last column).

With this improved version of the assembly, in addition to the PCA comparison, an alignment of all assem-
blies was done against the final assembly to highlight the problematic regions to assemble. As shown in Fig. 2b 
some gaps were evident in all assemblies that were derived from short reads only and these gaps were not always 
compensated through the use of hybrid approaches. However, for most assemblers, the use of long reads only 
or hybrid improved those regions. Benchmark of all assemblers in a specific conflictive region is presented in 
Supplementary Fig. S1b. The assembly graphs of three cases are presented in Fig. 2c, showing the variable ability 
of assemblers to solve the de novo assembly problem.

3C assessment of PaeAG1 final genome assembly. To assess the final assembly of PaeAG1 genome, 
3C criterion was re-evaluated:

Contiguity. The final assembly was built with hybrid Unicycler, with curation and polishing steps, but without 
the need for a reference genome. Full contiguity was achieved. A single and circular sequence was obtained.

Completeness. With all the elements evaluated, maximum completeness is considered. This includes circular-
ization of sequence, 100% identity and coverage of known sequences of the integrons and 100% completeness 
scores in 40 expected genes (single copy orthologs set). Regarding the remapping of genomic reads, 99.85% of the 
short reads were mapped with an average coverage of 403X (See coverage graph in Supplementary Fig. S1c left). 
About long reads, 97.81% were mapped to the genome with an average coverage of 560X (Supplementary Fig. S1c 
right). Additional data from the same strain PaeAG1 using RNASeq technology achieved a mapping of 98.6% of 
read sequences.

Correctness. The polishing rounds that Unicycler includes and the additional polishing after curation using 
short reads guarantee the maximum accuracy of the genome assembly.

Thus, circular assembled genome was built according to 3C criterion: high contiguity, completeness and cor-
rectness was achieved.

Annotation of PaeAG1 genome. The PaeAG1 genome is composed of a single and circular sequence of 
7,190,208 bp, with 65.71% GC content (Fig. 3a). A total of 6,620 CDS, 12 rRNA, 76 tRNA and 1 tmRNA (6,709 
genes in total) were determined (Table 1). In addition, 2,197 genes were associated with Gene ontology terms, 
5,537 related to defined COGs, and 3,060 to KEGG when orthologous groups and functional annotation were 
analyzed.

As shown in Fig. 3b, specific annotation of different genomic determinants was done, including antibiotic 
resistance genes, mobilome, virulence factors and others. Regarding antibiotic resistance gene profiling, genetic 
determinants of resistance to β-lactams, aminoglycosides, and fluoroquinolones, fosfomycin, phenicol and sul-
phonamide were found. By mechanism, 60 resistance associated genes were identified, including 44 efflux pumps 
and 8 associated with drug inactivation, including blaVIM-2 and blaIMP-18 gene alleles. Also, six determinant 
of target alteration and two of target replacement were identified. More details are shown in the Supplementary 
Table S1.

In the case of virulence factors, P. aeruginosa AG1 has more than 250 genomic determinants for 11 classes 
or enriched groups, including adherence (flagella, type IV pili biosynthesis and motility), antimicrobial activ-
ity (phenazines biosynthesis), antiphagocytosis (alginate production), iron uptake (pyochelin and pyoverdine), 
enzymes (phospholipases), biosurfactant (rhamnolipid biosynthesis), quorum sensing, proteases, regulation of 
two component system, type three secretion systems (T3SS) and toxins (exotoxin-A). More details are shown in 
the Supplementary Table S2.

In the study of the mobilome, diversity of elements were identified. At the genomic islands level, a total of 57 
laterally acquired regions (size >10 kb) were identified (light blue in Fig. 3a), which correspond to drastic changes 
in the average GC composition. Six prophages (including two intact) were identified. The two complete integrons 
already described were also found. In correspondence to this diversity of mobile elements, no complete/func-
tional CRISPR-Cas systems were recognized.
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Using BLASTn, RIVM-EMC2982 (Accession CP016955.1; 7,380,063 bp, 65.7% GC content and Prokka anno-
tation: 6,871 CDS, 76 tRNAs, 1 tmRNA and 12 rRNA; ST-111 and blaVIM-2+) was identified as the closest 
genome to PaeAG1 (Query cover 99%, identity 100%), which is a ST-111 and blaVIM-2 carrying strain. Both 
strains have same number of RNAs genes. Synteny comparison of the nucleotide sequences of both strain revealed 
99% identity and 92% of coverage comparing PaeAG1 strain against RIVM-EMC2982. In addition, comparison 
of genome of PaeAG1 (genome size of 7.2 Mb) was done against strains PAO1 (6.3 Mb) and RIVM-EMC2982 
(7.4 Mb). As shown in Fig. 3c, genomic blocks contrast with the general reference of the P. aeruginosa group, 
PAO1, which has almost 1 MB of difference of the genome size and around 1 000 genes. In the case of compari-
son with RIVM-EMC2982, general profile by blocks found similar arrays between both strains, congruent with 
genome sizes and content of mobile determinants in both strains.

In addition, comparison of gene content of ST-111 strains was used for phylogenetic analysis. A total of 9 com-
plete genomes were available in PGDB, all with variable genome size (6.7–7.3 Mb) and gene content (6,200–7,400 
genes). Pan-genome analysis revealed a total of 10,637 genes, which can separate strains in two clusters, one of 
them including PaeAG1 and P. aeruginosa RIVM-EMC2982 (Fig. 4a). The reference strain PAO1 was found to be 
completely separated from the group. Regarding core-genome, 4,783 genes (45% of total genes) were identified 
(present in at least 10 of the 11 sequences). A third part of genes were identified in only one of the strains. More 
details are shown in Fig. 4b,c. Interestingly, PaeAG1 is the only isolate which carries blaIMP-18 gene, in contrast 
to blaVIM-2 which was present in most of the strains.

Discussion
P. aeruginosa is an opportunistic pathogen able to adapt to different environments and it causes a variety of acute 
and chronic infections. PaeAG1 is a clinical isolate from a Costa Rican hospital with a profile of multi-resistance 
to antibiotics. In this context, concern over the increasing prevalence in hospitals of high-risk clones, includ-
ing Pseudomonas aeruginosa, has prompted the use of typing methods and sequencing strategies to study the 
genomic epidemiology of bacterial clones at high resolution1. Interested in the assembly and annotation of 
PaeAG1 genome, we implemented different approaches using short and long reads and we benchmark them 
using the 3C criterion.

Benchmark of hybrid and non-hybrid assemblies. Of the more than 50 assemblies we run for pipeline 
standardization (considering different pre-processing, assembly and annotation steps), best cases per assembly 

Figure 3. Annotation of P. aeruginosa AG1 genome. (a) Circularized genome showing phages and integrons 
locations. (b) Specific annotation of different genomic determinants including number of elements. (c) Genome 
synteny comparison among three strains of P. aeruginosa: PAO1 (general reference), AG1 (our assembly) and 
RIVM-EMC2982 (closest one to PaeAG1 according to BLAST analysis).
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were compared. In total 12 approaches were presented, and the best one was included as a 13th case after polishing 
and curation. According to the global profiles given by metrics and 3C benchmark, variable results were obtained 
(Table 1 and Fig. 2).

Regarding contiguity, fewer contigs were assembled using long reads or hybrid approaches in comparison to 
short reads. As reported, assembly continuity and genome size seems not to be correlated60. This is verified in 
our case, and dependency on technology seems more evident. Also, dependency on algorithms showed different 
contiguity, even for same type of approach. Use of long reads (non-hybrid or hybrid method) improved contiguity 
metrics, solving most of conflictive regions that short reads could not assemble.

In the case of correctness, long reads only approaches presented critical problems in accuracy. As in our study, 
in a recent study error rates for short reads and hybrid assemblies were similar but were much higher for long 
reads assemblies using Unicycler in all cases1. Even though we had ultra-deep coverage for both sequencing tech-
nologies, this could be no enough to correct error in long reads only assemblies. This is probably due to system-
atic errors that have been detected in long reads sequencers, without compensation even increased sequencing 
depth10. In addition, our results using long reads only assemblers tended to have larger assemblies (total length) 
and duplication in different contigs was recognized. This is has been previously reported for long read assem-
blers10 and it could be a major obstacle for polishing the genome12 and compromising accuracy.

To assess completeness, we implemented an analysis using expected gene content by searching single-copy 
orthologs61. Short reads only and hybrid approaches achieved the assembly of 100% of core genes, but long reads 
only had a poor performance. Also, despite the larger number of CDS for long reads, incomplete assembly of 
genes was evidenced. Fragmentation of genes was confirmed by comparing the average size of all those elements. 

Figure 4. Pan-genome analysis of ST-111 P. aeruginosa strains. (a) Clustering according to strains profile by 
gene content. A total of 10,637 genes were identified. (b) Distribution of the gene content in all the strains, 
including that the core genome is composed of 4,783 (45% of total genes). Distribution of genes number by 
number of genomes is presented in (c).
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In long reads only assemblies the CDS average size was <600 bp, but for all other approaches this value was 
around 955 bp (Table 1). The CDS average size of the closest genome to PaeAG1, RIVM-EMC2982, is 955 bp, 
meanwhile for PAO1 strain is 1000 bp. This appreciation has been briefly reported before62. The incompleteness of 
genome assembly will not matter if genome structure is not the focus of a study9, but it is not the case of PaeAG1, 
where genomic events reconstruction would be crucial to understand the special features of this strain.

When all features of assemblies are included in the PCA analysis, general profiles of short reads approaches 
define a separated cluster, and another one for long reads and hybrid methods (Fig. 2a). Considering all the 
metrics of the 3C criterion, definitively SPAdes and Unicycler hybrid approaches outperformed non-hybrids 
methods. This can be explained due reference-free genomes assembly is feasible using best features of both short 
and long reads technologies9. IDBA assembler is a particular case which remains as the same using the hybrid or 
non-hybrid approach.

About other works related to the algorithms we evaluated, different results have been found depending on 
data and genome complexity. However, since introduction of Unicycler assembler, a last generation algorithm, 
most studies have suggested that Unicycler outperforms other approaches1,10,11,63. In the case of IDBA and Velvet, 
performance was comparable to SPAdes when it was introduced36. For Megahit, an assembler for metagenomes 
but also working for single genomes38, it has been also used in recent studies, mainly related to microbial commu-
nities or particular strains64. More restricted works using SKESA are reported, but performance seem to be better 
than SPAdes and Megahit for some cases39.

For short reads only or hybrid assemblies, SPAdes is still used to aseembly genomes36,39,65. In a recent study, 
SPAdes had better results when compared to others, where Unicycler was not included3.

For long reads, Canu has been successfully implemented in different studies10,12,41, showing well performance 
when benchmark is done (but most of them without Unicycler assember). For Flye, it has been used in recent 
studies66,67, including a case where Canu, Flye and Unicycler (using long reads only and hybrid approaches) had 
very similar performance68. Comparison between Unycicler, SPAdes and Canu has shown that in some cases 
Canu and SPAdes are not able to circularize the final assembly, unlike Unicycler11. In another study with long 
reads only, Canu was the best ranked assembler using Escherichia coli genome12.

All this variable results of assemblers (in our benchmark and the literature) are congruent with several reports 
about the diversity of assemblers, which have been developed to generate high quality de novo assemblies, but 
their output is very different because of algorithmic differences, data source and genomic complexity2. This com-
plicates selection of appropriate strategy. Thus, the need for more capable assemblers is still mandatory in terms 
of capabilities, accuracy and the way to deal with genomic features3.

Regarding the differences in cost for both technologies (only considering sequencing step and no other com-
plementary costs) Illumina short reads sequencing cost ($1500) was around three times more expensive than 
ONT ($500) sequencing. In our case, the hybrid approach has a cost of around $2000 for both technologies. 
Although we had ultra-deep sequencing data for both platforms, the minimal coverage requirements for PaeAG1 
genome assembly are not known, which could significantly reduce the sequencing price. This cost is higher than 
other studies but with hundreds of sequenced samples69,70, in contrast with our case in that a single genome was 
sequenced (increasing costs).

In the case of conflictive regions, each assembler implements slightly different heuristics to deal with rep-
etitions in the genome, uneven coverage, sequencing errors and chimeric reads8. Efforts to generate complete 
genome sequences with repetitive regions has been hampered by dramatic expansion of mobile elements, espe-
cially when short read sequencing methodologies are used13. In PaeAG1 genome assembly, different complicated 
regions were identified when short reads only approaches (all methods) and hybrid IDBA were used, creating gaps 
in an incomplete assembly (Fig. 2b). Although the PaeAG1 has not really a repeat-dense genome, mobile elements 
add repetitive sequences. This has complicated the assembly of its genome using short reads only approaches. All 
this regions were apparently solved by long reads only and for hybrid SPAdes and hybrid Unicycler. This results 
are expectable according to previous reports and the differences in each technology. Use of long reads technolo-
gies achieve repeat regions spanning63 and it permits bridging of repetitive sequences65.

However, evaluation of remapping of reads with the selected assembly (hybrid Unicycler according to 3C cri-
terion) revealed a variation in the coverage in one specific region, as shown in Supplementary Fig. S1a (left), with 
an irregular and non-uniform distribution of reads. This conflictive region was preliminary annotated as a flank-
ing repetitive sequence of one of the integrons (containing blaVIM-2 gene). This is a common phenomenon in 
regions carrying antimicrobial resistance determinants, which are often flanked by repetitive insertion sequences, 
and it can be difficult to assemble using short reads because are very short compared to the repetitions10. In our 
case, the conflictive region is part of the known region of the integron (approx. 2,500 bp, sequenced using Sanger 
method), and 100% of short reads had a size of 101 bp. Although this region was identified in a hybrid approach, 
this problem is an in force limitation of the algorithms11 and curation step was required.

No resolution of repetitive region made that short reads were mapped incorrectly9, evidenced as a cover-
age peak of reads in the remnant conflictive region of PaeAG1 genome assembly. In addition, this is congruent 
with the alignment of known sequence against the assembly. At least a 12% of the blaVIM-2 carrying integron 
sequence was lost in the hybrid approaches, including hybrid Unicycler (Table 1). We can conclude that those 
identical flanking regions of integrons were not well assembled using short reads. Long reads approaches were 
able to coverage both regions completely. The compromised ability of the Unicycler algorithm to assemble this 
conflictive region in the hybrid mode is related to the approach. In general, hybrid assembly can be accomplished 
with either a short-read-first or long-read-first approach. In the short-read-first method, contigs are assembled 
using short reads followed by a scaffolding is addresses using long reads11. Drawbacks of this approach include 
scaffolding mistakes and structural errors (misassemblies) in the sequence71. This could be the reason of our case 
in the conflictive region due Unicycler in hybrid mode is a short-read-first approach. In this context, the genome 
assembly problem is an open issue due is a NP-hard problem, and no universal solution to find the optimal 
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route in graph-based approaches is available, in particular which is aggravated by repetitive regions. To deal with 
repetitive sequences in the genome, Unicycler determine the occurrence (multiplicity) of contigs in the assembly 
using both depth and connectivity using a greedy algorithm, and a bridging step is used to connect contigs and 
solve repeats using paired-end short reads11. However, due the algorithm used by Unicycler is a greedy approach, 
optimal solution is not warranted, and assembly errors can be induced. Thus, additional steps, as the manual 
curation, are required.

In this sense, manual curation is a common practice to finish genome due complexity of genomic data which 
algorithms not always can deal with9,10. In a case, by comparing long reads only and hybrid assemblies, this man-
ual curation it implied recovery of lost sequences up to 18 kbp for some assemblies in another study10. Same situ-
ation was presented in another ST-111 P. aeruginosa strain, where flanking regions of blaVIM-2 gene was broken 
during assembly72. In other studies, no polishing strategy improves the completeness of assemblies65.

To improve the genome assembly of PaeAG1, curation was done with the help of the known sequences of 
PaeAG1 (Sanger sequencing), assembly graphs and the assemblies of long reads only. After this polishing step, 
remapping showed a uniform distribution of reads (Supplementary Fig. S1a right) and complete matching (100% 
identity and coverage) of the known sequences of the integrons, as expected.

At graph assembly level, when topological structure of assembly is analyzed for short reads assemblies (Fig. 2c, 
short reads), a collapsed graph is evidenced, where sequences are shown as cycles due the repeats or small shared 
sequences in many reads at same time. This means that there is insufficient information to disambiguate the 
repeat or shared sequences in the graph. This problem was solved when long reads were implemented, showing 
no cycles for long reads approaches (although shown case had two contigs), and a complete circularized genome 
for the final hybrid assembly.

Assessment of the genome assembly of PaeAG1. Based on best overall quality statistics and polish-
ing, hybrid approach using Unicycler was selected as the final assembly of PaeAG1 genome using 3C criterion.

In our initial efforts to assembly the genome, using only short reads, most of assemblers generated more than 
100 contigs, and using RIVM-EMC2982 strain (which was selected after doing a full genome BLASTn of con-
tigs), scaffolding finished with 1 sequence for the case of Unicycler and 22 gaps. In order to improve the genome 
assembly, ONT technology was used to produce long reads and new evaluations were made using both, long read 
only or hybrid methods.

On the other hand, notwithstanding all the three contiguity, completeness and correctness evaluation are fre-
quently evaluated in genome assembly studies3,8,12,15–17, no explicit conceptualization of “3C criterion” has been 
achieved. Here we emphasized its use to referrer to the classical metrics and comparisons.

The final assessment of the definitive assembly of PaeAG1 genome accomplished an ultra-deep coverage for 
both, short (>400X) and long reads (>560X) technologies. Also it achieved high performance according to 3C 
criterion: (i) full contiguity with a single and circular genome without gaps; (ii) correctness based on short reads 
remapping and polishing, achieving full accuracy (including known sequences of the strain); and (iii) complete-
ness according to identification of 100% of expected core gene set and percentage of remapping of genomic reads 
as well mapping of reads from RNASeq technology.

Altogether, the use of a hybrid strategy allowed the PaeAG1 genome to be inferred by a de novo or 
reference-free assembly approach, which it represent a key element in the study of this strain due its exclusive 
genomic features9. To our knowledge, this is the first genome assembly of a ST-111 P. aeruginosa strain using a 
hybrid approach.

The first hybrid assemblies for other-class P. aeruginosa strains were published recently23,73,74. In order to eval-
uate our pipeline in these publicly available sequencing data, we implemented our hybrid approach to the two 
cases with Illumina and ONT sequencing technologies. For the case of the P. aeruginosa strain Houston-173, we 
were able to reproduce the assembly of the chromosome and the plasmid with our approach. For the P. aeruginosa 
strain CRPA23, the published draft genome was composed of three contigs, and with our approach we were able to 
finish into two contigs, representing an improvement in the assembly. More details of the assemblies of these two 
strains are shown at the end of the Supplementary Material Manual curation.

Annotation of the PaeAG1 genome and epidemiological insights. In order to identify main fea-
tures of the PaeAG1 genome, including its architecture, composition and functions, genome characterization 
and annotation was done. The PaeAG1 chromosome is a large and circular sequence of 7,190,208 bp, larger than 
reference strain PAO1 and similar to other ST-111 strains size31,75. Same pattern was found for the GC content 
of 65.7%. This relatively large genome in P. aeruginosa has been associated to thrive in a repertoire of hosts and 
environments21.

The general annotation of genome revealed that PaeAG1, contain 6,709 genes (including 6,620 CDS), which 
are related to 2,197 Gene ontology terms, 3,060 elements in KEGG and 5,537 COGs. In similar way as reported 
in first whole genome sequencing of a P. aeruginosa strain76, genome analysis of PaeAG1 shows determinants 
associated to versatility and successful ability to conquer multiple niches in nature. For example broad capabilities 
to transport and metabolize organic substances, presence of chemotaxis systems, biofilms production and efflux 
systems have been described and all of them were annotated for PaeAG1.

Genome sequence analysis using molecular typing methods showed that PaeAG1 has a ST-111 profile and 
O12 serotype. ST-111 is a lineage that belongs to the O12 serotype, which has been associated with multidrug 
resistance and expansion in hospitals for decades28,72,75. Thus, emergence of high-risk clones, including the ST-111 
clones of P. aeruginosa, undermines the available therapeutic strategies and therefore, compromises public health. 
The presence of this kind of high-risk clones in Costa Rican hospitals is a nationwide concern because MBL 
and particular virulence factors producing isolates cause serious infections that are difficult to treat77. This same 
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ST-111 profile has been identified in most of MBL producing P. aeruginosa strains in the United Kingdom75 thus 
as in Netherlands77.

Annotation of virulence factors found classical elements in P. aeruginosa group78, including elements related 
to adherence, antiphagocytosis, iron uptake, phospholipases, biosurfactant, quorum sensing, proteases, regula-
tion, secretion systems, and toxins. Some particular virulence factors of PaeAG1 are substrate for type I protein 
secretion system T1SS (alkaline protease aprA), T2SS (elastases LasA and LasB, exotoxin-A and phospholipases 
PlcH, PlcN, and PlcB) and T3SS (ExoS, ExoT, and ExoY)78. It has been reported that secretion of ExoS is predom-
inantly identified in invasive P. aeruginosa strains78. Recently, this determinant was identified in two blaVIM-2 
carrying strains, one serotype O12 and ST-111 isolate (P. aeruginosa Carb01 63) and another O11 strain of ST-446 
(P. aeruginosa S04 90) in Netherlands31. In PaeAG1, a potential invasive role of this strain can be related to the 
presence of this element.

In the context of mobile genetic elements, large number of determinants were identified in the chromosome 
of PaeAG1, including multiple genomic islands, six prophages and two integrons. Comparison of PaeAG1 against 
the reference of the P. aeruginosa group PAO1 and the closest strain to PaeAG1, RIVM-EMC2982, is consistent 
with genome size and mobile elements content. In the case of strain PAO1, this reference has a 6.3 Mb genome, 
meanwhile PaeAG1 has almost 1 Mb more of bases pairs (around 1,000 genes). This difference is congruent with 
high content of genomic island and other mobile elements in PaeAG1 but it is compromised in PAO1 strain. 
In the case of RIVM-EMC2982 (ST-111 and blaVIM-2+), this strain was identified as the closest to PaeAG1 
and similar profile by genomic blocks were recognized (Fig. 3c). Meticulous analysis showed some different 
genomic arrangements, including differences in composition of mobile elements and absence of blaIMP-18 in 
RIVM-EMC2982.

In the case of the six prophages, all of them are also found in RIVM-EMC2982 genome (ten prophages in 
total) in same conditions of integrity. However, there are variable results of prophage presence in many ST-111 
strains, which has been discussed as difficult to interpret, due transient nature of phages or the more method-
ological issues72. In addition, these high numbers of prophages might be related to the absence of CRISPR-Cas 
systems in the genome31, as the case of PaeAG1. Reports of compromised CRISPR-Cas defense systems are asso-
ciated to better ability to acquire mobile element carrying antibiotic resistance genes in P. aeruginosa and other 
organisms79.

Regarding the integrons of PaeAG1, identification of genes intl1, sul1 and qacE∆1 for class I integrons, sug-
gested two integron-like structures carrying the VIM-2 and IMP-18 genes22. This was confirm when Sanger 
method was used for sequencing both integrons. In our assembly, these two complete integrons and same struc-
ture were found, one carrying blaVIM-2 and another one including blaIMP-18. This is congruent with previous 
studies showing that these two genes are regularly identified in integrons in P. aeruginosa30,31,80.

In more detail, VIM (Verona integron-encoded metallo-β-lactamase) enzymes have same hydrolytic spectrum 
than the IMP-type enzymes, and specifically blaVIM-2 is responsible of multiple outbreaks being the most wide-
spread MBL in P. aeruginosa30. Multiple strains carrying VIM-2 have been identified in different latitudes around 
the world75,80–83. In United Kingdom, a study with 87 ST-111 P. aeruginosa strains found that 73 isolates carried 
VIM-2 and others carried different IMPs and one isolate had both VIM-2 and IMP-18, the second report of a 
clone carrying both MBL75. In a Netherlands outbreak, another strain (Carb01–63 strain, isolated from drains and 
sinks in a hospital) had a ST-111 profile and it was closely related to same RIVM-EMC298231. All the three strains 
(PaeAG1, Carb01–63 and RIVM-EMC2982, in the same group according to phylogenetic analysis) are resistant 
to multiple antibiotics and carry blaVIM-2 allele.

In the case of imipenemases coded by blaIMP-18 gene, outbreaks reports and genetic context is limited in P. 
aeruginosa, including some cases in United States84, México85, France81 and Puerto Rico86.

For other antibiotic resistance determinants, annotation also included serine- and metallo-β-lactamases 
(PDC-3, OXA-2, as well as VIM-2 and IMP-18), porins and efflux pumps (including mexAB–oprM, mexCD–
oprJ, mexEF–oprN, mexHI–opmD operons). All of them may contribute to the multi-resistance phenotype in 
PaeAG1.

As it was revealed by pan-genome analysis of ST-111 members, variable composition of gene content separate 
strains in relatively independent groups. The strains (including PaeAG1) belongs to the O12 serotype, which has 
been associated with multidrug resistance and nosocomial expansion28,29. PaeAG1 was close to the main group 
with 5 isolates, including the P. aeruginosa RIVM-EMC2982 (the closest to PaeAG1 by BLAST analysis) and 
Carb01–63 strains. Although all the strains (except the reference) are part of same group, differences in gene 
content is a remarkable feature, including that PaeAG1 was the only strain carrying blaIMP-18 genes. In contrast, 
ST-111 strains has been frequently associated with blaVIM-2, as mentioned before28,75. Other less commonly 
associated lactamases genes include VIM-4 or other IMP-type enzymes, but also only with extended-spectrum 
β-lactamases without carbapenemase activity (such as VEB-1 and OXA)75.

Due differences in size of the genome (6.7–7.3 Mb) and gene content, as well as the particular genomic features 
of this strains (genomic island composition and evolution, mobile elements, integrons, phages and others), fur-
ther analysis are required to describe high plasticity in this group.

Conclusions
Advances in sequencing technology play an increasing and determinant role in infection investigations and track-
ing evolution of international lineage of high-risk bacterial clones in clinical context over long times and in 
great detail87. However, genome assembly is not obvious and it is challenged by sequencing technology, genomic 
features and all bioinformatic algorithms, making it an open problem. Exhaustive comparison of different strat-
egies to assembly the genome and it assessment gives a better way to get close to the real genome sequence. 
Benchmarking using the 3C criterion is a consensus approach that includes different levels and aims of compari-
son for the robust selection of a final assembly.
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In our case, a hybrid assembly was the best approach to achieve a single circular sequence with high quality 3C 
for the case of the genome of a high-risk P. aeruginosa strain. Thus, best features of short and long reads sequenc-
ing technologies are included and their drawbacks are compensated.

The case of PaeAG1 genome assembly is a first and important step to understand the genomic architecture of 
an ST-111 high-risk strain. Annotation could reveal all the genomic content and molecular determinants related 
to phenotypes, which for PaeAG1 are related to multi-resistance and virulence mainly. This highlighting the need 
for more studies using epidemiological information and both high throughput technologies and conventional 
methods to understand the molecular mechanisms and phenotypes, make decisions at clinical level and to fight, 
and hopefully, overcome the antibiotic multi-resistance problem.

Data availability
Data input and output data for PCA are provided as Supplementary material PCA data. The details of the 
approach for the manual curation are available in the Supplementary Material Manual Curation.

Scripts for bioinformatics analysis are provided as a supplementary material, but also available at https://
github.com/josemolina6/PaeAG1_genome/blob/master/Script_for_bioinformatic_analysis.sh.

To specifically run the analysis of the 3C criterion, access a simplified Script at: https://github.com/josemo-
lina6/PaeAG1_genome/blob/master/Script_3C_evaluation.sh.

The annotated final assembly of the PaeAG1 chromosome was deposited in GenBank under the accession 
number CP045739. Short reads and long reads raw data were uploaded to the NCBI Sequence Read Archive 
(SRA) and it is available under the accessions numbers SRX7088413 and SRX7088414, respectively. A full table of 
all the details of the genome annotation is provided as a Supplementary material, and it is also available at: https://
github.com/josemolina6/PaeAG1_genome. Files of the annotation in different formats as well as the fasta files of 
all the assemblies are available in the same link.
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Summary  

P. aeruginosa AG1 is a high-risk ST-111 strain with resistance to multiple antibiotics, including 

carbapenems by the activity of VIM-2 and IMP-18 metallo- -lactamases. These genes are harbored 

in two class 1 integrons, belonging to genomic islands. However, the genomic context related to 

these determinants in PaeAG1 is unclear. Thus, we implemented a comparative genomic approach 

to define and up-date the phylogenetic relationship among complete P. aeruginosa genomes and 

genotyping profiles using a pan-genome analysis. We also studied the PaeAG1 genomic islands 

content in other strains and the architecture of genomic regions around the integrons.  

With 211 strains, the pan-genome analysis revealed that complete genome sequences are able 

to separate clones by MLST, including a ST-111 cluster with PaeAG1. The PaeAG1 genomic islands 

were found to define a diverse presence/absence pattern among related genomes, but content was 

related to phylogenetic relationships. Finally, landscape reconstruction of specific genomic regions 

showed that VIM-2-carrying integron (In59-like) is an old-acquaintance element harbored in a 

known genomic region completely found in other two ST-111 strains. In addition, PaeAG1 has an 

exclusive genomic region containing a novel IMP-18-carrying integron (registered as In1666), with 

an arrangement never reported before. Altogether, we provide new insights about the genomic 

determinants associated with the resistance to carbapenems in this high-risk P. aeruginosa using 

comparative genomics.  
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Highlights  

 Pseudomonas aeruginosa AG1 (PaeAG1) carries VIM-2 and IMP-18 genes, which are 

induced by carbapenems 

 Pan-genome analysis is able to separate strains by MLST profile 

 Few PaeAG1 genomic islands were found in other related genomes 

 The VIM-2-carrying integron (In59-like) is an old-acquaintance element 

 A novel IMP-18-carrying integron (registered as In1666) was described for the first time 
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Abstract 

Pseudomonas aeruginosa is an opportunist and versatile organism responsible for infections among 

immunocompromised hosts. This pathogen has high intrinsic resistance to most antimicrobials.  P. 

aeruginosa AG1 (PaeAG1) is a Costa Rican high-risk ST-111 strain with resistance to multiple 

antibiotics, including carbapenems due to the activity of both VIM-2 and IMP-18 metallo- -

lactamases (MBLs). These genes are harbored in two class 1 integrons, belonging to one out of the 

57 PaeAG1 genomic islands. However, the genomic context related to these determinants in 

PaeAG1 and other P. aeruginosa strains is unclear. Thus, we first assessed the transcriptional 

activity of VIM-2 and IMP-18 genes when exposed to imipenem (a carbapenem) by RT-qPCR. To 

select related genomes to PaeAG1, we then implemented pan-genome analysis to define and up-

date the phylogenetic relationship among complete P. aeruginosa genomes. We also studied the 

PaeAG1 genomic islands content in the related strains and finally we described the architecture and 

possible evolutionary steps of the genomic regions around the VIM-2- and IMP-18-carrying 

integrons.  

Expression of VIM-2 and IMP-18 genes was demonstrated to be induced after imipenem exposure. 

In a subsequent comparative genomics analysis with 211 strains, the P. aeruginosa pan-genome 

revealed that complete genome sequences are able to separate clones by MLST profile, including a 

clear ST-111 cluster with PaeAG1. The PaeAG1 genomic islands were found to define a diverse 

presence/absence pattern among related genomes. Finally, landscape reconstruction of genomic 

regions showed that VIM-2-carrying integron (In59-like) is an old-acquaintance element harbored 

in a known region completely found in other two ST-111 strains. In addition, PaeAG1 has an 

exclusive genomic region containing a novel IMP-18-carrying integron (registered as In1666), with 

an arrangement never reported before. Altogether, we provide new insights about the genomic 

determinants associated with the resistance to carbapenems in this high-risk P. aeruginosa using 

comparative genomics.  
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1. INTRODUCTION 

Pseudomonas aeruginosa is an opportunist and versatile pathogen able to survive in a wide 

variety of environments (Klockgether et al., 2010). With a large genome (6-7.5 Mb), P. aeruginosa 

strains have a the large proportion of the genome (>8%) dedicated to regulatory functions (Cabot et 

al., 2016) resulting in a consequent diversity of metabolic capabilities and responses to stress 

studied (J. A. Molina-Mora et al., 2020; J. Molina-Mora et al., 2020). Due to these features, P. 

aeruginosa is responsible for infections among immunocompromised hosts (Lu et al., 2016) and 

nosocomial infections (Fernández, Corral-Lugo, & Krell, 2018). This pathogen has high intrinsic 

resistance to most antimicrobials used in therapeutic practice (Brazas, Brazas, Hancock, & 

Hancock, 2005), many of them by multidrug-resistant or extensively drug-resistant strains (Oliver, 

Mulet, López-Causapé, & Juan, 2015). This severely compromises the selection of appropriate 

treatments (X. Mulet et al., 2013) causing significant morbidity and mortality. According to World 

Health Organization (WHO) resistance to carbapenems in P. aeruginosa, Acinetobacter baumannii 

and Enterobacteriaceae family is considered a critical issue in the context of antibiotic resistance, 

being classified as Priority 1 group (World Health Organization, 2017).  

P. aeruginosa AG1 (PaeAG1) is a particular P. aeruginosa strain isolated from an 

immunocompromised patient in a Costa Rican hospital in 2010 (Toval et al., 2015). This strain has 

-lactams (including carbapenems), aminoglycosides, and 

fluoroquinolones, being only sensible to colistin. This strain was the first report of a P. aeruginosa 

isolate carrying both VIM-2 and IMP-18 genes encoding for metallo- -lactamases (MBLs) 

enzymes, both with carbapenemase activity (Toval et al., 2015). As shown in our previous works, 

including the genome assembly (GenBank CP045739) (J.-A. Molina-Mora, Campos-Sánchez, 

Rodríguez, Shi, & García, 2020), these genes belong to two independent class 1 integrons, each 

contained in one out the 57 predicted genomic islands of PaeAG1 (J.-A. Molina-Mora et al., 2020; 

Toval et al., 2015). Other elements such as six phages, mobile genetic elements and some virulence 
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factors are also harbored in genomic islands. Ciprofloxacin exposure in PaeAG1 induces phage 

activity with a very complex activity, affecting the growth despite the strain is sensitive to this 

antibiotic (J. A. Molina-Mora et al., 2020). In addition, PaeAG1 has a not functional CRISPR-Cas 

system and molecular genotyping by multilocus sequence type (MLST) classifies PaeAG1 as a 

high-risk sequence type 111 (ST-111) strain.  

ST-111 is a lineage that belongs to the O12 serotype, including a multi-resistance profile and 

the ability to colonize nosocomial environments (X. Mulet et al., 2013; Turton et al., 2015; Witney 

et al., 2014; Woodford, Turton, & Livermore, 2011). Jointly with ST-235 and ST-175 genotypes, 

ST-111 belong to the high-risk group in P. aeruginosa (Oliver et al., 2015). High-risk clones are 

frequently associated with epidemics where multidrug resistance confounds treatment (Petitjean et 

al., 2017).  

In this context, it is considered that P. aeruginosa high-risk clones are part of a non-clonal 

epidemic population structure (Oliver et al., 2015; Petitjean et al., 2017), many carrying genomic 

determinants such as carbapenemases or extended- -lactamases (Oliver et al., 2015). 

Carbapenemases include Ambler class A enzymes such as KPC and GES variants,  Ambler class B 

MBLs (IMP, VIM, SPM, GIM, NDM and FIM type), and Amber class D (OXA variants) enzymes 

(Farajzadeh Sheikh et al., 2019; Hong et al., 2015). In Costa Rica, isolation of carbapenem resistant 

P. aeruginosa strains is relatively common in some major hospitals as we reported, most of them 

carrying VIM or IMP alleles and up to 63.1% prevalence (Toval et al., 2015). This is much higher 

than the frequencies observed in other countries (Hong et al., 2015). 

VIM and IMP genes, as well as other MBLs, are frequently found as part of gene cassettes 

carried by integrons (Walsh, 2005; Zhao & Hu, 2011), leading to the dissemination of multidrug 

resistance among Gram negative bacteria (Jones-Dias et al., 2016). Thus, there is a growing interest 

in the reconstruction of the genomic context of mobile elements (in particular for integrons) to gain 

insights into bacterial evolution and its association with human activities, as well as to identify 

possible ways to mitigate antibiotic resistance (Ghaly, Chow, Asher, Waldron, & Gillings, 2017). 
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However, the genomic context of P. aeruginosa high-risk clones associated with integrons has been 

studied in some few studies (Chowdhury et al., 2016).  

In this sense, comparative genomic strategies can provide insights not only about gene content, 

architecture and evolutionary details, but also dynamics of mobile genetic elements, pathogenicity 

determinants, and others (Peter et al., 2019). Several studies at genomic level have been 

implemented to describe the molecular diversity in P. aeruginosa (including high-risk clones) using 

different comparative approaches (Xavier Mulet et al., 2013; Petitjean et al., 2017; Turton et al., 

2015). 

Since PaeAG1 has special genomic features regarding antibiotic multi-resistance, including 

VIM-2 and IMP-18 genes with carbapenemase activity, 57 genomic islands and a ST-111 profile, 

we hypothesized that the comparative genomics can reveal insights about the evolution and 

landscape of genomic regions around the MBLs-carrying integrons of PaeAG1. Thus, the aim of the 

study was to compare PaeAG1 genome against other P. aeruginosa sequences using comparative 

genomics to describe phylogenetic relationships, genomic islands content and architecture of 

genomic regions associated with the VIM-2- and IMP-18-carrying integrons of PaeAG1. We first 

demonstrated that VIM-2 and IMP-18 are functional genes that can be induced after treatment with 

imipenem (a carbapenem antibiotic). We then analyzed all the complete P. aeruginosa genomes 

using a pan-genome analysis approach to identify related genomes to PaeAG1, revealing that whole 

genome sequences are able to separate clones by MLST profile (ST). Afterward, PaeAG1 genomic 

islands were searched in the related genomes, including all the ST-111 genomes, and diverse 

presence/absence patterns were found in related genomes. Finally, specific genomic regions 

associated with the two integrons were reconstructed and characterized to compare the gene content 

and architecture in close genomes. Genomic region associated with the VIM-2-carrying integron 

(In59-like) was completely found in other two ST-111 strains (i.e. it is an old-acquaintance 

integron), but an IMP-18-carrying integron (registered as In1666), with an architecture never 

reported before, was found when the landscape of the related genomic region was described.  
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2. MATERIALS AND METHODS 

2.1 Bacterial isolate 

The PaeAG1 strain is a Costa Rican isolate with -lactams (including carbapenems, 

MICImipenem >32 µg/mL), aminoglycosides, and fluoroquinolones, being only sensitive to colistin. 

We recently assembled and annotated the PaeAG1 genome (J.-A. Molina-Mora et al., 2020) and 

data is available in Genbank under accession CP045739 (Bioproject PRJNA587210). 

 

2.2 RT-qPCR for VIM-2 and IMP-18 expression after imipenem exposure 

In order to study the expression of VIM-2 and IMP-18 genes by imipenem exposure in 

PaeAG1, experiments of growth curves and RT-qPCR were performed.  

Growth curves assay: Three aliquots of pre-cultured PaeAG1 cells were added to fresh Lysogenic 

Broth (LB) broth to an initial optical density (OD600nm) of 0.01. Each aliquot was treated with 0.0 

(control), 25.0 or 50.0 µg/mL of imipenem. Growth was monitored at times 0, 2, 4, 6, 8, 12 and 16 

hours. The assay was performed in triplicates. Two specific aliquots at times 6 and 12 hours were 

taken for RT-qPCR assay, as follows.  

RNA isolation: Aliquots at times 6 and 12 hours after imipenem exposure were preserved using the 

RNA protect reagent (QIAGEN). Total RNA was extracted using the RNeasy Mini kit (QIAGEN, 

UK) following the manufacturer´s instructions. Subsequently, RNA was transcribed into cDNA 

with the Maxima H Minus First Strand cDNA Synthesis kit ( ). In the 

different steps, quality and quantity of extracted RNA or cDNA were determined using a Nanodrop 

(Nanodrop 2000, ). 

Primers sequences: Primers sequences for target VIM-2 and IMP-18 genes and the reference gene 

rpoD were found from literature (Kim, Kim, & Choi, 2003; Mendes et al., 2007; Savli et al., 2003) . 

See   
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RT-qPCR: The standard curve method was implemented to quantify expression of target and 

reference genes. 

-

Thermocycling was performed on the StepOnePlus Real-Time PCR Sy

Inc.). For VIM-2 and IMP-18 genes, assay was run with a denaturation at 95°C (10 min), 35 

amplification cycles of 94°C (20 s), 53°C (45 s), and 72°C (30 s), with data acquisition at 72°C. For 

rpoD gene, conditions were denaturation at 95°C (10 min), 45 amplification cycles of 95°C (15 s), 

20°C (10 s), and 72°C (15 s), with data acquisition at 72°C. Melt curve data were used to determine 

whether only the correct product had been amplified. 

Relative gene expression analysis: Gene expression of VIM-2 and IMP-18 in the experimental 

rpoD housekeeping gene. 

The data was analyzed using the delta-delta Ct method (12). The change in gene expression within 

samples (time and ant

imipenem) and a two-way ANOVA test was performed between conditions (95% confidence level).   

 

2.3 Datasets of complete P. aeruginosa genome sequences  

In order to compare all the complete genomic sequences of P. aeruginosa by a pan-genome 

analysis, metadata (including strain names, alternative ID, gene content, MLST profile, and others), 

formats) files were retrieved from Pseudomonas Genomes Database (PGDB, 

https://pseudomonas.com).  

 

2.4 Comparative genomic analysis by a pan-genome approach 

Since differences in annotation were identified for many sequences, even in exactly the 

same genomic regions, we decided to identify and annotate genes from the complete genomic 
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sequences using the same approach. To achieve this, gene prediction and annotation was done using 

Prokka v1.13.3 (with --genus Pseudomonas --species aeruginosa and other parameters by default 

configuration) (Seemann, 2014). The Prokka annotation files (in gbk

the phylogenetic analysis by a pan-genome approach based on gene content in the Roary program 

v3.12.0 (Page et al., 2015) 

visualized using Interactive Tree Of Life Tool (iTOL, https://itol.embl.de/) v5 (Letunic & Bork, 

2019), and strain names and MLST profiles were incorporated for each strain. For strains with 

unknown MLST, the profile was verified using the complete genome sequence approach (Larsen et 

al., 2012) in the MLST tool v2.0 (https://cge.cbs.dtu.dk/services/MLST/). For a functional analysis 

for all core-genes, STRINGdb (https://string-db.org/) was used to identify significantly enriched 

KEGG pathways (cutoff of false discovery rate FDR < 0.05). 

 

2.5 Comparative analysis of the presence of PaeAG1 genomic islands in other strains 

The 57 PaeAG1 genomic islands were previously identified using IslandViewer v4 

(www.pathogenomics.sfu.ca/islandviewer/), as we reported recently (J.-A. Molina-Mora et al., 

2020). were downloaded from the same platform and 

obtained using the getfasta function in bedtools software v2.29.2 

(Quinlan & Hall, 2010). Distribution of genomic islands along the genome was visualized using the 

BLAST Ring Image Generator BRIG tool v0.95 (Alikhan, Petty, Ben Zakour, & Beatson, 2011).  

In order to determinate the presence and frequency of these genomic islands in other strains, 

a comparative analysis based on sequence alignment was done. Thus, we implemented a BLASTn 

pipeline to align PaeAG1 genomic island sequences and the complete genome sequences of all 

strains. A minimum length for coverage of 95% (overlap between query and subject sequences) and 

80% of minimum sequence identity between sequences were used to define that a specific genomic 

island was present in a strain, otherwise, it was considered absent. Final comparison of 

presence/absence of genomic islands was done for selected strains (see Results) using a small 
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phylogenetic tree and a heatmap, which were visualized using phylo.heatmap function from 

phytools package v0.7-20 (https://www.rdocumentation.org/packages/phytools), in the R software 

(https://www.r-project.org/).  

 

2.6 Landscape of genomic regions associated with the two class 1 integrons of PaeAG1 

Two complete and independent class 1 integrons were previously identified in PaeAG1, one 

carrying the VIM-2 gene and another harboring the IMP-18 gene (J.-A. Molina-Mora et al., 2020). 

To better understand the possible evolutionary history of these integrons and its potential for lateral 

transfer, we reconstructed the genetic landscape of the genomic regions around these elements. 

Identity of the integrons was investigated using INTEGRALL database (http://integrall.bio.ua.pt). 

For the new integron (see Results), the same database was used for the registry and the integron 

number assignment. 

Since the two integrons are absent in the reference strain Pae-PAO1, an alignment of the 

genomic regions (BLASTn) and another of amino acid (AA) sequences (BLASTp) were used to 

identify the limits of the complete inserted region in PaeAG1. The two specific inserted regions 

were composed of two or more genomic islands in a row, as obtained in our previous study 

(grouped or with overlapping regions) (J.-A. Molina-Mora et al., 2020). Thus, regions were called 

GICVIM-2 (genomic island cluster containing VIM-2-carrying integron) and GICIMP-18 (genomic 

island cluster harboring the IMP-18-carrying integron).  

Once the insertions were delimited in PaeAG1 and the insertion point in the reference 

genome was identified, we expanded the loci up to cover three coding genes on each side. A final 

alignment (BLASTn) of the expanded regions of GICVIM-2 and GICIMP-18 was done against selected 

genomes. Genomes selection was done based on the phylogenetic relationships of strains close to 

PaeAG1 (pan-genome analysis) and the profile of presence/absence of the PaeAG1 genomic islands 

in other strains. All the syntenic regions of selected strains were compared using annotation files in 

Easyfig software v2.2.3 (Sullivan, Petty, & Beatson, 2011), leading to visualize alignments, gene 
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content and identity, exclusive/shared elements by strain and possible evolutionary steps, and 

others.  

 

3. RESULTS 

3.1 Expression of VIM-2 and IMP-18 genes is induced after imipenem treatment in PaeAG1 

 In order to assess the functional activity of VIM-2 and IMP-18 genes, a RT-qPCR was 

performed. Exposition to imipenem had no effects on the growth curves of PaeAG1 (Fig. 1-A). 

Evaluation of gene expression after exposition to imipenem (Fig. 1-B-C) showed that VIM-2 and 

IMP-18 increased its expression at least by a 1.7-fold (respect to control) at 6 hours, but only 1.1-

fold at 12 hours. This observation was independent of the imipenem concentration (25 or 50 

 which changes in the relative expression by time 

but not by concentration were significant for each gene.   

 

3.3 Pan-genome analysis with the complete genome sequences defines P. aeruginosa clusters which 

correlates with the MLST genotyping profile  

To select related genomes to PaeAG1, a total of 211 strains were selected to compare the 

genomic composition (including PaeAG1). Supplementary file 1 All_strains_information.xlsx 

contains the list of all the selected genomes, ID, strain, MLST profile, and others. Gene content 

comparison was done based on a pan-genome approach. A total of 2726 genes were identified as 

part of the core-genome (present > 99% strains). More details of results and complementary plots 

are provided in the Supplementary file 2 Pan-genome analysis results.xlsx.  

Enrichment analysis of KEGG pathways for all core genes (Table S1) found 42 biological 

processes implicated in several metabolism routes related to energy (carbon, fatty acids, amino 

acids), DNA and RNA, ribosomal activity, protein synthesis, and others.  

As shown in Fig. 2, similarity in the genomic composition by pan-genome analysis defines 

a phylogenetic tree able to separate groups that can be described in turn by the MLST genotyping 
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profile. Although we identified a total of 67 different MLST profiles (and unknown cases), many of 

them resulted with low frequency. For example, 35 different ST classes had only a single strain (35 

strains, 17% of all genomes) and 88 strains (42%) belonged to the 56 ST profiles with less than five 

genomes. In addition, 44 strains (21%) had an allelic composition with an unknown ST profile. On 

the other hand, a total of 79 (37%) genomes corresponded to 11 ST classes with five or more 

strains. The last were evidenced using different colors by ST profile (as showed in the Fig. 2), 

meanwhile strains belonging to low frequency ST profiles were colored in the same way. 

Representative genomes such as the reference strain Pae-PAO1 (ST-549, purple cluster) and Pae-

UCBPP-PA14 (ST-253, yellow group) were identified in the main ST groups.  

Regarding PaeAG1, this strain was located in the same group with the other nine ST-111 

strains in a clearly separated cluster (green). Other two ST profiles (low frequency ST-234 and ST-

654) and one unknown case (Pae-Pa84 strain) kept close to this group.  The whole group of these 

related strains, and the reference strain Pae-PAO1, were used for subsequent analysis, including 

their phylogenetic relationships. For other high-risk clones, a single ST-175 genome was identified, 

and a clear cluster was found for the ten ST-235 genomes (including other genomes with unknown 

profile).   

 

3.3 Varying profiles of the presence/absence of the 57 PaeAG1 genomic islands are found in the 

ST-111 strains and related genomes  

A comparative analysis based on sequence alignment was run in order to determinate the 

presence and frequency of the PaeAG1 genomic islands in other phylogenetically related strains. 

Genomic islands locus were previously predicted (J.-A. Molina-Mora et al., 2020). We first 

represented the distribution of the genomic islands along the PaeAG1 genome, as presented in Fig. 

3. Many of the islands kept together, including overlapping regions or an arrangement in a row. 

Thus, we termed this as a genomic islands cluster (GIC) to refer to this group of islands. In Fig. 3, 

GICs correspond to the genomic regions labeled as joined names of the genomic islands, for 
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48-49 islands GI48 and GI49. In some cases each 

genomic island in the cluster can be differentially distributed in the genomes (for example GI48 is 

present in PaeAG1 and Pae-97, but GI49 is only found in PaeAG1, Fig. 4). For this reason, we do 

not re-define the locus neither joined the islands.  

Analysis of the presence/absence of PaeAG1 genomic islands in other ST-111 strains and 

related genomes is shown in Fig. 4. Profiles for all the 211 is available in the Supplementary file 1 

All_strains_information.xlsx, including total counts of strains by genomic islands, and total genomic 

islands per genome. The closest genomes to PaeAG1 (Pae-RIVM-EMC2982 and Pae-Carb0163) 

had the most similar profiles in the genomic islands content (carrying 41 genomic islands), but 

different patterns are obtained for other ST-111 strains. None of the islands is present in the 

reference genome Pae-PAO1, and other few genomic islands are rarely present in other non ST-111 

strains.  

On the other hand, two particular genomic islands were particularly recognized due to they 

carry the two PaeAG1 integrons. GI27 genomic island harbors the VIM-2-carrying integron, while 

IMP-18-carrying integron belongs to GI49. As shown in Fig. 4, GI27 (red) is present in PaeAG1 

and two other ST-111 strains, and it is also absent in the rest of the 208 genomes. GI49 (blue) is 

unique to PaeAG1 and it is not it is present in none of the other 210 strains in the study. 

Additionally, both genomic island are associated with a GIC, GI27-30 and GI48-49 (Fig. 3) 

respectively. Since the importance of these genomic regions to study the integrons, we specifically 

called them GICVIM-2 (genomic island cluster containing VIM-2-carrying integron) and GICIMP-18 

(genomic island cluster harboring the IMP-18-carrying integron).  

Based on phylogenetic relationships, ST profile and genomic islands content, we selected 

specific genomes to compare the GICs associated with the integrons. As shown in Fig. 4, the four 

genomic islands of GICVIM-2 (GI27-30) are differentially present in the genomes. For example, GI28 

and G29 are present in eight strains, but GI27 in three and G30 in four. To specifically compare the 

genomic regions of GICVIM-2, we used the reference Pae-PAO1, Pae-RIVM-EMC2982 (with the 
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four genomic islands), and Pae-AR445 (with three of the genomic islands). For the case of GICIMP-

18, the two islands GI48 and GI49 are absent in other ST-111 strains, but GI48 is present in Pae-97. 

Except for this case, no other strains in all 211 genomes were identified harboring both islands. To 

compare the genomic regions, the reference genome Pae-PAO1, Pae-RIVM-EMC2982 as a closest 

genome, and Pae-97 (the only genome sharing a section of the GIC) were used.  

3.4 GICVIM-2 is a known region containing the old-acquaintance VIM-2-carrying integron in 

PaeAG1 

With the aim of describing the possible evolutionary history of the VIM-2-carrying integron 

in PaeAG1, we described the architecture of the genomic regions delimited by the GICVIM-2 

(including three extreme genes on each side: 35 798 bp and 32 protein-coding genes). Using Pae-

PAO1 as reference, we found that genomic insertion occurred in the middle of the PA2229 gene, as 

shown in the top of Fig. 5. The insertion resulted mostly present in Pae-AR445 (coverage 94% and 

identity 99.97% of the PaeAG1 region), but without most of the integron (integrase intI1 and sul1 

are present, unlike the gene cassette including VIM-2). However, a full coverage region was 

identified in Pae-RIV-EMC2982, with a 100% coverage and identity 99.99%. The only two variants 

identified in the full region were non-synonymous mutations, with an amino-acid change in 

PaeAG1_03254 (transcriptional regulator merD, 99.0% identity) and PaeAG1_03255 (mercuric 

reductase merA, 99.8% identity). See Table 2 and supplementary Table S2 for more details. 

Although not shown in Fig. 5, alignment was also done for Pae-Carb0163, which has the same 

profile of genomic islands content as Pae-RIV-EMC2982. In this case, a 100% coverage and 

identity 99.87% (45 variants) were obtained in the GICVIM-2 region; most of the variants resulted in 

a change in the amino-acid sequence in PaeAG1_03245 (aacA29a, part of the integron with a 

95.8% identity resulting in aacA29e allele), but also affecting other three proteins (mercuric 

reductase, integrase IntI and a transposase). See supplementary Table S2 for more details. 

Regarding the gene content (Table 2), this genomic insertion contains the complete integron 

carrying VIM-2 gene. Composition of this integron is described in Fig. 5 (bottom), containing 
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classical elements int1, attI, sul1 and the gene cassette (with aacA29a-b and VIM-2) of a class 1 

integron, being classified as In59-like. Furthermore, GICVIM-2 has at least other mobile genetic 

elements, including transposases and recombinases modules. Other coding modules are associated 

with mercury metabolism or they remain unknown (hypothetical proteins). Details of the protein 

alignment of PaeAG1 against four genomes is also provided (supplementary Table S2). 

Reconstruction of the evolutionary steps related to the conformation of this genomic region include 

participation of four transposons (Tn402, Tn21-like, a disrupted and another complete Tn4661) as 

shown in Fig. 7-A. See details in Discussion. 

Considering the full coverage and very high identity in at least two genomes, Pae-RIVM-

EMC2982 and Pae-Carb0163, GICVIM-2 can be considered a genomic region present in two well-

known VIM-2+ strains, being this gene located in an old-acquaintance class 1 integron (In59-like).   

 

3.5 GICIMP-18 is a PaeAG1 exclusive genomic region harboring a new IMP-18-carrying integron  

In a similar way as before, we compared four genomes to described the architecture of the 

genomic regions delimited by the GICIMP-18 (including three extreme genes on each side: 30 258 bp 

and 29 protein-coding genes). Using Pae-PAO1 as reference, we found that genomic insertion 

occurred between the genes PA4704 and PA4705, as shown in the top of Fig. 6. Genomic islands 

GI48-49 are absent in Pae-RIV-EMC2982 and Pae-Carb0163 genomes (the last not shown in the 

Fig.).  

BLAST of GICIMP-18 identified the highest scored sequence in Pae-97 genome (ST-234). 

Thus, since Pae-97 carries GI48, syntenic comparison was done using this genome (Fig. 6). 

Analysis revealed a 77% coverage with identity 99.92%. The Pae-97 integron also contains Int1, 

aacA genes and another allele of the IMP gene (IMP-1), all with a different arrangement.  

 Regarding gene content (Table 3), this genomic insertion contains the complete integron 

carrying IMP-18 gene. Composition of this integron is described in Fig. 6 (bottom), containing int1, 

attI, sul1 and the gene cassette (IMP-18, gcuD, OXA-2 and aacA4). GICIMP-18 also has genes coding 
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for endonucleases and recombinases, or hypothetical proteins. Details of the protein alignment of 

PaeAG1 against the four genomes are also provided (see supplementary Table S3). 

Considering the absence of the complete region in other genomes and the first report of the 

architecture of this integron, GICIMP-18 can be considered a PaeAG1 exclusive region harboring a 

new IMP-18-carrying integron. This integron was registered as In1666 in INTEGRALL database.  

Conformation of GICIMP-18 region seems to include the participation of at least three mobile 

elements (the new integron In1666, insertion sequence IS1326 and transposon TnAs3) as shown in 

Fig. 7-B. However, a lack of information about the role of other elements (regions without matching 

sequences) makes difficult to complete the possible evolutionary steps related to this genomic 

region. 

 In summary, the pan-genome analysis lead us to identify that the genomic content can 

separate groups according to the ST profile (MLST genotyping). All the ST-111 strains, including 

PaeAG1, resulted in the same phylogenetic group but different presence/absence profiles of 

PaeAG1 genomic islands were identified in other strains, even for grouped genomic islands, the 

GICs. Analysis of the landscape of regions GICVIM-2 and GICIMP-18 revealed one known and another 

new arrangement of genomic sequences in PaeAG1, harboring two independent MBLs-carrying 

integrons. The IMP-18-carrying integron has a unique and exclusive composition, reported here for 

the first time. 

 

4. DISCUSSION 

Antibiotic multi-resistance is a major threat to public health because continuous emergence, 

worldwide spread, and increasing prevalence (Hong et al., 2015). With a high-risk ST-111 profile, 

PaeAG1 is a critical organism due to its resistance to multiple antibiotics but in particular the 

resistance to carbapenems (World Health Organization, 2017). In our study, we first demonstrated 

that expression of VIM-2 and IMP-18 genes (with carbapenemase activity) are induced after 

imipenem exposure, evidencing that are functional genes. To describe the genomic context 
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associated with theses MBLs, we performed a pan-genome analysis, a comparison of genomic 

islands between representative strains and the reconstruction of the surrounding genomic regions.  

In the pan-genome analysis, we were able not only to reveal that whole genome sequences 

could separate clones by ST profile (MLST), but also identification of core and accessory genes was 

achieved. Other pan-genome analysis in P. aeruginosa also found clusters than could be identified 

by the ST profile (Aguilar-Rodea et al., 2017; Weiser et al., 2019). While multiple comparative 

genomic analyses (many using a pan-genome approach) have been reported for P. aeruginosa 

(Aguilar-Rodea et al., 2017; Chowdhury et al., 2016; Freschi et al., 2019; Gomila, Peña, Mulet, 

Lalucat, & García-Valdés, 2015; Hilker et al., 2015; Mosquera-Rendón et al., 2016; Ozer, Allen, & 

Hauser, 2014; Poulsen et al., 2019; Valot et al., 2015; Weiser et al., 2019; Wendt & Heo, 2016), 

most of them include incomplete, fragmented or draft genomes, or sequences of few genes. In 2015, 

complete genomes were used in a similar approach, but only 17 genomes were available (NCBI), 

which only three corresponded to high-risk clones (Valot et al., 2015). Thus, our analysis provides 

an up-date of the general status of relationships of the 211 available complete genomes by pan-

genome analysis.     

In relation to gene content among all strains, we identified a total of 2726 genes as part of 

the core-genome (>99% strains), similar to another similar approach (Mosquera-Rendón et al., 

2016). Other studies have suggested a higher number of core genes (4000-5300) (Hilker et al., 

2015; Ozer et al., 2014; Valot et al., 2015; Weiser et al., 2019). The relatively high number of 

conserved genes in the core-genome can be associated with the ability to conquer multiple 

environments and to facilitate infectious capability towards a large set of hosts (Valot et al., 2015). 

According to functional analysis, 42 KEGG pathways (energy metabolism, nucleic acids, amino 

acids, ribosomal activity, and many others) were found as part of the enriched routes for all the core 

genes, with functions that are in line with other similar pan-genome studies (Mosquera-Rendón et 

al., 2016; Valot et al., 2015). 
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P. aeruginosa genome is composed of a mosaic structure including the large core-genome 

(Valot et al., 2015), into which regions of genomic plasticity lead to the insertion of block of genes 

belonging to the accessory genome (Mathee et al., 2008). In the case of PaeAG1 and other ST-111 

strains, genome sequence is around 1.0 Mb longer that the reference genome Pae-PAO1, difference 

that is reflect as genomic islands distributed along the genome.  

Pae-RIVM-EMC2982 and Pae-Carb0163 (closest genomes to PaeAG1) had the most 

similar profiles carrying 41 out the genomic islands. As highlighted in Results, many genomic 

islands formed clusters (GICs, Fig. 3 and 3), including the genomic islands clusters harboring the 

two integrons (GICVIM-2 and GICIMP-18). Genomic islands groups have been reported before as 

integrative and conjugative elements or ICEs (Petitjean et al., 2017), but ICEs in PaeAG1 (using 

ICEberg 2.0 platform, https://db-mml.sjtu.edu.cn/ICEfinder/ICEfinder.html) overlap with other 

GICs but none with GICVIM-2 and GICIMP-18. Since size of the core-genome and its content is not 

well known (Valot et al., 2015), prediction methods are required to define accessory regions, but 

outcome depends on algorithms (Ozer et al., 2014), which could explain differences and the GICs. 

On the other hand, this prominent number of genomic islands in PaeAG1 and other ST-111 

strains can be explained due to the absence of a functional CRISPR-Cas system (bacterial defense 

system against foreign DNA) and consequent high number of successful events of horizontal gene 

transfer (Petitjean et al., 2017). This genome plasticity of individual strains represents an advantage 

for P. aeruginosa to fit the needs for survival in virtually any environment (Mathee et al., 2008).  

In the context of carbapenems resistance, genes encoding for MBLs are usually found 

as gene cassettes in class 1 integrons (Jones-Dias et al., 2016; Walsh, 2005). This allows a rapid 

dissemination in the clinical setting due to the selective pressure by the use of antibiotics (Sánchez-

Martinez et al., 2010), which is aggravated due to this antibiotic represents the last therapeutic 

source to treat P. aeruginosa infections (Toval et al., 2015). While multiple studies correlate 

antibiotic resistance and the presence of integrons, genetic context surrounding class 1 integrons is 

often not investigated in P. aeruginosa, as remarked before (Chowdhury et al., 2016). 
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Carbapenem resistance in PaeAG1 was demonstrated to be explained by activity of two 

MBLs (VIM-2 and IMP-18) (Toval et al., 2015), each gene harbored in two independent class 1 

integrons (J.-A. Molina-Mora et al., 2020; Toval et al., 2015).  

Evaluation of the sequence showed that GICVIM-2 is also present in Pae-RIVM-EMC2982 

(100% coverage and 99.99% identity) and Pae-Carb0163 (100% coverage and 99.87% identity) at 

chromosomal level. However, a study including these strains showed that VIM-2-carrying integron 

and surrounding regions (~30 Kb, equivalent to GICVIM-2) were shared with a plasmid of ST-446 P. 

aeruginosa S04-90 with 99% identity. Based on identity, mobilization of the fragment between 

plasmids and chromosomes may have occurred recently (van der Zee et al., 2018).  

In the same study, analysis of genome landscape showed that the regions (equivalent to 

GICVIM-2) corresponded to a DNA segment acting as a composite transposon, composed of four 

different transposons (Tn402, Tn21-like, a disrupted and another complete Tn4661). The class 1 

integron carrying VIM-2 is contained in the Tn402 transposon (Gillings, 2017; van der Zee et al., 

2018). Evolutionary details are completely explained in (van der Zee et al., 2018).  GICVIM-2 carries 

the genes involved in its own transposition module (transposases such as TniB and TnpA) and 

mercury resistance module, as described in other similar transposons and insertion sequences 

(Chowdhury et al., 2016; Ghaly et al., 2017; Jones-Dias et al., 2016; Liebert, Hall, & Summers, 

1999; van der Zee et al., 2018). Presence of gene cassettes unrelated to the antibiotic resistance can 

be result of anthropogenic settings (Ghaly et al., 2017) and selection pressures in environments 

polluted with heavy metals and other substances such as mercury, arsenic and disinfectants 

(Gillings et al., 2015).  

Regarding the VIM-2-carrying integron, this element is an In59-like integron. In59 was first 

reported two decades ago in France (Poirel et al., 2001) and then worldwide (Gillings, 2017; 

Samuelsen et al., 2010; Toval et al., 2015; van der Zee et al., 2018). Among all the 211 strains in 

our study, VIM-2 was only present into PaeAG1 and the two closest genomes (all ST-111). 

Differences in aacA29 genes defined the aacA29e allele found in Pae-Carb0163 (van der Zee et al., 
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2018), in contrast to aacA29a-b in PaeAG1, all coding for aminoglycoside acetyltransferases. Since 

GICVIM-2 sequence and architecture is completely found in two VIM-2+/ST-111 strains, VIM-2-

carrying integron (In59-like) can be considered old-acquaintance element in a well-known genomic 

context.  

Additionally, genomic context defined by GICIMP-18 was also analyzed. Using Pae-PAO1 as 

reference, it is shown that GICIMP-18 insertion occurred in a specific point (prrH) between PA4704 

and PA4705 (Fig. 6). This region contains three genes for regulatory small RNAs (prrF1, prrH and 

prrF2) are found, which are involved in iron homeostasis under iron-depleted conditions (Reinhart 

et al., 2017) or to avoid iron toxicity (Reinhart et al., 2015).  

While complete GICIMP-18 (composed of GI48-GI49 genomic islands) was not found in none 

of other strains, GI48 section was found in Pae-97 strain (ST-234, with a class 1 integron), a 

genome close to ST-111 group (Fig. 2 and 3). Sequences comparison of GICIMP-18 and Pae-97 

showed 77% coverage and 99.92% identity. Gene composition of GICIMP-18 includes endonucleases 

and recombinases module, the class1 integron, transposase TniB and hypothetical proteins.  

In relation to the integron harbored in GICIMP-18, the IMP-18-carrying element is composed 

of the intI1, the gene cassette (carrying IMP-18, gcuD and OXA-2), aacA4 and sul1. In another 

strain, similar genes with another arrangement (orderly IMP-18, a disrupted aacA43, OXA-2 and 

gcuD) were reported for the first time in the In706 integron in 2012 (Martínez, Vazquez, Aquino, 

Goering, & Robledo, 2012). Pae-97 contains a class 1 integron, but with a different arrangement 

with IMP-1 allele (without OXA nor gcuD genes). Other studies found multiple strains carrying 

both IMP-18 and OXA-2 (without gcuD nor aacA4) in Mexican isolates as part of In169 (Sánchez-

Martinez et al., 2010) and In1215 (López-García et al., 2018) integrons, including some located in 

plasmids.  

Since there is a lack of information about the genomic context of many IMP-carrying 

integrons (such as region GICIMP-18, unlike GICVIM-2), and the particular architecture of the class 1 
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integron in PaeAG1 with the gene cassette IMP-18/gcuD/OXA-2/aacA4, we consider that this IMP-

18-carrying integron (registered as In1666) is a novel element that we report here for the first time.  

In the partial reconstruction of the evolutionary steps related to the GICIMP-18 region, the 

integron In1666, the insertion sequence IS1326 and the transposon TnAs3 seem to play a key role 

in the current state of this genomic region. Both IS1326 and TnAs3 have been reported in different 

integrons and high plasticity regions (He et al., 2016; Jones-Dias et al., 2016; Liebert et al., 1999; 

Szuplewska, Czarnecki, & Bartosik, 2014). Further analyses are required to complete the 

evolutionary steps which have defined this genomic region as well as the implications of 

multiresistant in PaeAG1.  

Jointly, identification of the landscape of the genomic context defined by GICVIM-2 and 

GICIMP-18, provides insights about the dissemination and evolution of mobile elements, in this 

particular case for integrons carrying MBLs. Since MBL-producing P. aeruginosa is able to 

produce epidemic outbreaks and responsible for the dissemination of carbapenemase resistance 

worldwide (Castanheira, Deshpande, Costello, Davies, & Jones, 2014), it is worrisome that strains 

such as PaeAG1 are able to circulate among Costa Rican hospitals. This can be correlated with the 

high prevalence of carbapenem resistant strains in Costa Rica, many carrying VIM or IMP genes 

(Toval et al., 2015). Future works are necessary to trigger the surveillance system in order to 

evaluate if other circulating strains carry these two elements, to identify its possible dissemination 

and hence carry out an adequate infection control program in medical centers. 

 

5. CONCLUSIONS 

PaeAG1 is a high-risk and a critical organism due to its resistance to carbapenems by the 

activity of VIM-2 and IMP-18 enzymes, both harbored in two class 1 integrons. To describe the 

genomic context associated with these integrons, we first verified the functionality of VIM-2 and 

IMP-18 after imipenem exposure. We then analyzed 211 complete genome sequences using a pan-

genome analysis, separating strains by MLST profile. Analysis of the 57 PaeAG1 genomic islands 
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showed a varying pattern of the presence/absence among all the strains, in particular for closest 

genomes to PaeAG1. Two selected genomic islands clusters, GICVIM-2 and GICIMP-18, were studied 

in-depth. GICVIM-2 sequence was completely found in other two known ST-111 strains, which 

contained the VIM-2-carrying integron as an old-acquaintance In59-like element. GICIMP-18 was 

partially found in another genome, but the IMP-18-carrying integron has an architecture never 

reported before, being considered as a novel In1666 integron. We provide new insights about the 

genomic determinants associated with this high-risk P. aeruginosa clone and its resistance to 

carbapenems using comparative genomics.  
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FIGURES AND TABLES LEGENDS:  

 

Fig. 1. VIM-2 and IMP-18 expression after imipenem exposure. A RT-qPCR was performed to 

assess the transcriptomic activity of VIM-2 and IMP-18 genes. PaeAG1 was exposed to two 

imipenem concentrations, showing no effects on the growth curves (A). Relative gene expression 

showed that higher induction occurs at 6 hours after exposure, not only for VIM-1 (B), but also for 

IMP-18 (C). Relative expression was statistically different by time but not by concentration 

(p<0.05).  

 

Fig. 2. Comparative genomic analysis of 211 P. aeruginosa strains. By a pan-genome analysis 

strategy, the complete genomes were compared and the gene composition defined groups that can 
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be described in turn by the MLST genotyping profile. ST groups with a low frequency of less than 5 

strains are shown in beige and cases with unknown ST were represented in gray. ST groups with 5 

or more strains were represented with colors. The Pae-AG1 strain and all the other ST-111 strains 

are located in a clearly separated cluster, as shown in green.  

 

Fig. 3. Distribution of genomic islands of PaeAG1 along the genome. The 57 predicted genomic 

islands are distributed along the PaeAG1 genome, and most of them forming groups with two or 

more islands in a row (genomic islands clusters, GIC), which are jointly named in a single label. 

 

Fig. 4. Comparative analysis of the presence/absence of PaeAG1 genomic islands in other ST-

111 strains and representative genomes. The 57 genomic islands were searched in the genomes of 

the other ST-111 strains, the reference strain PAO1 (ST-549) and three other strains close to the ST-

111 group (see Fig. 2). The GI27 genomic island includes the VIM-2-carrying integron and it is 

present in PaeAG1 and two other ST-111 strains, while the GI49 (blue) harboring IMP-18-carrying 

integron is unique to PaeAG1 and is not it is present in none of the other 210 strains in the study. 

Other genomic islands linked to GICVIM-2 and GICIMP-18 have a different pattern of occurrence 

between strains.  

 

Fig. 5. Description of the architecture of the genomic region GICVIM-2 containing the old-

acquaintance VIM-2-carrying integron. The genomic region GICVIM-2 is absent in the reference 

sequence Pae-PAO1, meanwhile it is mostly present in Pae-AR445, but without most of the 

integron. Full coverage of the region was identified in Pae-RIV-EMC2982. The architecture of the 

VIM-2-carrying integron is shown. 

 

Fig. 6. Description of the architecture of the exclusive genomic region GICIMP-18 containing the 

new IMP-18-carrying integron. The genomic region GICIMP-18 is absent in the reference sequence 
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Pae-PAO1 and Pae-RIV-EMC2982 strains, meanwhile it is partially present in Pae-97. The 

architecture of the IMP-18-carrying integron is shown with an arrangement that is reported here for 

the first time. 

 

Fig. 7. Possible evolutionary steps associated with the genomic regions of the VIM-2- and 

IMP-18-carrying integrons. Different mobile elements are involved in the current state of the 

genomic region, being completely described for GICVIM-2 (A) and partially for GICIMP-18 (B).  

 

Table 1. Primer sequences used for RT-qPCR experiments. 

 

Table 2. Annotation of protein-coding genes of the genomic region GICVIM-2 associated with 

the VIM-2-carrying integron.  

 

Table 3. Annotation of protein-coding genes of the genomic region GICIMP-18 associated with 

the IMP-18-carrying integron. 
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Table 1. Primer sequences used for RT-qPCR experiments. 

Gene Primer  Final 
concentration 

Amplicon 
length 

IMP-18 Forward GAATAG(A/G)(A/G)TGGCTTAA(C/T)TCTC 
1 µM 188 pb Reverse CCAAAC(C/T)ACTA(G/C)GTTATC 

VIM-2 Forward CCGCGTCTATCATGGCTATT 
0.1 µM 181 pb Reverse ATGAGACCATTGGACGGGTA 

rpoD Forward GGGCGAAGAAGGAAATGGTC 
1 µM 178 pb Reverse CAGGTGGCGTAGGTGGAGAA 

 



Table 2. Annotation of protein-coding genes of the genomic region GICVIM-2 

associated with the VIM-2-carrying integron 

PaeAG1 
Pae-RIV-EMC2982 

Annotation Name RefSeq 
Gene* Identity 

PaeAG1_03237 EMC2982_03491 100.0 

PslA, psl cluster plays a 

role in cell-cell and/or 

cell-surface interaction 

in biofilm formation 

pslA (PA2231) 
NP_250921.1; 

WP_003111160.1 

PaeAG1_03238 EMC2982_03490 100.0 
Hypothetical protein 

PA2230 
PA2230 

NP_250920.1; 

WP_003122761.1 

PaeAG1_03239 EMC2982_03489 100.0 
Hypothetical protein 

PA2229 
PA2229 

NP_250919.1 ; 

WP_003113716.1 

PaeAG1_03240 EMC2982_03488 100.0 Hypothetical protein HP WP_034066849.1 

PaeAG1_03241 EMC2982_03487 100.0 Transposase TnpA tnpA WP_003460108.1 

PaeAG1_03242 EMC2982_03486 100.0 Transposase TnpR tnpR 
WP_000147567.1; 

YP_005211182.1 

PaeAG1_03243 EMC2982_03485 100.0 Transposase TnpM tnpM WP_004217866.1 

PaeAG1_03244 EMC2982_03484 100.0 
Class I integron integrase 

IntI 
intI YP_005221021.1 

PaeAG1_03245 EMC2982_03483 100.0 

6'-N-aminoglycoside 

acetyltransferase type I 

aacA29a 

aacA29a WP_032490447.1 

PaeAG1_03246 EMC2982_03482 100.0 

Carbapenem-hydrolyzing 

metallo-beta-lactamase 

VIM-2 

VIM-2 WP_032491390.1 

PaeAG1_03247 EMC2982_03481 100.0 

6'-N-aminoglycoside 

acetyltransferase type I 

aacA29b 

aacA29b WP_032490447.1 

PaeAG1_03248 EMC2982_03480 100.0 

Sulfonamide-resistant 

dihydropteroate 

synthase Sul1 

sul1 WP_000259031.1 

PaeAG1_03249 EMC2982_03479 100.0 Acetyltransferase 
Acetyltransferas

e 
WP_000376623.1 



PaeAG1_03250 EMC2982_03478 100.0 Transposase TniB tniB  
WP_003107582.1; 

WP_021264342.1 

PaeAG1_03251 EMC2982_03477 100.0 Transposase TniA tniA 
WP_000179844.1; 

YP_008766137.1 

PaeAG1_03252 EMC2982_03476 100.0 Hypothetical protein urf2  WP_000204520.1 

PaeAG1_03253 EMC2982_03475 100.0 
Mercury resistance 

protein merE 
merE 

WP_000993386.1; 

YP_789372.1 

PaeAG1_03254 EMC2982_03474 99.0 
Transcriptional regulator 

merD 
merD 

WP_001277456.1; 

YP_789373.1 

PaeAG1_03255 EMC2982_03473 99.8 
Mercuric reductase 

merA 
merA 

WP_000105636.1; 

YP_789374.1 

PaeAG1_03256 EMC2982_03472 100.0 Transposase tnpA 
WP_003111042.1; 

WP_003460108.1 

PaeAG1_03257 EMC2982_03471 100.0 TpnA repressor protein tnpC 
WP_003111043.1; 

NP_745109.1 

PaeAG1_03258 EMC2982_03470 100.0 Hypothetical protein HP WP_003111045.1 

PaeAG1_03259 EMC2982_03469 100.0 Hypothetical protein HP WP_003111046.1 

PaeAG1_03260 EMC2982_03468 100.0 
Homospermidine 

synthase (HPS) 
HPS WP_003111047.1 

PaeAG1_03261 EMC2982_03467 100.0 Hypothetical protein HP WP_003111048.1 

PaeAG1_03262 EMC2982_03466 100.0 Hypothetical protein HP WP_003111049.1 

PaeAG1_03263** EMC2982_03465 100.0 Recombinase Recombinase WP_003111050.1 

PaeAG1_03265** EMC2982_03463 100.0 Hypothetical protein HP WP_010792965.1 

PaeAG1_03266 EMC2982_03462 100.0 Hypothetical protein HP WP_003092560.1 

PaeAG1_03267 EMC2982_03461 100.0 
Hypothetical protein 

PA2229 
PA2229 

NP_250919.1 ; 

WP_003113716.1 

PaeAG1_03268 EMC2982_03460 100.0 
Hypothetical protein 

PA2228 
PA2228 

NP_250918.1 ; 

WP_003113715.1 

PaeAG1_03269 EMC2982_03459 100.0 
AraC-type transcriptional 

regulator VqsM 
vqsM (PA2227) 

NP_250917.1 ; 

WP_003113714.1 

Notes:  

with our annotation (see Methods). See Supplementary Table S1 for 

locus in PGDB annotation file and amino-acid comparison against other genomes.  

**PaeAG1_03264 is a tRNA, i.e. not included here. 



Table 3. Annotation of protein-coding genes of the genomic region GICIMP-18 

associated with the IMP-18-carrying integron 

PaeAG1 
Pae-97 

Annotation Name RefSeq 
Gene* Identity 

PaeAG1_05736 Pa97_05533 100.0 
Hypothetical protein 

PA4702 
PA4702 

NP_253390.1 ; 

WP_003095090.1 

PaeAG1_05737 Pa97_05534 100.0 
Hypothetical protein 

PA4703 
PA4703 

NP_253391.1 ; 

WP_003095094.1 

PaeAG1_05738 Pa97_05535 100.0 
cAMP-binding protein A 

PA4704 , cbpA 
cbpA (PA4704) 

NP_253392.1 ; 

WP_003095096.1 

PaeAG1_05739 Pa97_05536 100.0 Recombinase Recombinase WP_023442562.1 

PaeAG1_05740 Pa97_05537 100.0 

helix-turn-helix 

transcriptional regulator 

(HTH-TR) 

HTH-TR WP_003148665.1 

PaeAG1_05741 Pa97_05538 99.8 Hypothetical protein HP WP_137462639.1 

PaeAG1_05742 Pa97_05539 100.0 Hypothetical protein HP WP_071567699.1 

PaeAG1_05743 Pa97_05540 100.0 Hypothetical protein HP WP_042855636.1 

PaeAG1_05744 Pa97_05541 100.0 
Type I restriction 

endonuclease subunit R 
hsdR 

WP_042855635.1; 

YP_005974822.1 

PaeAG1_05745 Pa97_05542 100.0 Hypothetical protein HP WP_003148682.1 

PaeAG1_05746 Pa97_05543 100.0 
restriction endonuclease 

subunit S 
hsdS 

WP_079393399.1; 

YP_005974824.1 

PaeAG1_05747 Pa97_05544 100.0 

type I restriction-

modification system 

(RMS) subunit M 

hsdM 
WP_003148685.1; 

YP_005974823.1 

PaeAG1_05748 Pa97_05545 100.0 
recombinase family 

protein 
Recombinase WP_003148687.1 

PaeAG1_05749 Pa97_05546 100.0 
class 1 integron 

integrase IntI1 
intI YP_005221021.1 

PaeAG1_05750 
Pa97_05548 

(IMP-1) 
80.5 

subclass B1 metallo-

beta-lactamase IMP-18 
IMP-18 WP_060614779.1 

PaeAG1_05750.1 CP913_RS21750 36.4 
DUF1010 domain-

containing protein gcuD 
gcuD WP_001336345.1 



PaeAG1_05751 Pa97_05547 36.4 

oxacillin-hydrolyzing 

class D beta-lactamase 

OXA-2 

OXA-2 WP_034033256.1 

PaeAG1_05751.1 CP913_RS28765 99.4 

Aminoglycoside N(6')-

acetyltransferase type 1 

aacA4 

aacA4 WP_003159191.1 

PaeAG1_05752 Pa97_04840 100.0 

sulfonamide-resistant 

dihydropteroate 

synthase Sul1 

sul1 WP_000259031.1 

PaeAG1_05753 Pa97_04839 100.0 
GNAT family N-

acetyltransferase 
GNAT WP_000376623.1 

PaeAG1_05754 Pa97_05603 44.4 
ATP-binding protein, 

protease istD 
istD WP_000983249.1 

PaeAG1_05755 Pa97_04622 44.1 Transposase istA istA 
WP_001324342.1; 

WP_000996451.1 

PaeAG1_05756 Pa97_05551 100.0 Transposase TniB tniB  
WP_003107582.1; 

WP_021264342.1 

PaeAG1_05757 Pa97_05552 100.0 Transposase TniA tniA 
WP_000179844.1; 

YP_008766137.1 

PaeAG1_05758 Pa97_05553 100.0 Hypothetical protein HP WP_003157545.1 

PaeAG1_05759 Pa97_05554 99.6 Hypothetical protein HP WP_003157546.1 

PaeAG1_05760 Pa97_05555 97.6 
iron(III) ABC transporter 

PhuW 
phuW 

NP_253393.1 ; 

WP_003113451.1 

PaeAG1_05761 Pa97_05556 99.6 

heme ABC transporter 

ATP-binding protein 

PhuV 

phuV 
NP_253394.1 ; 

WP_003095098.1 

PaeAG1_05762 Pa97_05557 100.0 
iron ABC transporter 

permease PhuU 
phuU 

NP_253395.1 ; 

WP_003121063.1 

Notes:  

Pa97 with our annotation (see Methods). See Supplementary Table S2 for locus in 

PGDB annotation file and amino-acid comparison against other genomes. 

locus refers to the PGDB annotation file with a better score due to annotation algorithms 

differences.  
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CHAPTER 3 
 

 

Two-dimensional gel electrophoresis (2D-GE) image analysis based on CellProfiler: Pseudomonas 

aeruginosa AG1 as model  

 

 

Molina-Mora, J. A., Chinchilla-Montero, D., Castro-Peña, C., & Garcia, F. (2020). Two-dimensional gel 

electrophoresis (2D-GE) image analysis based on CellProfiler: Pseudomonas aeruginosa AG1 as model. 

Medicine, IN-PRESS. 
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Summary  

Using the bacterial strain Pseudomonas aeruginosa AG1 as a model, we obtained images from 

Two-dimensional gel electrophoresis (2D-GE) of periplasmic protein profiles when the strain was 

exposed to multiple antibiotics. As reported, 2D-GE is an indispensable technique for the study of 

proteomes of biological systems, providing an assessment of changes in protein abundance under 

various experimental conditions. However, due to the complexity of 2D-GE gels, there is no 

systematic, automatic and reproducible protocol for image analysis and specific implementations 

are required for each context. In addition, practically all available solutions are commercial, which 

implies high cost and little flexibility to modulate the parameters of the algorithms. Then we 

proceeded to implement and evaluate an image analysis protocol with an open-source software, 

CellProfiler. First, a preprocessing step included a bUnwarpJ-Image pipeline for aligning 2D-GE 

images. Then, using CellProfiler we standardized two pipelines for spots identification. Total spots 

recognition was achieved using segmentation by intensity, whose performance was evaluated when 

compared with a reference protocol. In a second pipeline with the same program, differential 

identification of spots was addressed when comparing pairs of protein profiles. Due to the 

characteristics of the programs used, our workflow can automatically analyze a large number of 

images and it is parallelizable, which is an advantage with respect to other implementations. Finally, 

we compared six experimental conditions of bacterial strain in the presence or absence of 

antibiotics, determining protein profiles relationships by applying clustering algorithms PCA 

(Principal Components Analysis) and HC (Hierarchical Clustering). Results revealed that global 

proteomic profile after exposure to a sub-inhibitory ciprofloxacin (CIP) concentration remains close 

to control (LB medium, without antibiotics), contrasting with the results obtained with tobramycin 

and imipenem. This means that the effects of ciprofloxacin at the proteomic level are fewer than 

the changes given by other antibiotics.
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Two-dimensional gel electrophoresis (2D-GE)
image analysis based on CellProfiler
Pseudomonas aeruginosa AG1 as model
Jose Arturo Molina-Mora, MSc

∗
, Diana Chinchilla-Montero, MSc, Carolina Castro-Peña, MSc,

Fernando García, PhD

Abstract
Two-dimensional gel electrophoresis (2D-GE) is an indispensable technique for the study of proteomes of biological systems,
providing an assessment of changes in protein abundance under various experimental conditions. However, due to the complexity of
2D-GE gels, there is no systematic, automatic, and reproducible protocol for image analysis and specific implementations are
required for each context. In addition, practically all available solutions are commercial, which implies high cost and little flexibility to
modulate the parameters of the algorithms. Using the bacterial strain, Pseudomonas aeruginosaAG1 as a model, we obtained
images from 2D-GE of periplasmic protein profiles when the strain was exposed tomultiple conditions, including antibiotics. Then, we
proceeded to implement and evaluate an image analysis protocol with open-source software, CellProfiler. First, a preprocessing step
included a bUnwarpJ-Image pipeline for aligning 2D-GE images. Then, using CellProfiler, we standardized two pipelines for spots
identification. Total spots recognition was achieved using segmentation by intensity, whose performance was evaluated when
compared with a reference protocol. In a second pipeline with the same program, differential identification of spots was addressed
when comparing pairs of protein profiles. Due to the characteristics of the programs used, our workflow can automatically analyze a
large number of images and it is parallelizable, which is an advantage with respect to other implementations. Finally, we compared six
experimental conditions of bacterial strain in the presence or absence of antibiotics, determining protein profiles relationships by
applying clustering algorithms PCA (Principal Components Analysis) and HC (Hierarchical Clustering).

Abbreviations: 2D-GE = two-dimensional gel electrophoresis, ANOVA = analysis of variance, CIP = Ciprofloxacin, FDR = false
discovery rate, HC = hierarchical clustering, IMP = Imipenem, PCA = Principal Component Analysis, pI = isoelectric point, TOB =
Tobramycin.

Keywords: 2D-GE, bUnwarpJ, CellProfiler, image analysis, proteomics, Pseudomonas aeruginosa

1. Introduction

Proteomics is a field of study of the omic sciences that focuses on
the analysis of the complete set of proteins produced in a cell,
tissue, or organism at a given moment, that is, proteomes. The
evaluation of protein profiles of biological samples, either by the

presence or absence of proteins, or the measurement of their
relative abundance, can help to understand the cellular processes,
including associated to pathologies, particular biological con-
ditions or to understand molecular mechanisms of biological
relevance.[1] However, since cells can produce thousands of
proteins, the processing of protein information is complex.
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In this sense, two-dimensional gel electrophoresis (2D-GE) has
become a method of choice for proteomic studies since its
introduction more than 40 years ago.[2] Its current use in part is
explained due to its high performance in terms of the separation
of complex protein mixtures.[3] The use of 2D-GE gels allows the
comparison of complex protein profiles, first separating them by
isoelectric point (pI) and then by molecular weight.[4] With this,
the proteins are separated as spots, which are revealed with stains
such as Coomassie blue or silver stain, to then capture images of
the gel. These images are then analyzed to identify the points and
study the protein content, as well as continue with subsequent
proteomic studies by other strategies.[1]

However, due to the anomalies present in the images of 2D-GE
gels, there is still no reliable, automatic and highly reproducible
pipeline for 2D-GE image analysis.[4] At a strictly experimental
level, the challenges of this type of technique include experimental
variation (reagents, running conditions, etc), particular mobility
of the proteins, deformation of the gel and the high probability of
finding several proteins in the same space of the plane of the gel.[5]

At the level of image analysis, the difficulties are greater,
including anomalies such as the presence of vertical and
horizontal stripes, noise around protein spots, diffuse spots
and background noise, fusions of spots, artifacts due to the
presence of dust or bubbles, saturation of certain spots and lack
of linear intensity of protein spots.[1,3]

At the preprocessing level, one of the basic tasks is the
alignment of images, in which one of the images is intentionally
deformed to match the spots with the other image. This is done
with a transformation that optimizes the measure of similarity
and in turn quantifies the quality of alignment.[6] Then,
algorithms are implemented to detect protein spots, that is, the
recognition of objects by segmentation to define the limits of each
spot, many of them with methods based on intensity, form, or
hybrid strategies.[3] In a subsequent step, the quantification of the
level of protein expression is performed according to the intensity
and the number of pixels.[1] If required, a differential expression
analysis can be performed by comparing conditions, in which
multivariate statistical criteria are used, including analysis of
variance (ANOVA) according to the size and intensity of the spot,
strategies of correction of P values such as FDR (false discovery
rate) or machine learning algorithms for clustering or classifying
protein profiles.[5]

For the implementation of these analysis modules, there are
software packages, practically all commercially available. This
has the disadvantage that many are for a particular proteomics
market, subject to purchase of equipment and that makes it even
more expensive. Within these commercial solutions are PDQuest,
ImageMaster2D, ProteomeWeaver, ProteinMine, Delta2D and
Melanie, among others,[1] which generally contain modules that
include the alignment of images to be compared, automatic
identification and edition of spots, counting, quantification of
intensity, and area calculation by spot. Within the options of free
software, ImageJ[7] has been widely used for analysis of images of
biological origin, but automation is limited, given that its
approach is of individual analysis, as has been described.[8,9] In
the approach of Natele and collaborators, a protocol was
implemented with ImageJ for the study of spots in 2D-GE gels,
applicable to pairs of images but with a strategy of limited
scalability to large sets of images.[4]

Thus, due to all above, the aim of this work was to implement
and evaluate an image analysis protocol with open-source
software for identifying spots in 2D-GE gels images, which also

includes the potential application to automatically analyze a large
number of images and, due to the computational requirements,
that is potentially parallelizable. For this, we standardized
experimental protocols for the study of the periplasmic proteins
of Pseudomonas aeruginosa AG1 under various conditions of
exposure to antibiotics. This bacterium is an opportunistic
pathogen that survives diversity of environments, including
hospital environments.[10] Specifically, our study model is the
strain P aeruginosa AG1, a Costa Rican isolate[11] with a
multiresistance profile to antibiotics and with clonal MLST
(https://pubmlst.org/) categorized as ST111, which implies a high
risk for public health because of its resistance to therapy and
association with nosocomial infections.
With this bacterial model, from the experimental assays,

separation of the proteins was achieved using 2D-GE gels and it
was revealed with silver staining. After capturing the respective
images, we implemented a pre/processing step that included an
initial phase of image alignment using the script bUnwarpJ[12] in
the program ImageJ[7,13]; this package has the ability to align
hundreds of images to the same reference in one step.
Subsequently, we made the spots identification with two
protocols using the program CellProfiler.[8,14] A first protocol
was established to identify total spots in the images of the gels,
and that was contrasted with a reference analysis with the
commercial program Melanie (https://2d-gel-analysis.com/). In a
second implementation, spots differential identification in
experimental conditions was made, separating the common
spots from the exclusive ones. Finally, a comparison of several
experimental conditions was carried out with two clustering
algorithms, showing the similarity of protein profiles of P
aeruginosa AG1 exposed to antibiotics. To the best of our
knowledge, CellProfiler program has not been used for the
identification of spots on 2D-GE gels, although it has been
implemented to for recognizing biological objects (cells, complete
organisms, tumors, colonies of microorganisms and others) in
hundreds of images, making this implementation as promising
for the analysis of hundreds of gels in proteomics studies.

2. Methods

2.1. Experimental assays for 2D-GE gels

For the extraction and analysis of periplasmic proteins of P
aeruginosa AG1, cultures were used at exponential phase in LB
medium (Luria Bertani, 2 clones) and LB medium added with
subinhibitory concentrations of antibiotics ciprofloxacin (CIP,
12.5mg/mL), tobramycin (TOB, 62.5 and 125mg/mL), and
imipenem (IMP, 25 and 50mg/mL). The marker “IEF 3–10
SERVA liquid mix” (with proteins of size and known isoelectric
point) was used as migration control. After pre-cultivation for
16h under the corresponding conditions, the bacteria were
cultured for 6h at 37°C under agitation. After verifying their
exponential growth by optical density, the samples were
centrifuged at 10,000rpm for 30min and the supernatant was
discarded.
For the extraction of periplasmic proteins with chloroform,

pellets were washed with sterile PBS 1! and then 0.01M Tris–
hydrochloride pH 8.0 filtered and chloroform were added. After
an incubation, the sample was centrifuged and the supernatant
stored at"80°C. For protein precipitation, the supernatants were
treated with methanol and chloroform. After vigorous stirring
and a strong centrifugation, the separation was achieved in
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2 phases, an upper one of methanol/water and a lower one of
chloroform. The periplasmic protein fraction was found in the
middle of both phases, which was finally precipitated with more
alcohol and centrifugation. After the supernatant was removed,
the protein pellet was dried and resuspended in 0.05% SDS lysis
buffer, obtaining the protein extract of interest. Modified
protocol of Ames et al.[15]

Finally, the protein separation in two-dimensional gel was
performed by adding the proteins to Isoelectric Focusing (IEF)
strips and hydrated for 24h at room temperature. Then, the
proteins were separated using a non-linear 3 to 11 pH gradient,
following the manufacturer’s instructions (GE HealthCare
Immobiline Dry Strip GelsTM). For the second dimension
(molecular weight), the IEF strips were incubated in equilibrium
buffer (50mM Tris–HCl, 6M Urea, 30% glycerol and 2% SDS)
with 4-dithiothreitol (DTT), for 10min, before separation into a
SDS-GE gradient of 4% to 20% for 90min at 150V. PageRuler
Protein Ladder (Fermentas) was used as a molecular weight
marker. All gels were visualized with silver stain. The bands were
observed in the ChemiDoc photo viewer (BioRad).

2.2. Preprocessing of 2D-GE images by alignment

Due to the conditions inherent in the assembly of 2D-GE gels, the
images require preprocessing alignment (Fig. 1). Thus, the
detailed protocol was implemented by Natale and collabora-
tors[4] using the bUnwarpJ package in the ImageJ program.[12]

Using 5 reference points, with spots known as common between
the images, we proceeded to the deformation of the larger images
to align with the spots of the smaller image, using the parameter
of “degree of deformation” as fine. After the deformation, the
aligned images were saved for the following analysis steps.

2.3. Identification of total spots

In order to identify the totality of visible protein spots in the gels,
an image analysis protocol was implemented using the
CellProfiler program (https://CellProfiler.org/). As detailed in
Figure 1 (middle-left) the protocol consisted of 5 steps:

1. the inversion of the images to enable recognition,
2. the implementation of an object recognition, evaluating

different parameters and recognition algorithms and segmen-
tation,

3. improving the identification by manual editing,
4. calculating different metrics by object and, finally,
5. visualizing the recognition in the images.

Similarly, the automatic protocol of a specialized program for
2D gels, Melanie (https://2d-gel-analysis.com/), was used to
compare the performance of our protocol, contrasting the
number of recognized elements and the intensity measured with a
linear regression.

2.4. Differential identification of spots

To compare the differential expression of proteins between
experimental conditions, we proceeded to implement an analysis
of pairs of images (Fig. 1 middle-right, also see Figure 4A for case
of two clones of control condition). The steps for this process
included:

1. the inversion of aligned images,

2. creating a new image of spots commonly shared by the images,
preserving the minimum value of pixels in the same location,

3. automatic identification and manual edition of primary
objects (same as protocol of total spots), and

4. the elimination of common spots of each image.

With this, we obtained images of gels with common spots
eliminated, so in a next step we performed

5. the identification and edition of primary objects of the
exclusive spots of each gel,

6. calculation of metrics for each spot, and finally,
7. the representation of common and exclusive spots for each

image.

With this, each image of each condition identified spots present
in both conditions (configured to be marked in red), or, exclusive
of each gel (blue or green colors in each image).

2.5. Comparison of gels from multiple experimental
conditions

In order to compare different profiles of periplasmic proteins in
various conditions of antibiotic exposure in P aeruginosa AG1,
we proceeded to run two machine learning algorithms for
clustering: a Principal Component Analysis (PCA) and a
Hierarchical Clustering (HC) analysis (Fig. 1 down). To address
this, the images were first aligned (as previously described) and
then the images were divided into 121 sectors (11 ! 11
quadrants) and, given that the location was in coordinates, the
counting of spots was made for each of the zones. This
information was used to implement the clustering algorithms,
which used Euclidean distance for the dissimilarity and default
parameters of the Caret package (http://caret.r-forge.r-project.
org/) in the R program (https://www.r-project.org/).

3. Results

In order to establish an automatic procedure for the identification
of spots of proteins in 2D-GE gels, we first proceeded with the
generation of images from experimental assays with the
periplasmic proteins of P aeruginosa AG1, in conditions with
or without antibiotics. Then, we proceeded with the analysis of
images, including alignment, identification of total spots and
validation, differential identification when comparing pairs of
conditions and finally analysis by clustering, as summarized in
Figure 1.
To align and compare the protein migration profile in 2D-GE

gels, the bUnwarpJ package was used to deform the larger images
and align them to a reference. In the case presented in Figure 2A,
which starts with two images of different sizes (two clones of the
strain in control condition), five points of reference or common
denominator are established between the images, which are used
by the algorithm to optimize the alignment by calculating a field
and network of deformation (Fig. 2B). With this, the larger image
is reduced to align and make the spots comparable between
conditions (the image was cropped to visualize the distribution,
Fig. 2C).
Using the CellProfiler software, two spots recognition proto-

cols were implemented. In the first one, with the identification of
total spots, it was established that the optimal conditions were the
use of a global algorithm (assuming relatively homogeneous
background pixels and other parameters with default values),
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sizes of 40 to 100 pixels for the objects and the use of intensity to
recognize and segment objects. Thus, after the inversion of the
image and the recognition of objects, the recognized objects were
presented on the original image (Fig. 3A left). When performing
the comparison with an automatic protocol with the Melanie
program (used as a reference for validation), it was verified that
the resolution capacity of the protocol we implemented had the
same ability to identify spots (Fig. 3A, right). The number of spots
was counted in 124 for both protocols (this value was controlled
with the manual edition available both in our protocol and in

Melanie pipeline and that includes cases of proteins grouped as a
single spots in cases of large spots). Given that the boundaries or
edges of recognition of an object varied between protocols, we
proceeded to perform a linear regression between the intensity
values, determining that the intensity behavior between the
algorithms is linear (Fig. 3B).
In a second protocol with the same program, we proceeded

with the differential identification of spots when comparing pairs
of gels, obtained from two clones of the same strain P aeruginosa
AG1 in LB medium condition. The identification of objects was

Figure 1. General workflow by image analysis for identifying and comparing spots in 2D-GE gel images.
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done with the algorithm and intensity conditions described for
the previous case, both for common spots and exclusive spots.
Obtaining common spots was achieved by creating a new image,
preserving the lower pixel value for the two images (so if a dot
was present in both conditions, the image created would have a
high value). Then, the spots were identified and they were labeled
as proteins common to both conditions. Using the MaskImage
function, the elimination of these common objects was achieved
and, in a new recognition for each image, it was possible to
identify the exclusive elements of each gel. Using colors, each type
of object, common spots (red) or exclusive spots (green or blue)
were marked on the images, showing that for this case the
majority of proteins were shared by the two clones of the bacteria
(Fig. 4B and C).

Finally, with the identification of spots made for each gel in
different conditions including antibiotics, we proceeded to the
comparison of the protein profiles. First, a division of the images
into zones was carried out, and the number of spots was counted.
Then, the PCA and HC clustering algorithms were evaluated,
obtaining that the profiles given by different antibiotics generate
more differences than the concentration of the antibiotic. In the
case of the PCA (Fig. 5A), using first two components (with a
cumulative variation between both >60%), they show a similar
relationship between the control with LB medium and the case of
ciprofloxacin. This relationship is maintained when evaluating
HC (Fig. 5B), but the relationship between imipenem and its two
concentrations shows minor differences. In addition, for this
same case, the division by zones shows the sectors of gels with

Figure 2. Alignment of 2D-GE gel images by warping method with bUnwarpJ pipeline (gels of proteic profiles from two clones from same strain Pseudomonas
aeruginosa AG1). (A) Raw images showing differences by size and scale. Color marks define the reference points for warping. (B) Deformation field (left) and
deformation grid (right) of larger image to align to the small one. (C) Aligned 2D-GE gel images after warping and cropping (two clones).

Molina-Mora et al. Medicine (2020) 99:49 www.md-journal.com

5

http://www.md-journal.com


similar or very different compartment (potentially useful to select
zones for subsequent analysis, see discussion). The HC results are
shown with the respective gels in Figure 5C.

4. Discussion

Proteomics is considered an essential field for the systematic
analysis of biological systems, an assessment of changes in the
abundance of proteins that occur in living organisms and that can
be studied at various levels.[3] The two-dimensional gel
electrophoresis 2D-GE, separating the proteins according to
their isoelectric point and molecular weight, is still used in
proteomics laboratories due to the relative ease of implementa-
tion in terms of execution and cost, the capacity of solve and
visualize miles of proteins in a single run and it is compatible with
other high-performance protein techniques, such as mass
spectrometry.[1] 2D-GE and subsequent strategies have been
implemented in recent studies using bacterial models, including
application of protein phosphorylation (phosphoproteomics)
in Bacillus anthracis[16,17] or biotechnological applications in
Xanthomonas campestris.[18]

After the experimental phase, the visualization of the proteins
is done with the particular stains and gel images are captured,
which must be analyzed qualitatively and quantitatively for the
extraction of biologically relevant protein information. Of the

existing implementations, although there are some investigations
in methods of analysis of gels 2D-GE work directly at the level of
pixels, most focus on recognizing spots on gel to describe the
abundance in each condition.[3] Despite this, there is no protocol
for universal or consensus analysis, and multiple limitations are
reported in various processing steps.[4] At commercial field, the
available programs have additional drawbacks of having a high
cost, in addition to many of them are for sale with hardware
equipment, which restricts the possibilities of use. In addition,
due to its nature, the private code of the implementations is not
available, which prevents knowing the details of strategy at the
level of algorithms and makes the modification impossible for
specific applications. In addition, some limitations of commercial
or open access programs include the limited number of images to
analyze.
With the aim of implementing and evaluating an image

analysis protocol for the recognition of spots in 2D-GE gels
images, using open-source software, parallelizable, and applica-
ble to hundreds of images, we obtained experimental data of
protein profiles of P aeruginosa AG1 under standardized
conditions with or without antibiotics. The general protocol
was presented in Figure 1. Although it is possible to find
variations between runs for the same sample, in our work, we
used data from different samples but the same run. Comparison
of other protein concentrations, experimental conditions, or

Figure 3. Total spots identification by a CellProfiler pipeline and comparison with Melanie pipeline. (A) CellProfiler pipeline (left) vrs Melanie software (right) for
segmentation of objects and final identification after manual edition. (B) Comparison of spots intensity using the CellProfiler pipeline and Melanie software.
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Figure 4. Spots differential identification and comparison of 2D-GE gel images from two experimental conditions (clones from same strain). (A) General pipeline for identifying common (red, 124 spots) and exclusive spots
(blue or green), which was applied to two different proteomic profiles, Clone 1 with 11 exclusive spots (B) or Clone 2 with 14 exclusive spots (C), respectively.
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replicates are known to produce changes in the proteomic profile,
and further analyses are required to study these effects and the
performance of our pipeline considering this.
Images were aligned with the bUnwarpJ package in the ImageJ

program. This step is required as preprocessing of data since the
final performance depends to a great extent on the quality of the
images to be processed. This processing includes the alignment of
images to match the corresponding protein points of different
conditions.[1] In our case, the larger image was adjusted to the
smaller one and as an example the case of two protein profiles of
two clones of the bacteria was presented in the control condition
with LB culture medium (Fig. 2). Although in our final
implementation we use 6 images when aligning, the alignment
of hundreds or thousands of images is possible using a single
reference, as we did in another application with data of cell
cultures followed over time, aligning 600 images to the initial
image (unpublished data), showing the potential of using this
package for the analysis of multiple gel images. Other
applications with other types of images show this fact.[9,19,20]

After the preprocessing, we carried out the implementation of
two protocols with CellProfiler software. Particular features of
this software are discussed below. In a first approach, we
recognized total spots (Fig. 3), allowing the counting of spots and
the quantification of the area and intensity integrated by each
one. Additionally, we compared the performance of this protocol

with a pipeline of the commercial software Melanie, showing an
equivalent performance when comparing the intensity obtained
per object. Due to the fact that in both protocols a module of
manual editing of the identification is implemented, the count of
elements was intentionally controlled according to expert
criteria, for a total of 124 spots. Similar results in performance
have been previously reported when an analysis with ImageJ was
compared with Melanie,[4] but as mentioned before, with limited
number of images to be processed. In the case of CellProfiler,
automation is an essential component from its design, as well as
the option to parallelize in computer clusters.[14]

In a second protocol (Fig. 4), we implemented a procedure to
differentially recognize the expression of proteins in pairs of
experimental conditions, allowing us to identify common and
exclusive spots of experimental conditions. To do this, our
strategy was based on the construction of a new image using the
minimum value of pixels of the two images aligned and inverted,
using the MathImage function of the program. In this way
common spots were preserved. The recognition by segmentation
based on intensity allowed the identification of objects, which
were later excluded in each. In a second phase, the remaining
spots were recognized in each image, to then differentially
represent the edges of the shared and exclusive spots.
To the best of our knowledge, there are no approximations

that allow the display of common and exclusive spots

Figure 5. Machine learning approach of clustering analysis for comparing 2D-GE gel images from multiple experimental conditions. (A) PCA algorithm, (B) HC
analysis showing zones and spots count, and (C) HC showing images.
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automatically, given that it is regularly done manually. This
information is used to identify proteins differentially expressed in
the conditions studied. However, our approach is very robust
considering only the presence or absence of spots, and true cases
of differential expression with significant changes in intensity are
not contemplated, so we consider that this protocol allows the
differential identification of spots, but not properly the differen-
tial protein expression analysis. This last type of analysis is
carried out by commercially available packages, but they are
mainly based on the intensity and area, and due to the
preprocessing of the image in terms of image contrast, dimensions
and other modifications, the normalization and transformation
of data it remains a challenge.[1]

Regarding the CellProfiler program and its convenience for this
implementation, this software offers the management of
hundreds of thousands of images, freely available and with an
open and flexible code platform to share, test, and develop new
methods by experts in image analysis. In addition, it offers an
easy-to-use interface and the possibility of implementing in
computational clusters.[8] In addition, due to its nature of
automation, the program is capable of handling hundreds of
thousands of images, which high performance infrastructure is
required for massive analyzes, such as those implemented at the
omics level. Although many of the applications of the CellProfiler
program are formulated for cells, other applications have been
implemented at the level of recognition of complete organism in
images, such as the parasite Caenorhabditis elegans,[21] or
complete tumors, colonies of yeast or bacteria, and other images
of biological origin, as evidenced in the Educational Modules
section of the web page (https://CellProfiler.org/outreach/).
In contrast, we finally carried out the implementation of a

machine learning analysis to compare protein profiles from gel
images using PCA and HC clustering algorithms. This type of
strategy has been previously implemented with PCA and heuristic
clustering algorithms,[22–24] as well as supervised classification
algorithms to separate conditions, including Support Vector
Machine.[23] Other approaches have implemented comparison
modules using directly the properties of intensity, brightness, and
contrast of images to contrast with databases,[25] or, other levels
of proteomic analysis, such as mass spectrometry.[26] Regarding
the methodology used in our case of division by zones and
grouping of regions with a similar profile, this strategy can be
used to make subsequent decisions of work in proteomics
laboratories, where the task after the gels is the selection of spots
and continue with identification applications with techniques
such as HPLC or mass spectrometry.[1]

In the biological aspect according to the results obtained when
comparing 6 experimental conditions with P aeruginosa AG1
bacteria with or without antibiotic, it was possible to identify the
relationships between the total protein expression profiles. Both
with the results of the analysis by PCA and by HC, it is concluded
that there is greater similarity between the profiles obtained for
the same antibiotic at different concentrations, and that they are
separated from the conditions of other antibiotics, congruent
according to the mechanisms of action of each type of antibiotic.
In the case of ciprofloxacin, its profile was separated to a greater
degree from the other antibiotics and was grouped with the
control with LB medium.
Because the bacterial strain P aeruginosa AG1 is resistant to

those antibiotics, this information and subsequent analysis at the
proteomic level, together with other genomic, transcriptomic,
and phenomic analyzes that we are conducting, will allow us to

obtain new findings of the biological relationships to molecular
level that provide insights to begin to explain the mechanisms
of tolerance to antibiotics and the modulation of biological
processes in response to cellular stress.

5. Conclusions

In the context of proteomics and its importance for the study of
different biological conditions, our implementation of the image
analysis of gels 2D-GE offers an opportunity to continue with
studies of analysis of protein profiles. Using the open-source
software, CellProfiler (and bUnwarpJ for preprocessing), we
achieved thealignmentof images, the identificationof spots and the
final comparison of protein profiles. These workflow also allow
analyze a large number of images automatically aswell as enabling
the parallelization in computational clusters to counteract the
complexityof processing this typeofdata.Regarding thebiological
meaning, exposure to ciprofloxacin inP aeruginosaAG1 showed a
similar pattern to control without treatment, and other groups
were generated according to the antibiotic class. This information
will be integratedwithothermolecular analyses using antibiotics in
thismultiresistant strain to gain insights regarding themechanisms
of tolerance to antibiotics and the modulation of biological
processes in response to cellular stress.
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Summary  

Tolerance to stress conditions is vital for organismal survival, including bacteria under specific 

environmental conditions, antibiotics and other perturbations. Some studies have described 

common modulation and shared genes during stress response to different types of disturbances 

(termed as perturbome), leading to the idea of a central control at the molecular level. We 

implemented a robust machine learning approach to identify and describe genes associated with 

multiple perturbations or perturbome in a Pseudomonas aeruginosa PAO1 model.  

Using public transcriptomic data, we evaluated six approaches to rank and select genes: using 

two methodologies, data single partition (SP method) or multiple partitions (MP method) for 

training and testing datasets, we evaluated three classification algorithms (SVM Support Vector 

Machine, KNN K-Nearest neighbor and RF Random Forest). Gene expression patterns and 

topological features at systems level were include to describe the perturbome elements. 

We were able to select and describe 46 core response genes associated to multiple 

perturbations in Pseudomonas aeruginosa PAO1 and it can be considered a first report of the P. 

aeruginosa perturbome. Molecular annotations, patterns in expression levels and topological 

features in molecular networks revealed biological functions of biosynthesis, binding and 

metabolism, many of them related to DNA damage repair and aerobic respiration in the context of 

tolerance to stress. We also discuss different issues related to implemented and assessed 

algorithms, including normalization analysis, data partitioning, classification approaches and 

metrics. Altogether, this work offers a different and robust framework to select genes using a 

machine learning approach.  
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Abstract 

Tolerance to stress conditions is vital for organismal survival, including bacteria under specific environmental 

conditions, antibiotics and other perturbations. Some studies have described common modulation and shared 

genes during stress response to different types of disturbances (termed as perturbome), leading to the idea 

of a central control at the molecular level. We implemented a robust machine learning approach to identify 

and describe genes associated with multiple perturbations or perturbome in a Pseudomonas aeruginosa PAO1 

model.  

Using microarray datasets from the Gene Expression Omnibus (GEO), we evaluated six approaches to rank 

and select genes: using two methodologies, data single partition (SP method) or multiple partitions (MP 

method) for training and testing datasets, we evaluated three classification algorithms (SVM Support Vector 

Machine, KNN K-Nearest neighbor and RF Random Forest). Gene expression patterns and topological features 

at systems level were include to describe the perturbome elements. 

We were able to select and describe 46 core response genes associated to multiple perturbations in 

Pseudomonas aeruginosa PAO1 and it can be considered a first report of the P. aeruginosa perturbome. 

Molecular annotations, patterns in expression levels and topological features in molecular networks revealed 

biological functions of biosynthesis, binding and metabolism, many of them related to DNA damage repair 

and aerobic respiration in the context of tolerance to stress. We also discuss different issues related to 

implemented and assessed algorithms, including data partitioning, classification approaches and metrics. 

Altogether, this work offers a different and robust framework to select genes using a machine learning 

approach.  

 

Key words: Perturbations, Pseudomonas aeruginosa, machine learning, gene selection, perturbome.  
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1. Introduction  

Cell stress can be defined as a wide range of molecular changes that cells undergo in response to 

environmental, physical, chemical or biological stressors; sensing and responding to stress is critical for 

survival [1]. These biological functions and metabolic activities are executed through complex physical and 

regulatory interactions of genes that resemble networks [2]. Additionally, tolerance to stress conditions (i.e. 

stressors, perturbations or disturbances) is vital for organismal survival, including bacteria under diverse 

environmental conditions, including antibiotics [1].  

Several studies have revealed diverse molecular levels that can explain the general response to 

disturbances in many organisms. However, detailed mechanisms related to responses to perturbations remain 

poorly understood [3]. Available reports usually focus on specific stressors and relatively few studies have 

focused on common, central and universal determinants affected by multiple perturbations [3]. This concept 

has been recently referred as the perturbome [4,5]. For example, in eukaryotic organisms, including plants 

and human cancer models, some studies have described diverse stress-response genes as  common 

modulators for different types of disturbances, suggesting a central control mechanism [2,4–6]. In prokaryotic 

models, similar findings have been reported for Escherichia coli [3,7].   

Additionally, comprehensive study of gene-interactions allows the identification of functional 

relationships among genes [8], their products and the underlying biological phenomena that are critical to 

understand phenotypes under different biological conditions [9,10]. In the context of cell stress, the response 

to different environmental or experimental stimuli can be recognized by distinct gene expression patterns. 

This can be inferred from transcriptomic profiling data and functional associations using high throughput 

molecular technologies such as microarrays or RNASeq [2]. However, a challenge with these technologies is 

the large amount of high complexity data generated. Specialized bioinformatics analysis are required to select 

relevant information and to reduce noise that distinguishes the molecular determinants for particular 

biological conditions. Thus, a primary objective of transcriptomic profiling is to find an optimal subset of genes 

that could be used to characterize and classify unknown samples [11]. This gene selection is not obvious and 

complex due to the thousands of genes to select from [12].   
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To study the central response determinants to different perturbations in a living organism, we used the 

model Pseudomonas aeruginosa PAO1 (reference strain). P. aeruginosa is a Gram negative gamma-

proteobacterium with a noteworthy metabolic versatility and adaptability enabling colonization of diverse 

niches infecting plants, animals and humans alike [8,13]. In this group, the molecular mechanisms associated 

to most biological processes remain unclear causing limited action to modulate responses, including the 

susceptibility to stressors, environmental factors and experimental conditions.  

Several studies have used machine learning algorithms at the transcriptomic level to recognize gene 

expression patterns [2,14–16]. However, for many common biological contexts, applicability and utility of 

these machine learning approaches have not been fully explored and utilized [17], for example in the exposure 

to multiple stressors and the molecular response. To our knowledge, only a few studies have used feature 

selection methods on biological data to describe the effects of multiple perturbations in complex biological 

systems [4,6] and so far none in P. aeruginosa. A related work in P. aeruginosa used a machine learning 

approach to identify sets of genes that correlate with multiple culture media, but without other conditions 

[18].  

The use of microarray and other high throughput technologies data involve challenges for machine 

learning approaches. These include the curse of dimensionality [19,20], normalization of raw values to 

compare samples [21,22], data partitions for training and testing models [23,24], and evaluation of 

performance [21,25]. Since comparison between the machine learning algorithms are completely variable 

[11,17,20,26,27], Support Vector Machine (SVM) [28], K-Nearest neighbor (KNN) [27] and Random Forest (RF) 

[29] have been successfully used with microarray gene expression data allowing the recognition of emerging 

patterns [26]. 

Here, we hypothesize that perturbations on living cells will trigger global reprogramming of multiple 

molecular determinants that can be sensed at the transcriptional level. The initial response after an acute 

stress will then expand producing the global molecular rearrangement. Then, pleotropic and specific effects 

on gene networks will be reflected as changes in gene expression profiles and the complexity of molecular 

regulation at other levels. Therefore, by using a machine learning approach, common molecular features (for 

all stressors) could be identified as a central or core determinant (see Figure 1-A-B).  



106 
 

Thus, the aims for this study were (i) to implement a machine learning approach to select genes from 

microarray expression data, and (ii) to identify and describe a subset of genes than can be associated with 

multiple perturbations or perturbome in P. aeruginosa, i.e. the core response components.  

 

 

Figure 1. General pipeline to identify core response genes in P. aeruginosa by a machine learning approach. 
(A) Schematic representation of hypothesis for identifying core response determinants when bacteria are 
exposed to multiple perturbations. (B) Workflow of the machine learning approach using microarray data and 
model fitting by SP and MP methods for identifying and describing core response genes. (C) Representation 
of data partition methods, SP and MP, including subsamples for testing and an internal 10-fold cross validation 
for training data set. 
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2. Materials and Methods 

Overall methodology of the study is presented in Figure 1-B. In brief, after a data selection, normalization 

and gene selection to define the perturbome were run. To achieve this, we considered two different 

procedures to split the data (training and testing datasets for the machine learning approaches: SVM, KNN 

and RF): a single partition (SP method) and another with multiple partitions (MP method). Relations between 

genes were represented using both large scale and small world networks, and a final comparison between 

conditions, an analysis of differential expression and gene annotation were performed.  

 

2.1 Datasets 

In order to compare gene expression profiles of strain  P. aeruginosa PAO1 when exposed to multiple 

perturbations, GEO database (https://www.ncbi.nlm.nih.gov/geo/)  was used for a systematic selection of 

datasets. Initial evaluation by organism and mRNA profiles by GPL84 platform (Affymetrix Pseudomonas 

aeruginosa PAO1 Array, with all 5549 protein-coding sequences) identified 156 series of datasets with 1310 

samples (Date of Access: January 25th 2018). In a second step, data were selected according to experimental 

design if they included perturbations, leaving only 47 series. Finally, to make datasets comparable by 

experimental conditions, evaluation and selection were done for series with similar culture conditions (Luria 

Bertani LB medium and exponential phase when measuring mRNA profile) and if a control condition was 

available (without any perturbation or treatment). The final dataset was composed of 10 series with 71 

samples (Series GSE2430, GSE3090, GSE4152, GSE5443, GSE7402, GSE10605, GSE12738, GSE13252, 

GSE14253 and GSE36753).  

Some series included temporal measurements which we considered as separate perturbations, resulting 

in replicates of 10 controls and 14 perturbations: azithromycin with 2 series (AZM-a and AZM-b) [30,31], 

Hydrogen peroxide (H2O2) [32], copper (Cu) [33], sodium hypoclorite (NaClO) [34], ortho-phenylphenol (OPP) 

at 20 and 60 minutes [35], colistin (COL) [36], chlorhexidine diacetate (CDA) at 10 and 60 minutes [37], E-4-

bromo-5-bromomethylene-3-methylfuran-2-5H-one (BF8) [38] and ciprofloxacin CIP at 0, 30 and 120 minutes 

[39].  

 

https://www.ncbi.nlm.nih.gov/geo/
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2.2 Pre-processing and comparison of global transcriptomic profiles 

To compare all the 71 samples, a first analysis was the pre-processing step using Bioconductor 3.8 

(https://www.bioconductor.org/) in the R software (Version 3.5) with classical functions for microarrays. 

Robust MultiArray Average algorithm (RMA) was performed in the Affy package to correct background, the 

normalization, and summarization.  

Subsequently, clustering algorithms were implemented in order to compare global transcriptomic 

profiles between perturbations and controls. Principal Component Analysis (PCA) and Hierarchical Clustering 

(HC) were run with default parameters using the Caret Package (caret.r-forge.r-project.org/) in R software.  

In order to robustly select a number of genes that could separate experimental conditions (controls and 

perturbations) and to identify the core response of P. aeruginosa, two approaches of feature selection 

protocols were implemented, as detailed below. 

 

2.3 Gene ranking and selection by Single Partition SP method 

With the aim of identifying genes which expression values were commonly related to multiple 

perturbations, a first approach was implemented considering a particular partition of dataset for training and 

testing sets (Figure 1-C). Single partition was established using the last replicate of each experiment, in both 

control and perturbation. Because there were 14 perturbations and 10 controls (71 samples including 

replicates), a total of 24 samples were included in the testing dataset and the remaining 47 samples were 

included for the training dataset (66% for training and 34% for testing set).    

Using this partition, ranking of genes was done by a machine learning approach using three classification 

algorithms: SVM, KNN and RF. A homemade script in R included these functions of the Caret package. For all 

three algorithms, default parameters were used for training and 10-fold cross validation (Figure 1-B) was 

included. After this, variable importance metric was calculated for all genes using the varImp function, 

associating a specific value for each gene. In the case of SVM and KNN, same importance is calculated because 

function is model-free for these cases (as detailed in Caret Package), resulting in the same list of genes but 

metrics are specifically calculated for each algorithm. 

https://www.bioconductor.org/
https://caret.r-forge.r-project.org/
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As similarly reported [11], to evaluate the number of genes that should be selected in the top group (the 

first K ranked genes, as candidates for the core response by each algorithm), multiple classification models 

were systematically run, starting only with the highest-score ranked gene. In brief, after the training with one 

gene, model performance was evaluated by calculating metrics using the testing dataset. Then, training was 

run again when the next ranked gene was added, and new metrics were calculated. This process was repeated 

up to complete all the ranked genes. Metrics included accuracy (correct classification percentage), kappa 

value (inter-rater classification agreement), sensitivity, specificity, precision, recall, prevalence and F1 score 

(harmonic average of the precision and recall). 

Selection of the K value of top genes was based on the following criteria: (i) the stability of the metrics 

(priority for accuracy, kappa and F1) when increment of ranked genes was done, as suggested in [11], (ii) 

consensus value suitable for all the three algorithms (including a 10% of tolerance), and (iii) minimum number 

of genes as possible. After the selection of the K value, ROC (Receiver-operating characteristic) curve and AUC 

(Area under the curve) value were calculated for each algorithm. Finally, selection of top K genes between 

algorithms were compared by metrics and list of genes. 

 

2.4 Gene ranking and selection by Multiple Partitions (MP) method 

In order to identify genes related to multiple perturbations independently of a single/specific partition, 

a second method using multiple random partitions was implemented (Figure 1-C). To address this, a random 

data selection for training and testing sets was done using the createDataPartition function. Partition was set 

to 80% (57 samples) for training set and remaining for testing set (14 samples) with experimental conditions 

equally distributed. Then, protocols with SVM, KNN and RF algorithms (same conditions as previously 

described in SP method, with 10-fold cross validation) resumed the analysis with a final ranking of genes using 

the varImp function. Using only top K of ranked genes (K value determined using the criteria described in the 

SP method), new set of training/testing sets were used for evaluating performance of the models and each 

metric was stored with the list of the K ranked genes. This full process was automatically repeated 100 times 

using replicate function, starting with a new random partition and finishing with the list of the K genes and 

the metrics associated to that partition. Finally, for each algorithm, full data of all the runs were analyzed for 



110 
 

determining frequency of the appearance of genes (table function) and calculating average and dispersion of 

metrics across all the 100 runs. Definitive list of the K more frequent genes was established for each algorithm 

after this comparison by frequency.  

 

2.5 Identification of core response genes  

After selection of top K genes in each algorithm by SP and MP methods, comparison of genes was done 

using Venn diagrams in order to identify all the candidate genes using Venn-tool 

(http://bioinformatics.psb.ugent.be/webtools/Venn/). Genes identified by at least four algorithms were 

considered part of the perturbome (this guarantees that a gene was identified by the two methods and at 

least by two different classification algorithms).   

Gene relationships were represented using molecular networks using a large scale model (using a top-

down systems biology approach). The network was built using protein-protein interaction (PPI) graphs in 

PseudomonasNet database (www.inetbio.org/pseudomonasnet/). Network was downloaded and visualized 

using the Cytoscape software (https://cytoscape.org/).  

 

2.6 Description and comparison of core response genes 

In order to describe and compare the genes associated with the core response of P. aeruginosa, by 

experimental conditions, four analyzes were established. First, clustering analysis by PCA and HC algorithms 

were evaluated again but now only considering genes of the core response. Based on distribution in the case 

of PCA, representation of centroids was done using Kmeans algorithm.  

Second, using the PseudomonasNet database, a small world network was built and then exported into 

Cytoscape software with the genes of the core response. The information of topological features (including 

connectivity) and expression levels of kmedoids were incorporated into different versions of the network.  

Third, a classic analysis of differentially expressed genes (DEGs, p<0.05) was implemented in R with 

Limma package (https://www.rdocumentation.org/packages/limma/versions/3.28.14) using empirical Bayes 

moderated t-statistic (eBayes) with Benjamini and Hochberg method for p value correction  [40]. This led us 

to compare our results with a classical approach for gene expression.  

http://bioinformatics.psb.ugent.be/webtools/Venn/
http://www.inetbio.org/pseudomonasnet/
https://cytoscape.org/
https://www.rdocumentation.org/packages/limma/versions/3.28.14
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Finally, in order to give biological interpretation to the selected genes, to determine levels of expression 

reported in databases and to study metabolic pathways involved under each perturbation, an exhaustive 

annotation was made using the databases PseudomonasDB (gene ontology), GEO database and particular 

literature. This information was integrated with the results obtained by all the analysis and the DEGs in order 

to fully describe the genes that make up the core response or perturbome of P. aeruginosa PAO1. 

 

 

Figure 2. Normalization and comparison of samples by global profiles using all genes. (A) Dispersion of 
intensities of samples, showing similar distribution between samples. (B-C) Global profiles were compared by 
both PCA and HC clustering algorithms, showing mixed patterns between classes.  
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3. Results 

3.1 Perturbome genes of P. aeruginosa can be identified by a machine learning approach using SP and MP 

methods 

A total of 71 samples of 10 controls and 14 perturbations were considered for the study, with comparable 

expression levels (Figure 2-A). Global transcriptomic profiles (all 5549 genes) were compared by both PCA and 

HC algorithms, revealing a mixed pattern (no separation) between perturbations and controls. Two samples 

(BF8 and Control 8) resulted with extreme global profiles (Figure 2 B-C). Two methods using machine learning 

(SP and MP) were implemented in order to robustly rank and select genes associated to multiple perturbations 

in P. aeruginosa. In each method, three classification algorithms were evaluated: SVM, KNN and RF. Metric 

results associated to RF are shown in Figure 3, and supplementary Figure S1 for SVM and KNN. 

The first method (SP) implemented a gene ranking based on variable importance using a single/specific 

data partition. After the ranking was established, multiple classification models were run with the ranked 

genes (Figures 3-A and supplementary Figure S1-A-C). For each classification model, stability of the three 

metrics were evaluated to select the suitable K value of genes that could be applied to all algorithms at the 

same time. For SVM and RF, stable values of metrics are given with at least the first 51 ranked genes, 

meanwhile it is 45 genes for KNN. Considering a 10% of tolerance with the highest of these values, K=56 was 

selected as the number of top genes that were included as preliminary candidates of the core response 

according to each algorithm. With this value, metrics of each algorithm were compared (Table S1). For 

example, accuracy was 0.79, 0.71 and 0.75 for SVM, KNN and RF respectively in the SP method. SVM obtained 

a better performance according to kappa, sensitivity, recall and F1 scores, but higher values of specificity and 

precision resulted for RF. Also, ROC curve and AUC value were calculated (Figures 3-B and supplementary 

Figure S1-B-D). Best performance was obtained for RF with AUC = 0.92, then 0.82 for SVM and finally 0.76 for 

KNN. Since importance metric for SVM and KNN is the same, they shared same list of top 56 genes. Comparison 

between implementations showed that 21 genes were identified by the three algorithms at same time, 35 

exclusively by RF and same number for SVM/KNN. In total 91 genes were identify by any of the algorithms. 

List of genes and importance value of top 56 ranked genes for each approach is presented in Figures 3-C for 

RF and Figure S1-E for SVM/KNN.  
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Figure 3. Evaluation of SP method for gene ranking by importance, case for RF algorithm. (A) Accuracy, F1 
and kappa values after iterations of classification with the first top 200 genes (adding genes 1-to-1). (B) ROC 
plot using selected top 56 genes for evaluation of performance of the algorithm. (C) Ranking and importance 
value of top 56 genes. Similar results are shown for SVM and KNN algorithms in supplementary Figure S1. 

 

In a second approach, the MP method was implemented using multiple random partitions. Same SVM, 

KNN and RF algorithms were evaluated by running 100 iterations with different partitions and top-56 more 

frequent genes for each method were selected. Details of ranking and frequency is shown in Figure 4-A (SVM) 

and supplementary Figure S2 (KNN and RF) and metrics for all 100 iterations are presented in Table S1, Figure 

4-B and supplementary Figure S2. Accuracies for all the models were 0.66, 0.69 and 0.70 for SVM, KNN and 

RF respectively. Specific values for kappa, precision, recall and F1 score were found for each algorithm. When 
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comparison of list of genes was done, 29 genes were identified at same time by all implementations, and 23 

by both SVM and KNN.  

With the aim of identifying preliminary core response genes in P. aeruginosa, the lists of top 56 genes 

selected by each algorithm and method were jointly represented using a Venn diagram (Figure 5-B). Note that 

the same set was used for SVM and KNN since both procedures lead to the same genes. A total of 118 different 

genes were identified and 15 genes were simultaneously identified by all the algorithms. Distribution of all 

118 genes on large scale molecular networks is presented in Figure 5-A. Results show that selected genes are 

connected but they do not establish a defined cluster. These genes seem to be associated to different 

subgroups of highly connected genes.  

Final version of the core perturbome components was established by selecting genes recognized for at 

least four algorithms. A total of 46 genes were finally associated to core response. In the representation as 

small world network, relationships between the 46 genes revealed different topological patterns of 

connectivity between molecules, being nuoC and nuoF the ones with higher connectivity (connection degree). 

In addition, only six genes had no connections between them (Figure 5-C).  

 

 

Figure 4. Evaluation of MP method for gene ranking by frequency, case for SVM algorithm. (A) Ranking of 
top 56 genes by frequency after iterations of 100 data partitions and classification model fitting. (B) Dispersion 
of metrics across 100 iterations. Similar results are shown for KNN and RF algorithms in supplementary Figure 
S2. 
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Figure 5. Identification, systems level description and global profiles comparison given by core response 
genes. (A) Distribution and number of algorithms of preliminary 118 selected genes on a basal large scale 
network of functional associations in P. aeruginosa. (B) Set comparison of genes given by classification 
algorithms of SP and MP methods, with a final selection of 46 genes which were identified by at least 4 
algorithms. (C) Small world network showing relationships between the 46 core response genes and 
connectivity metric for each gene. (D-E) Global profile comparison of samples by both PCA and HC clustering 
algorithms, showing separation of conditions. For reference, centroids of each cluster were plotted as 
triangles in each cluster. More details are shown in supplementary Figure S3.  
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3.2 Comparisons of core response genes show separation of global transcriptomic profiles according to 

experimental conditions and biological functions related to tolerance to stress 

After the selection of the core response genes, comparisons between controls and perturbations were 

done to characterize these genes by global profiles. First, clustering algorithms to compare global profiles 

were run using the 46 genes of the perturbome. In the case of PCA (Figure 5-D), samples distribution let to 

differentiate controls and perturbations. A Kmedoid algorithm (k = 2) was able to identify two clusters 

enriched by samples of each condition: one consisting entirely of perturbation samples (11 samples, blue 

color) and the other mostly by control samples (10 controls and 3 disturbances, red color). In the case of the 

blue cluster, the kmedoid was sample CIP-120min, meanwhile control 6 was selected for the another cluster.  

For the case of HC (Figure 5-E), the same distribution of samples was obtained. Supplementary analysis 

of gene expression was included by comparing levels for all core response genes (Figure S3-A) and comparing 

expression levels of the kmedoids on the small world network (Figure S3-B-C).  

 

Figure 6. Annotation of core response genes and comparison with a differential expression analysis.  (A) 
General annotation profile of identified genes by core response genes showing associated biological 
processes. (B) Comparison of identified genes by our machine learning approach and DEGs lists. (C) General 
annotation of DEGs showing similar profile than our approach. Specific annotation per gene is shown in 
supplementary Table S2.  
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Gene annotation revealed that biological processes related to most of the genes are metabolism, 

molecule binding and biosynthesis (Figure 6-A). Specific information about participation in processes of DNA 

damage response, DNA repairing and response to general/specific stimuli was also searched for each gene, 

showing that most of genes includes participation in such processes. Literature support shows variable 

patterns of expression, depending on the disturbance as shown in supplementary Table S2. Finally, in order 

to compare the results of the machine learning strategy with another approach, a differential expression 

analysis was run. A total of 101 DEGs were identified, which 33 were shared by the core response (Figure 6-

B). This means that 72% of core response genes were also identified by another single and independent 

method.  Annotation profile of DEGs (Figure 6-C) showed a similar pattern as our machine learning approach.  

 

4. Discussion 

Living organisms face external and internal conditions that compromise cellular functions at molecular, 

metabolic and structural levels, disrupting their homeostasis [41,42]. Cell stress response is crucial for 

organismal survival and complex networks are usually involved in the molecular mechanism related to 

tolerance [1]. However, few studies have identified central and possible universal regulation of the response 

to multiple disturbances, a concept termed as perturbome [4,5]. Common molecular response was previously 

reported as a network of common set of genes and pathways that can be generically associated to multiple 

perturbations in plants [7], pathogenic bacteria [3] or cell lines models [4], and others. 

In our approach using P. aeruginosa, but applicable to other organisms, we hypothesized the existence 

of a set of core genes regulating the response to stressors in a generic sense of different pathways. P. 

aeruginosa has a high proportion (about 5%) of its genome dedicated to regulatory mechanisms, probably 

explaining its adaptability to such a broad range of growth conditions [25]. Since strain P. aeruginosa PAO1 is 

a clinical isolate with a profile of multiresistance to many antibiotics [43], characterization of molecular 

mechanisms involved in the tolerance to stressors in this strain could eventually help to modulate sensitivity 

and overcome resistance. Exhaustive integration of -omics data and network analysis are required in order to 

clarify the molecular mechanisms related to stress conditions and eventually use them for modulating cell 

response.  
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4.1 Insights of algorithms to identify core response genes or perturbome 

In our study, initial global transcriptomic profiles showed mixed patterns between samples according to 

their experimental condition. Because its complexity, raw microarray data showed noise and redundant 

information that can explain the poor resolution of this clustering algorithms to identify classes [20]. Thus, a 

feature (gene) selection analysis was implemented for not only identifying genes associated to multiple 

perturbations in P. aeruginosa, but also to improve performance of predictive/descriptive models capable of 

separate control and perturbation categories.  

In our case, these potential patterns were investigated using a robust machine learning approach by 

implementing six protocols, using SP and MP methods and SVM, KNN and RF algorithms in each case. This was 

a critical step because gene selection from microarray data is complex per se. Feature reduction remains as a 

challenging task in transcriptomic studies because thousands of genes to select from, and it introduces an 

additional layer of complexity in the modelling task [12,44].  To avoid bias and overfitting, implementations 

of diverse strategies of data partitioning such as bootstrapping, random partitions and cross validation are 

recommended. In general, these methodologies can robustly minorate the influence from noise, outliers, 

absence of ground truth sets, and to reduce variance [2,24,45].  

The single partition SP method consisted of a particular and invariable data for training (with internal 

cross validation) and another to test, and it is probably the most common approach used in machine learning. 

In the case of the multiple partitions MP method, 100 random partitions of dataset were run. MP method had 

a dual consideration when splitting data (multiple partitions and the internal cross validation). This method 

can be considered as an ensemble based on different data partitioning, as it had been previously proposed 

[23]. Datasets were divided using multiple random partitioning procedures and then genes were ranked. After 

all runs, a final feature subset is determined by calculating the frequency of features in all the runs [23]. A 

equivalent approach was implemented by Pai and collaborators to classify gene expression data in a cancer 

model [46].  

However, one possible problem with MP approach is that cross validation results may depend on 

similarity of testing and training sets. A classification prediction method is only expected to learn how to 

predict on unseen samples that are drawn from the same distribution as training samples [24,45], and MP 
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method could violate this assumption. SP method guarantees this because was built always using a replicate 

for each perturbation and control. Thus, both methods SP and MP are required to robustly select features.  

On the other hand, many algorithms for dimension reduction have been proposed [6,19,20] but no 

standard machine learning algorithm can be selected due multiple evaluations results on completely variable 

metrics associated to performance [26]. Many studies have shown that SVM, KNN, and RF generally 

outperform other traditional supervised classifiers [17,26,47]. In our case, a variable pattern was found for 

different metrics in all evaluated implementations. For example, based on accuracy SVM for SP method and 

RF for MP method resulted in higher scores, which agree with other studies using machine learning and 

biological data [26,46]. 

In our subsequent analysis, we were interested in identifying a consensus list of candidate genes for the 

core response in P. aeruginosa, resulting in 46 genes of the perturbome. When global profiles were compared 

using these genes (PCA and HC), control and perturbation classes (Figure 5-D) were clearly separated. This 

gene number seems to be a modest number of elements (less than 1% of all the available dataset with 5549 

genes) but it agrees completely with other studies, including machine learning methods [11,17] or other 

approaches [11,22,48,49]. In addition, 72% of core response genes were also identified as DEGs with similar 

annotation profiles; differences can be explained by significant fluctuations in the differential expression 

results as previously reported, mainly because it is not a consensus strategy (only based on p-value) and it 

does not incorporate the estimates of the test performance (true positive/negative rates and other metrics) 

on the results [2]. 

 

4.2 Biological insights of the core response genes in P. aeruginosa: the perturbome 

Core response genes or perturbome can be related to a central regulation network, and as convergent 

point of signal transduction, transcriptional regulation and stress-related pathways, as it has been suggested 

[2,4,5,42]. Annotation of the 46 genes shows that most of them are functionally related to biosynthesis, 

molecule binding and metabolism (including an important number of hits for lipids), including additional 

functions for regulation of DNA damage repair, response to stimuli and aerobic respiration. Interestingly, 

these processes are represented by genes with high connectivity in the small world network.  For example, 
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main functions associated to fabA are lipid metabolism, fatty acid and lipid biosynthesis, meanwhile for nuoC 

are aerobic respiration, electron/proton transport and DNA damage. Finally, nuoF is associated to aerobic 

respiration, electron/proton transport and Krebs cycle.  

In this sense, cells are equipped with systems and mechanisms to recover from the environmental stress 

and stimuli to maintain all necessary physiological functions [50]. Other common stimuli such as low ATP, slow 

growth, and ROS production can also occur before cells express stress specific factors, but mediating a 

common effect. For example, response to stress includes modulation of energy production and aerobic 

electron transfer chain components. As it has been reported in E. coli, aerobic electron transport chain 

components are down-regulated in response to growth arrest [51]. This corresponds with the global profiles 

of expression of 46 core response genes. Also, regulation of lipid metabolism is relevant for survival in the 

wide range of environmental conditions where bacteria thrive [52], even for biofilm-living forms [3] as P. 

aeruginosa. Core response genes fabG, lpxA, and PA5174 could be implied in this process.  

In the case of DNA damage repair (including the case of cycB and gltP genes), responses mediated by 

SOS and rpoS help to maintain genome integrity, colonization, and virulence [39,53]. These responses are 

activated under multiple disturbances and modulating a low energy production and shutdown of the 

metabolism, promotes formation of antibiotic resistance and biofilms [3]. Other related pathways for some 

specific genes included regulation of the transcription during stress by RNA-binding proteins in order to 

reprogram or shut down translation and to rescue the ribosome stalled by a variety of mechanisms induced 

[54]. Three core response genes (rpmH, tsf and PA2735) were annotated with these functions.  

Jointly, the relatively few diversity of metabolic functions and pathways makes sense in order to ensure 

redundancy and robustness in the response to stimuli. Similar results, regarding enriched pathways, have 

been obtained in other studies with eukaryotic models, including disturbed human cell lines [4,5,42], 

Arabidopsis thaliana under physical and genotoxic stresses [2] or a genome-wide association study of a 

generic response to stress conditions [6]. In the case of prokaryotic organisms, two studies have used 

Escherichia coli as model to identify differentially expressed genes after exposure to stress conditions [3] and 

to create networks associated with the response to fluctuating environments [7]. Differences with other 

organisms and disturbances can suggest that response cell stress can be organismal specific, although 
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heterogeneity has also been suggested a reasonable explanation because differences in the response in a 

apparently homogeneous cell population [42,55]. 

As in our case, the response to stimuli and stressors is orchestrated by a pleotropic modulation [56] 

which can be associated to a central regulation. Alternative mechanisms such as cross stress protection (ability 

of a stress condition to provide protection against other stressors) [7], role of sigma factors and specific two 

component systems [3] can contribute to explain this phenomenon. The molecular response can lead to 

regulate multiple biological activities including metabolism, replication, transcription and translation, changes 

in membrane composition, motility, modification gene expression, expression of virulence factors, multi-drug 

resistant phenotypes and biofilm formation, and others [42].  

Taking all together, results of our study suggest that identification of core response genes associated to 

multiple perturbations or perturbome in P. aeruginosa can define a central network available to modulate a 

basic response that includes biological functions such as biosynthesis, binding and metabolism, many of them 

related to DNA damage repair and aerobic respiration. To our knowledge, this study can be considered a first 

report of the P. aeruginosa perturbome.  

Further analyses are required to explore potential use of perturbome network to modulate (positively 

or negatively) the response to disturbances, to model molecular circuits, to identify possible biomarker genes 

of stressed states, and to experimentally validate our findings. In addition, this approach can be used to model 

the perturbome in other P. aeruginosa strains, as we hope to run soon with a genome we recently described 

[13], and other organisms. 

 

5. Conclusions 

A robust machine learning approach was implemented in order to identify and describe core response 

genes to multiple perturbations in P. aeruginosa. Using public microarray data, two independent partition 

strategies (single and multiple with SP and MP methods respectively) and three classification algorithms, we 

were able to identify 46 perturbome elements. Both network analysis and functional annotations of these 

genes showed coordinated modulation of biological processes in response to multiple perturbations, including 

metabolism, biosynthesis and molecule binding, associated to DNA damage repairing, and aerobic respiration, 
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all probably related to tolerance to stressors, growth arrest and molecular regulation. We also discussed 

different issues related to implemented and assess algorithms of normalization analysis, data partitioning, 

classification approaches and metrics. 
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CHAPTER 5 
 

 

Transcriptomic determinants of the response of ST-111 Pseudomonas aeruginosa AG1 to 

ciprofloxacin identified by a top-down systems biology approach  
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García, F. (2020). Transcriptomic determinants of the response of ST-111 Pseudomonas aeruginosa AG1 to 
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Summary  

Ciprofloxacin (CIP) is an antibiotic commonly used to treat P. aeruginosa infections, and it is 

known to produce DNA damage, triggering a complex molecular response. In order to evaluate the 

effects of a sub-inhibitory CIP concentration on the multi-resistant PaeAG1, growth curves using 

increasing CIP concentrations were compared. We then measured gene expression using RNA-Seq 

at three time points (0, 2.5 and 5 hours) after CIP exposure to identify the transcriptomic 

determinants of the response (i.e. hub genes, gene clusters and enriched pathways). Changes in 

expression were determined using differential expression analysis and network analysis using a top-

down systems biology approach. A hybrid model using database-based and co-expression analysis 

approaches was implemented to predict gene-gene interactions. 

We observed a reduction of the growth curve rate as the sub-inhibitory CIP concentrations 

were increased. In the transcriptomic analysis, we detected that over time CIP treatment resulted 

in the differential expression of 518 genes, showing a complex impact at the molecular level. The 

transcriptomic determinants were 14 hub genes, multiple gene clusters at different levels 

(associated to hub genes or as co-expression modules) and 15 enriched pathways. Down-regulation 

of genes implicated in several metabolism pathways, virulence elements and ribosomal activity was 

observed. In contrast, amino acid catabolism, RpoS factor, proteases, and phenazines genes were 

up-regulated. Remarkably, >80 resident-phage genes were up-regulated after CIP treatment, which 

was validated at phenomic level using a phage plaque assay. Thus, reduction of the growth curve 

rate and increasing phage induction was evidenced as the CIP concentrations were increased.  

In summary, transcriptomic and network analyses, as well as the growth curves and phage 

plaque assays provide evidence that PaeAG1 presents a complex, concentration-dependent 

response to sub-inhibitory CIP exposure, showing pleiotropic effects at the systems level. 

Manipulation of these determinants, such as phage genes, could be used to gain more insights about 
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the regulation of responses in PaeAG1 as well as the identification of possible therapeutic targets. 

To our knowledge, this is the first report of the transcriptomic analysis of CIP response in a ST-111 

high-risk P. aeruginosa strain, in particular using a top-down systems biology approach. 
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Pseudomonas aeruginosa is an opportunistic pathogen that thrives in diverse environments and causes 
a variety of human infections. Pseudomonas aeruginosa AG1 (PaeAG1) is a high‑risk sequence type 111 
(ST‑111) strain isolated from a Costa Rican hospital in 2010. PaeAG1 has both blaVIM‑2 and blaIMP‑18 
genes encoding for metallo‑β‑lactamases, and it is resistant to β‑lactams (including carbapenems), 
aminoglycosides, and fluoroquinolones. Ciprofloxacin (CIP) is an antibiotic commonly used to treat 
P. aeruginosa infections, and it is known to produce DNA damage, triggering a complex molecular 
response. In order to evaluate the effects of a sub‑inhibitory CIP concentration on PaeAG1, growth 
curves using increasing CIP concentrations were compared. We then measured gene expression 
using RNA‑Seq at three time points (0, 2.5 and 5 h) after CIP exposure to identify the transcriptomic 
determinants of the response (i.e. hub genes, gene clusters and enriched pathways). Changes in 
expression were determined using differential expression analysis and network analysis using a top–
down systems biology approach. A hybrid model using database‑based and co‑expression analysis 
approaches was implemented to predict gene–gene interactions. We observed a reduction of the 
growth curve rate as the sub-inhibitory cip concentrations were increased. in the transcriptomic 
analysis, we detected that over time CIP treatment resulted in the differential expression of 518 
genes, showing a complex impact at the molecular level. The transcriptomic determinants were 14 hub 
genes, multiple gene clusters at different levels (associated to hub genes or as co‑expression modules) 
and 15 enriched pathways. Down‑regulation of genes implicated in several metabolism pathways, 
virulence elements and ribosomal activity was observed. in contrast, amino acid catabolism, RpoS 
factor, proteases, and phenazines genes were up‑regulated. Remarkably, > 80 resident‑phage genes 
were up‑regulated after CIP treatment, which was validated at phenomic level using a phage plaque 
assay. thus, reduction of the growth curve rate and increasing phage induction was evidenced as 
the CIP concentrations were increased. In summary, transcriptomic and network analyses, as well 
as the growth curves and phage plaque assays provide evidence that PaeAG1 presents a complex, 
concentration‑dependent response to sub‑inhibitory CIP exposure, showing pleiotropic effects at 
the systems level. Manipulation of these determinants, such as phage genes, could be used to gain 
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more insights about the regulation of responses in PaeAG1 as well as the identification of possible 
therapeutic targets. To our knowledge, this is the first report of the transcriptomic analysis of CIP 
response in a ST‑111 high‑risk P. aeruginosa strain, in particular using a top-down systems biology 
approach.

Abbreviations
CIP  Ciprofloxacin
DEGs  Differentially expressed genes
GGI  Gene–gene interaction
GSEA  Gene set enrichment analysis
KEGG  Kyoto encyclopedia of genes and genomes
MIC  Minimum inhibitory concentration
MLST  Multilocus sequence typing
OD600nm  Optical density measured at 600 nm
PaeAG1  Pseudomonas aeruginosa Strain AG1
PCA  Principal components analysis
QC  Quality control
RNA-Seq  RNA sequencing
ST-111  Sequence type 111
WGCNA  Weighted gene co-expression network analysis
WHO  World Health Organization (WHO)

Pseudomonas aeruginosa is a ubiquitous Gram-negative organism which thrives in diverse environments and acts 
as an opportunistic  pathogen1. The ability of this pathogen to cause a variety of human infections is facilitated 
by its nutritional  versatility2, resistance to a wide spectrum of antibiotics, and virulence  factors3,4. Pseudomonas 
aeruginosa AG1 (PaeAG1) is a multiresistant high-risk sequence type 111 (ST-111) strain (GenBank CP045739)5. 
It was isolated from a Costa Rican hospital and it was the first report of an isolate of P. aeruginosa carrying 
both blaVIM-2 and blaIMP-18 genes encoding for metallo-β-lactamases enzymes (carbapenemases), located in 
two independent  integrons5,6. PaeAG1 is resistant to β-lactams (including carbapenems), aminoglycosides, and 
fluoroquinolones, being only sensitive to colistin. In addition to this multidrug-resistant feature, as in other P. 
aeruginosa strains, the ability to colonize nosocomial environments makes this strain a high-risk  clone7. Owed 
to this antibiotic resistance profile, including resistance to carbapenems, PaeAG1 is classified as a Priority 1 
(critical) organism according to the World Health Organization (WHO)8.

Antibiotic resistance is a major threat to public health because it compromises the administration of appro-
priate antibiotic therapy, and reduces the therapeutic options to treat infections, increasing patient morbidity 
and  mortality9,10. This situation is aggravated by the emergence of strains resistant to multiple  antibiotics11, 
limitation of the knowledge of interactions with pathogens and mechanisms of action of antimicrobial agents, 
and development of new  antibiotics12. Use of antibiotics below the minimum inhibitory concentration (MIC) or 
sub-inhibitory concentrations also contributes to antibiotic resistance as they allow strains to continue growing 
and can select for pre-existing resistant  organisms13. Since sub-inhibitory antibiotic concentrations are found in 
many natural environments, bacteria can naturally trigger mechanisms of  tolerance14. However, the fundamental 
mechanisms of bacterial tolerance to antibiotics have not been fully  elucidated15.

It has been shown that the perturbation induced by many antibiotics leads to stress conditions in prokary-
otic  cells16, which can induce DNA  damage17. Stressors activate the regulation of gene expression or the activity 
and stability of existing proteins to induce adaptation  mechanisms16. Organisms have evolved numerous DNA 
repair pathways to eliminate DNA damage and restart DNA  replication18. Regulatory networks of transcriptional 
responses to DNA damage involves not only DNA repair enzymes, but also diverse proteins with roles in cell divi-
sion, metabolism modulation, genetic rearrangements and exchange, mutation, and virulence factor  production19.

Ciprofloxacin (CIP) is a fluoroquinolone antibiotic used to treat P. aeruginosa  infections20. CIP is well-known 
to produce DNA damage by inhibiting DNA gyrase and topoisomerase IV, leading to DNA strand  breaks21. 
Mutations in these genes are responsible for CIP resistance by losing drug  affinity22. CIP has been used to study 
stress responses in this bacterial  group12,23, in particular with the induction of the SOS response as a mechanism 
of DNA damage  repair17,24,25. In P. aeruginosa, the SOS response regulon is composed of 15 genes, including recA 
and lexA  genes26. Upon DNA damage, RecA recognizes the single-stranded DNA (ssDNA) forming filaments 
and induces the autocleavage of the repressor LexA. This response leads to the expression of genes related to 
DNA damage  repair27. Other LexA-like repressors are regulated during SOS activation, including elements of 
phages and  pyocines19. SOS also mediates responses to resistance element transfer, generation of mutations and 
evolution of  resistance26, as well as appearance of persister  cells24.

However, modulation of stress responses after DNA damage is not limited to SOS response. RpoS is a gen-
eral stress sigma factor (σS) known as a central element in a regulatory network that governs the expression of 
stationary-phase-induced  genes28 to maintain cell  viability29. This regulator is strongly induced when cells are 
exposed to various stress conditions, including antibiotics, pH downshift, starvation, and  hyperosmolarity30. 
RpoS regulates more than 50 genes in Pseudomonas aeruginosa31, including virulence  factors32.

The SOS and RpoS regulons are complementary mechanisms in response to certain stresses and that protect 
bacteria from DNA  damage33. Lon  protease11 and  AmpR34 can modulate both SOS and RpoS regulons. In addi-
tion, both responses can regulate key genes such as polB18, iraD19, and dinB33. The connection between RpoS 
and SOS responses seems to be associated with a mechanism to maximize survival and fitness of cells, and to 
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maintain genome  stability18. These responses can modulate virulence factors (including quorum sensing and 
biofilm formation), and increase homologous recombination and mutation  frequencies33,35. However, other SOS 
and RpoS independent mechanisms are also known to be present in  bacteria36, including P. aeruginosa after CIP 
 treatment12,26 with variable results depending on strains and showing a mosaic  response12.

Although the full mechanisms of all these molecular responses are not well understood, it is known that cells 
respond to stress conditions by complex regulatory systems that control gene  expression37. Since a key objective in 
biological research is to describe molecular  interactions38, the use of networks analysis is a common approach to 
describe complex biological systems and to mathematically model gene–gene interactions (GGI) with graphical 
representations (genes as nodes and interactions as edges)39. Molecules are thereby studied not only at a single 
level, but emergent properties are identified to describe and understand the complexity of the gene networking 
response and the emergent properties towards the stress condition. Functional status of genes by a top-down 
systems biology perspective, starting from “whole”-omics data to identify specific determinants or elements of 
biological importance, can be evaluated by construction of large scale  networks40. For this purpose, data analysis 
from high-throughput technologies such as microarrays and RNA sequencing (RNA-Seq) can be used to describe 
molecular interactions at transcriptomic  level38,41. Thus, to understand or to infer mechanisms associated with 
the transcriptional response, it is possible to build gene regulatory networks either using databases or based on 
co-expression  data39,42,43. These networks allow to gain insight into response to stress  conditions44, leading to 
the identification of gene clusters or even hub genes as candidate biomarkers or modulators with potential to 
become key therapeutic  targets43,45.

In P. aeruginosa, rapid adaptation to stress conditions is partially explained by the modulation of the global 
gene expression, which represents around 8% of all coding  genes3. This regulation induces pleiotropic effects on 
its genomic regulatory  network46, as previously shown using systems  biology47, and the transcriptomic profiling 
of the response to  CIP12,26,48.

In this work we first evaluated PaeAG1 growth at sub-inhibitory CIP concentrations, showing growth reduc-
tion as CIP was increased. We hypothesized that after exposing PaeAG1 to ciprofloxacin, even at sub-inhibitory 
concentrations, transcriptomic determinants will be triggered, including bacterial growth modulators. Thus, the 
aim was to identify transcriptomic determinants associated with the response to CIP in PaeAG1 using RNA-Seq 
profiling and network analysis by a top-down systems biology approach. Results showed that PaeAG1 generates 
a complex response to CIP exposure, evidencing pleiotropic effects involving the regulation of multiple hub 
genes, gene clusters and enriched pathways (transcriptomic determinants), many of them related to growth. As 
evidenced at the transcriptomic and the phenomic levels, phage induction was a particular trait modulated by 
CIP in a concentration-dependent manner with a correlation with bacterial growth reduction.

Methods
The general pipeline followed in this study to identify the transcriptomic determinants associated with the 
response to CIP in PaeAG1 is shown in Fig. 1.

Bacterial isolate.  The PaeAG1 strain is a Costa Rican multiresistant isolate from a sputum sample of a patient 
with pneumonia at the Intensive Care Unit of the San Juan de Dios Hospital (San José, Costa Rica)6. PaeAG1 
exhibits resistance to β-lactams (including carbapenems,  MICMeropenem 32 µg/mL and  MICImipenem > 32 µg/mL), 
aminoglycosides  (MICGentamycin 128 µg/mL and  MICTobramycin > 192 µg/mL) and fluoroquinolones  (MICCiprofloxacin 
32 µg/mL), and it is only sensitive to colistin  (MICColistin 2 µg/mL). We recently assembled and annotated the 
PaeAG1  genome5, and genome sequence and annotation are available in Genbank under accession CP045739 
(Bioproject PRJNA587210).

Growth curves assay.  Three independent cultures of PaeAG1 cells were grown to exponential-phase over-
night in Lysogenic Broth (LB) at 37 °C with shaking (pre-culture to reach mid-log phase). Then, five aliquots 
were added to 50 mL of fresh LB broth to an initial optical density measured at 600 nm  (OD600nm) of 0.01. Each 
sample was treated with a specific CIP concentration of 0.0 (control), 5.0, 12.5, 25.0 or 50.0 µg/mL (final concen-
trations). Growth of cultures was monitored by  OD600nm at times 0, 2, 4, 6, 8, 12 and 16 h. Comparison of differ-
ent CIP concentrations was done by assessing growth curve kinetics, including lag and exponential phases. As 
a complementary assay, evaluation of two other antibiotics was done in exactly the same growth conditions, but 
antibiotic concentrations depended on the MIC: imipenem (carbapenem) and tobramycin (aminoglycoside). 
See results and supplementary Figure S1 for details.

The growth curves were statistically compared to the control growth curve using a two-way ANOVA with 
Bonferroni post-tests (significance level of 95%), similar  to49, using the time and concentrations as factors. We 
also ran a unpaired t-test (95% significance) comparing area under curve (AUC) of each growth curve against 
the control, similar  to50. Analyses were done using Prism (GraphPad Software, Inc., La Jolla, CA). To perform the 
transcriptomic assay, we used the results from growth curves to select a specific sub-inhibitory CIP concentration 
at which there were no major changes in the growth rate after treatment.

RNA isolation and RNA sequencing.  In order to evaluate the molecular response of PaeAG1 to a sub-
inhibitory CIP concentration, a transcriptomic assay was designed using RNA-Seq technology, as described 
below.

Growth conditions. PaeAG1 cells were grown under the same conditions as detailed before but treatment was 
done using a single CIP concentration of 12.5 µg/mL (see “Results” for details of concentration selection). Imme-
diately after adding treatment, an aliquot was taken as control (time 0 h), and cells were kept growing for 2.5 and 
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5 h (times were selected according to preliminary results of phage induction, see “Methods” for Phage plaque 
assays). This was done with three independent cultures for a total of nine aliquots, three replicates per time.

RNA isolation. Aliquots from the cultures were preserved in two volumes of RNA protect reagent (QIAGEN) 
and cells were stored at 4 °C until RNA extraction. At the end of the sample collection period, total RNA was 
extracted using the RNeasy Mini kit (QIAGEN, UK) following the manufacturer’s instructions. RiboZero Gold 
(Epicentre) was used to deplete bacterial rRNA from total RNA samples according to manufacturer’s instruc-
tions. The quality and quantity of extracted RNA was determined using a Nanodrop (Nanodrop 2000, Thermo 
Scientific, UK). The RNA integrity was analyzed using Agilent 2,100 Bioanalyzer (Agilent Technologies, USA) to 
obtain the RNA integrity number (RIN) for all samples.

RNA sequencing. For RNA sequencing, TruSeq Stranded Total RNA library preparation kit (Illumina, USA) 
was used to generate cDNA (amplification with 13 PCR cycles) and libraries for 2 × 51 bp paired-end reads. 
Libraries were prepared and sequenced at the Genome Technology Center, New York University (New York, 
USA) on the Illumina HiSeq 2,500 platform. Sequencing generated more than 120 Gb of sequences (> 300 mil-
lions of reads in total) for all samples.

Figure 1.  General pipeline to identify the transcriptomic determinants of the response of P. aeruginosa AG1 
to ciprofloxacin (CIP). After growth curves assessment, a specific CIP concentration was used to sequence 
RNA (RNA-Seq) at 0, 2.5 and 5 h after exposure. DEGs were identified and used to build GGI networks. 
Transcriptomic determinants were identified by network analysis. Findings were verified at phenomic level 
using a phage plaque assay.
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RNA‑Seq data analysis.  With the aim of quantifying transcripts and identifying DEGs in PaeAG1 after 
CIP treatment, RNA-Seq data was analyzed including a quality control step, reads mapping to genome for tran-
script quantification and differential expression analysis.

Quality control (QC). QC was done before and after trimming/filtering. Reads were trimmed using Trim-
momatic v0.3851 to discard sequences with per base phred sequence quality score < 30 and 35 minimum length. 
Reads were filtered using BBDuk (https ://jgi.doe.gov/data-and-tools /bb-tools /) to remove adapters and reads 
mapping to rRNA. Sequence files were evaluated using FastQC v0.11.752 to obtain general quality control met-
rics. To evaluate the origin of reads sequences, FastQ-Screen53 was used to quantify the proportion of reads that 
mapped to reference genomes (human, mouse, and adapters contaminants, included by default) and prokaryotic 
sequences specifically added for this work (PaeAG1 and E. coli genomes, and rRNA 16S and 23S databases). 
Reports were merged using  MultiQC54 to summarize all individual results. After selection, sequences for each of 
the nine samples had an average output of approximately 60 million reads.

Reads mapping and transcript quantification. We used EDGE-pro v1.3.1 software to: map RNA-Seq reads to the 
PaeAG1 genome (Genbank CP045739), filter out multialigned reads, and estimate expression levels of each gene 
by  counts55. This program was run with the default parameters, using  Bowtie256 as read alignment algorithm. 
The script “edgeToDeseq.perl”, provided with the software, was used to convert raw counts (EDGE-pro output) 
to a count-table format for further differential expression analysis. Quality control of alignments per sample was 
done using: Qualimap RNA-Seq  tool57 to assess mapping quality, and RSeQC  package58 to estimate transcripts 
coverage uniformity (gene body coverage) and transcript integrity number (TIN). Required formats of genome 
annotation files for these analyses are available in https ://githu b.com/josem olina 6/PaeAG 1_genom e.

Differential expression analysis. We used raw counts of transcripts to estimate differential expression. For this 
purpose, DESeq2 package v1.26.059 in R program v3.5.160 was used based on the negative binomial generalized 
linear models, using default settings. DESeq2 based normalization, absolute expression comparisons by the reg-
ularized log transformation (rlog), Principal Component Analysis (PCA), counts dispersion plots and clustering 
analysis were run in the same program. Triplicates of each time after PaeAG1 exposure to CIP were considered as 
a factor level. Differential expression analysis was done comparing 2.5 h or 5 h data against the initial time point 
at 0 h. Hypothesis testing to select differentially expressed genes (DEGs) was done using Benjamini–Hochberg 
adjustment (to control false discovery rate, FDR) and  log2[FoldChange] (logFC) of transformed and normalized 
mean counts. Genes were considered up-regulated if logFC > 1 or down-regulated if logFC < -1, considering an 
adjusted p-value < 0.05 for both cases. Gene list comparisons by Venn diagrams were performed using the Draw 
Venn Diagram Tool (https ://bioin forma tics.psb.ugent .be/webto ols/Venn/).

Annotation  of  differentially  expressed  genes.  DEGs annotation was retrieved from our previous 
 work5 for the assembly and annotation of PaeAG1 genome (Genbank CP045739). Particular features per gene 
(including molecular function, product, gene size and domains, and sub cellular location of proteins) were 
explored in more detail from Pseudomonas Genome Database (https ://www.pseud omona s.com/)61. In addition, 
general regulators of the DEGs were investigated using PseudomonasNet tool (https ://www.inetb io.org/pseud 
omona snet/Netwo rk_regul on_form.php) with a p-value < 0.05 in a context-centric analysis. Using the same plat-
form, it was possible to identify the DEGs and their regulators that corresponded to transcription factors genes.

Analysis  of  DNA–protein  interactions.  For selected genes, protein-DNA binding sites were inves-
tigated. The CollectTF database (https ://www.colle ctf.org/) was primarily used to search for consensus DNA 
binding sequences of the protein of interest and to identify modulated genes. If no information was available, 
promoter consensus sequences were searched from particular studies and the identification of binding sites was 
done using the motif-based sequence analysis tool (MEME, using Find Individual Motif Occurrences FIMO, 
https ://meme-suite .org/tools /fimo).

In order to identify DEGs as molecular determinants (hub genes, gene clusters and key pathways) of the 
response to CIP in PaeAG1, a large scale gene–gene interaction (GGI) network of DEGs was built using a top-
down systems biology approach. Connections between genes were predicted using two independent methods, 
one using a database-based model and another from co-expression analysis, detailed as follows.

Database‑based  method  for  gene–gene  interactions  prediction  and  network  construc-
tion.  With the aim of obtaining a high confidence GGI between DEGs using a database-based method, the 
Search Tool for the Retrieval of Interacting Genes database (STRINGdb)62 was used to construct a large scale 
GGI network for the DEGs using default parameters. All DEGs at any of the two times were used to build the 
main network. The resulting graph was exported and then visualized and topologically analyzed using Cytoscape 
 software63.

Co‑expression analysis and co‑expression network construction.  To incorporate more interac-
tions between DEGs, a data-driven systems biology approach was implemented using co-expression analysis 
with all the normalized counts of DEGs, as in recent  studies45,64–66.

Modules identification using co-expression analysis. Weighted gene co-expression network analysis (WGCNA) 
 package43 was run in R software. Briefly, a matrix of Pearson correlation between all pairs of genes was calcu-

https://jgi.doe.gov/data-and-tools/bb-tools/
https://github.com/josemolina6/PaeAG1_genome
https://bioinformatics.psb.ugent.be/webtools/Venn/
https://www.pseudomonas.com/
https://www.inetbio.org/pseudomonasnet/Network_regulon_form.php
https://www.inetbio.org/pseudomonasnet/Network_regulon_form.php
https://www.collectf.org/
https://meme-suite.org/tools/fimo
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lated. The adjacency matrix was then constructed using a power of β = 9 as a saturation level for a soft threshold 
of the correlation matrix based on the criterion of scale-free topology. The topological overlap matrix was calcu-
lated. Hierarchical clustering was used to generate a dendrogram to group highly co-expressed genes, creating 
gene clusters called modules (arbitrarily represented by colors) using the default dynamic tree cut algorithm. 
Default colors given to modules were kept.

Association of co-expression modules and traits. A t-test evaluated the association between the modules (using 
module eigengene ME, the first principal component gene of module expression matrix) and traits of PaeAG1 
according to the experimental design. For this, the times (the experiment factors 0, 2.5 and 5 h) and data of 
phage induction at 2.5 and 5 h after 12.5 µg/mL CIP exposure were incorporated as traits (see “Phage plaque 
assay” section in “Methods”).

Co-expression network. To visualize the whole network including the modules by colors, the WGCNA “export-
NetworkToCytoscape” function was run, using a correlation threshold of 0.985 and weight = false to build an 
un-weighted graph of highly connected genes with very strict correlation. The data-driven graph was visualized 
using Cytoscape.

Integrated  DEGs  network  construction.  The final GGI network of DEGs was constructed joining 
the files of the well-known interactions predicted by STRING database and the strict data-driven interactions 
obtained from co-expression analysis (un-weighted graph). The definitive graph was visualized using Cytoscape 
software. Topological metrics of the graph were obtained using the defaults apps available in Cytoscape.

enrichment analysis.  For the gene set enrichment analysis (GSEA), STRINGdb was used to identify sig-
nificantly enriched pathways according to KEGG database, using a cutoff of FDR < 0.05. This analysis was run 
for complete gene lists of DEGs at 2.5 h, DEGs at 5 h, and genes of each co-expression module. Results of enrich-
ment were incorporated into the DEGs network using the Cytoscape app Omics Visualizer (https ://apps.cytos 
cape.org/apps/omics visua lizer ).

Hub genes identification.  In order to identify central or hub genes in the DEGs network of PaeAG1 after 
exposure to CIP, cytoHubba  app67 was run in Cytoscape. To address this, bottleneck and betweenness meth-
ods were implemented with default parameters. The top 10 nodes (genes) were selected for each method using 
calculated metrics. All selected genes in any of the methods were labeled as hub genes. In addition, cytoHubba 
was also used to build two subnetworks using the hub genes, one with the selected elements only, and another 
including the first-stage nodes (in direct connection with hub genes) to identify gene clusters. KEGG annotation 
information was kept from the DEGs network.

Expression profiles of hub genes were compared to expression levels obtained in other representative studies, 
including the following stressors: Cu (copper)68, CIP (ciprofloxacin)26, COL (colistin)69, AZM (Azithromycin)70 
and  H2O2 (hydrogen peroxide)71. Comparison was done using the general information of expression levels 
(down, up or variable regulation).

Phage  plaques  assay  (validation  assay  at  the  phenomic  level).  To validate the transcriptomic 
results which showed an up-regulation of phage genes in PaeAG1 after exposure to CIP, we implemented a 
phage plaques assay and performed this assay in triplicate. To assess the CIP effect on phage induction, different 
CIP concentrations were evaluated. Evaluation was also done for imipenem and tobramycin as supplementary 
assays. Growth conditions were the same as described in the “Growth curve assays”, until the addition of differ-
ent antibiotic concentrations. At this point, cultures were kept growing for five hours and phages were isolated 
and quantified for each sample. During standardization, it was determined that five hours after CIP exposure 
was the minimum time for clear detection of phage plaques (see supplementary Figure S1-B for details). Phage 
plaque counts at 2.5 h and 5 h for 12.5 µg/mL CIP were used to associate the phage induction with co-expression 
modules (detailed in “Co-expression analysis” section).

Phages isolation. Protocols of 72 and 73 were adapted. Briefly, the culture was centrifuged for 20 min at 4,000 rpm, 
40 mL of the supernatant was taken and 1 mL of chloroform was added to residual bacterial cells. After overnight 
incubation, cell debris was removed by centrifugation for 20 min at 3,000 rpm. The supernatant was filtered 
through a 0.45 μm filter to select phages. A volume of 30 mL of the filtered supernatant was mixed with 7.5 mL 
of polyethylene glycol (20%) and NaCl (2.5 M) to precipitate the phages. After overnight incubation, the sam-
ple was centrifuged for 30 min at 4,000 rpm, the supernatant was discarded and the pellet was resuspended in 
250 µL of phage buffer (10 mM  MgSO4, 10 mM Tris–HCl and 150 mM NaCl).

Phages quantification. Phages were quantified by means of Plaque Forming Units (PFU) using P. aeruginosa 
PAO1 as host cells. The numbers of PFU was determined using the double-agar-layer  method74. Briefly, medium 
was composed of two agar layers, a first layer 1.5% and another to 0.5% agar concentration. P. aeruginosa PAO1 
and phages were added on the second layer and phage plaques were visualized after incubation for 24 h at 25 °C.

An exponential regression between the CIP concentrations and the PFU was run to associate the effect of 
CIP exposure on the phage induction.

https://apps.cytoscape.org/apps/omicsvisualizer
https://apps.cytoscape.org/apps/omicsvisualizer
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ethical considerations.  No animals or human participants were included in this study. Both the scientific 
committee of the Centro de Investigación en Enfermedades Tropicales (CIET) and Vicerrectoría de Investi-
gación of Universidad de Costa Rica approved the study and the access to the PaeAG1 strain from the CIET 
collection of bacterial specimens.

Results
Concentration‑dependent effect of CIP compromises the growth rate of PaeAG1.  To evalu-
ate the effects of CIP in the growth rate of PaeAG1, increasing concentrations of the antibiotic were added to 
exponential-phase PaeAG1, and growth was monitored over time for 16 h. As shown in Fig. 2,  OD600nm values 
were highly consistent between replicates (error bars represent standard deviation). All CIP curves showed a 
statistical significant difference on  OD600nm compared to control (p < 0.05 for both AUC and two-way ANOVA). 
Lag phase for the control and two lower CIP concentrations (5 and 12.5 µg/mL) lasted approximately 4 h, while 
the higher CIP concentration of 25.0 µg/mL showed a lag phase of 8 h.

Kinetics at the exponential phase showed more variable results. There was a decrease in cell growth for 
12.5 µg/mL CIP from 12 h onwards in comparison to 0 or 5.0 µg/mL, and more evident at same time for 25 µg/
mL. For the case of 50.0 µg/mL (higher than MIC), the growth was drastically impaired and no exponential 
growth was observed. These results indicate that higher CIP concentrations have a stronger effect on the growth 
rate, even for sub-inhibitory concentrations  (MICCiprofloxacin 32 µg/mL). Evaluation of the growth effects of other 
two antibiotics (imipenem and tobramycin) was also performed (supplementary Figure S1C–E, left). Unlike CIP, 
both cases showed no changes in the growth curves with different sub-inhibitory concentrations.

Due to the significant changes in growth curves with CIP (with respect to control) and considering a condition 
with enough cell mass for RNA-Seq analysis, 12.5 µg/mL CIP was used to evaluate the transcriptomic response 
of PaeAG1 to a sub-inhibitory concentration of the antibiotic.

RNA‑Seq analysis  identifies 518 DEGs  in PaeAG1 over  time after  exposure  to CIP.  A tran-
scriptomic analysis was conducted to evaluate the molecular response to sub-inhibitory CIP concentration in 
PaeAG1. To this end, samples were taken at 0 (control), 2.5 and 5 h after CIP treatment. To ensure exponential 
growth at these times, the growth curve was monitored using  OD600nm measurements (successfully reproduced 
as Fig. 2), in addition to counting of Colony Forming Units (CFU), as shown in supplementary Figure S1A. After 
RNA was extracted, RNA integrity RIN > 9 was obtained for all samples and paired-end RNA sequencing was 
performed. For all samples, quality control of raw sequence data showed good results in terms of mean quality 
(> 30), no adapters, and no reads mapping to rRNA after filtering. Read mapping quality control showed that 
98.6% were mapped to the PaeAG1 genome, with expected uniform coverage for gene body, and TIN > 90 for all 
samples. Details of assessment of transcriptomic data (counts per gene) is shown in supplementary Figure S2.

Identification of DEGs was conducted by comparing times 2.5 or 5 h against the initial 0 h time after CIP 
exposure (Fig. 3A,B). As shown in Table 1, 355 DEGs were identified at time 2.5 h, with 204 (57.5%) up-regulated 
and 151 (42.5%) down-regulated. At 5 h, 248 (56.6%) genes were up-regulated, meanwhile 190 (43.4%) were 
found to be down-regulated, for a total of 438 DEGs.

A total of 518 DEGs were found at any time points (union ∪), as shown in Fig. 3C and Table 1. These represent 
around 7% of the genes of PaeAG1. In addition, as presented in Fig. 3D, a total of 85 DEGs (at any time) belong 
to phages (27.6% of the 308 phage genes identified in the PaeAG1 genome), most of them up-regulated as shown 
in Table 2, Fig. 4 and supplementary Figure S3. The phages regulated include phiCTX, F10, JBD44 and JDO24 
for which 3, 10, 65 and 7 DEGs were respectively observed at any time (Table 2).

Figure 2.  In vitro effects of ciprofloxacin on growth curve of PaeAG1. A growth rate reduction was observed as 
the CIP concentration was incremented. Area under curve (AUC) was compared using t-test (p < 0.05), showing 
a statistical difference between all curves when compared to control (0.0 mg/mL). In a similar manner, two-way 
ANOVA found differences in the  OD600nm and time for each case.
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Figure 3.  Differential expression analysis in PaeAG1 exposed to ciprofloxacin compared to initial time 0 h. 
Selection of DEGs according to adjusted p-value (p < 0.05) and logFC (logFC < − 1 or logFC > 1) at 2.5 h (A) or 
5 h (B) post-exposure to antibiotic. (C) Venn diagram showing the comparison of DEGs in the two evaluated 
times, with 275 shared genes (intersection) and total 518 genes at any time (union) with respect to time 0 h 
(control). More details in Table 1. (D) Venn diagram showing the comparison of DEGs and phage genes or 
virulence factors (more details in Table 2). (E) Heatmap of normalized counts and gene clustering of the total 
518 DEGs at the three evaluated time points.
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In the case of the 250 known virulence factors of PaeAG1, 32 (12.8%) were identified as DEGs at all of the 
assessed times (arrowheads of Fig. 4 and supplementary Figure S3). The virulence factors are mainly associated 
with adherence (19) and phenazines (6) genes (see Table 2). Regarding antibiotic resistance genes, only three 
out the 56 genes were found to be differentially expressed (Table 2).

A heatmap of normalized counts and gene clustering of the total 518 DEGs are shown in Fig. 3E. Well-defined 
clusters were found for genes and samples, showing similar expression patterns.

Out of all the DEGs at 2.5 h, seven genes corresponded to transcription factors, including psrA, rpoH and 
prtN. At 5 h, 14 DEGs including psrA, rpoH, prtN, rpoS, rhlR and ptrB were identified as transcription factors. All 
transcription factors activated at 2.5 h remained active at 5 h (Supplementary Table S2). Identification of regula-
tors by a context-centric analysis revealed a total of 22 transcription factors modulating all the DEGs at 2.5 h, and 
most of them are part of the 28 transcription factors recognized as DEGs at 5 h (see Supplementary Table S2).

Genes of the SOS response were not identified as DEGs. The rpoS factor was up-regulated at 5 h. Due to the 
preponderant role of LexA (SOS response) and RpoS as essential genes in the response to CIP in P. aeruginosa, 
we further investigated the DNA binding sites for these elements. The CollectTF database provided the consensus 
binding sequence for LexA as CTG-TATAA-ATATA-CAG, described  by26. Analysis revealed the role of LexA 
modulating all 15 genes in the SOS response in P. aeruginosa, as well as other sequences at promoter regions 
of psrA (coding for a transcription factor as described before), grpE, hemO and other genes. In PaeAG1, psrA 
and grpE genes were up-regulated at 2.5 and 5 h after CIP treatment. For RpoS, no sequence information was 
available in CollectTF, therefore we used the RpoS-dependent promoter consensus sequence CTA TAC T found 
 by75. A total of 49 sites for RpoS were predicted to be associated with promoter regions of PaeAG1 genes, but 
none as DEGs in PaeAG1.

Table 1.  Comparison of DEGs of PaeAG1 at 2.5 and 5 h after treatment with Ciprofloxacin, including counts 
of down or up regulated genes, shared genes (intersection) and total genes at both times (union).

DEGs
Sets
2.5 h 5 h 2.5 h ∩ 5 h 2.5 h ∪ 5 h

Up regulated genes 204 248 153 299
Down regulated genes 151 190 118 223
Total DEGs 355 438 275 518

Table 2.  Comparison of DEGs of PaeAG1 at 2.5 and 5 h after treatment with ciprofloxacin, and specific 
phages or categories of virulence factors, including shared genes (intersection) and total genes at both times 
(union), the regulation and the type of elements. *Based in logFC of genes for both times 2.5 and 5 h. Type of 
elements is also shown.

Determinants Sets of DEGs

Type Specific elements
Total genes (in 
PaeAG1 genome) 2.5 h 5 h 2.5 h ∩ 5 h 2.5 h ∪ 5 h

Regulation* and 
observations

Antibiotic resistance Total 56 3 2 2 3 Down, lactamases

Phages

PPpW 12 0 0 0 0 No DEGs
phiCTX 25 2 3 2 3 Up
F10 62 1 9 0 10 Up
JBD44 105 34 65 34 65 Up
JDO24 59 4 7 4 7 Up
phi3 45 0 0 0 0 No DEGs
Total 308 41 84 40 85 –

Virulence factors

Adherence 96 11 19 11 19 Down
Antimicrobial activity 17 1 6 1 6 Up, phenazines
Antiphagocytosis 25 0 0 0 0 No DEGs
Phospholipases 3 0 0 0 0 No DEGs
Biosurfactant 3 0 0 0 0 No DEGs
Iron uptake 28 0 1 0 1 Up, Pyochelin
Protease 4 1 2 1 2 Up, elastases
Quorum sensing 5 0 1 0 1 Up, RhlR
Regulation GacS/GacA 
system 2 0 0 0 0 No DEGs

Secretion system 63 0 2 0 2 Down, T3SS
Toxins 4 0 1 0 1 Up, hydrogen cyanide
Total 250 13 32 13 32 –
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Networks analysis shows pleiotropic effects of CIP exposure in PaeAG1.  Using a top-down sys-
tems biology approach, a large scale GGI network of DEGs was built to identify molecular determinants associ-
ated with the response to CIP in PaeAG1.

GGI predictions by a database-based model: All of the 518 DEGs were incorporated as nodes and edges (high 
confidence connections or interactions). A total of 342 (66.0% of all DEGs) nodes were found to be connected 
with at least one other gene, as well as 1685 edges were established (Fig. 4). When selecting DEGs for each time, 
248 nodes (69.9%) of the 355 DEGs at 2.5 h were connected with a total of 1,156 edges (supplementary Fig-
ure S2A). Out of all the 438 DEGs at 5 h, 284 (64.8%) were connected with 1,041 edges in total (supplementary 
Figure S2B).

As shown in Fig. 4, some determinants of virulence factors (adherence) and antibiotic resistance genes showed 
a down-regulation after CIP treatment, meanwhile, phage genes and other virulence factors (phenazines) were 

Figure 4.  Gene–gene interaction (GGI) large scale network of differentially expressed genes in PaeAG1 after 
ciprofloxacin treatment, using a database-based method for prediction of interactions. Using STRINGdb, 
interactions between genes were predicted. To build the network all the DEGs in both times 2.5 and 5 h were 
included. A total of 342 genes resulted connected (66.0% of all DEGs) with 1685 edges in total (not connected 
nodes are not shown). The logFC is shown for 5 h. Gray nodes represent genes that were differentially expressed 
only at time 2.5 h (i.e. no logFC value is displayed at time 5 h). Details of the network by time is shown in 
supplementary Figure S3. Phages genes, virulence factors and antibiotic resistance genes are represented as 
triangles, arrowheads and rhomboids, respectively. Down-regulation (red tones) and up-regulation (blue tones).
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found to be up-regulated. In addition, gene clusters of highly connected DEGs showed the same expression pat-
tern, suggesting a coordinated regulation.

The observed unconnected genes (107 DEGs for 2.5 h and 154 for 5 h) are inherent to limitations in the 
database (incomplete inclusion of phage genes) or the current state of the gene annotation (without information, 
hypothetical protein, etc.). To improve the associations between genes creating more connections, a data-driven 
co-expression analysis was run.

Co-expression analysis. Modules of highly connected genes (represented using color groups) were created 
using normalized counts for all the 518 DEGs. As shown in Fig. 5A, genes were clustered into four main mod-
ules, showing similar expression along samples. The number of genes belonging to the turquoise module was 
239, 124 for blue, 114 brown and 39 for yellow module. In the co-expression network (Fig. 5C), a total of 388 
DEGs (74.9% of the 518 DEGs) were found to be connected, with a total of 1,073 edges. Of these interactions, 
385 were also found using the database-based model and 688 novel gene interactions were suggested by our co-
expression analysis. The turquoise module includes most of the phage genes and virulence factors.

Integrated GGI network of DEGs. Integration of predicted connections between genes by both the database-
based model and co-expression analysis was done to build a definitive large scale network, shown in Fig. 6. A 
total of 449 (86.7%) of DEGs were connected, in contrast with the 342 nodes from the preliminary network, an 
increment of ~ 20%. In addition, 2,373 edges were identified, 1685 from the database-based method (solid lines 
in the network) and the 688 new interactions suggested by the co-expression analysis (dashed lines). Further-

Figure 5.  Co-expression analysis to identify modules of genes and the data-driven co-expression network 
in PaeAG1 after Ciprofloxacin treatment. (A) Modules identification (clusters by colors) using correlated 
expression genes (along times 0, 2.5 and 5 h) and clustering analysis after WGCNA was implemented. (B) 
Association of modules to traits, showing relations between turquoise and blue modules with exposure time to 
antibiotic and phages induction. (C) Data-driven co-expression network using correlation of gene expression by 
WGCNA analysis (correlation > 98.5%). A total of 388 DEGs were found to be connected, with a total of 1,073 
edges. Only correlated genes are shown. More details in supplementary Figure S3A. Phages genes, virulence 
factors and antibiotic resistance genes are represented as triangles, arrowheads and rhomboids, respectively.
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more, a separated cluster was observed with high connectivity between phage genes (cluster of blue triangles, 
Fig. 6 left top). Remarkably, this cluster appears to have a critical bottleneck at the fahA gene, since many genes 
are connected to this node but, for the majority of the cluster nodes, this gene is the only connection to the rest of 
the network. Thus, the cluster becomes a clearly separated module. In addition, another smaller and less distinct 
cluster of phage genes was formed (Fig. 6 left down).

The same GGI network is presented in supplementary Figure S4A to show the distribution of genes by co-
expression modules. A high functional interaction of genes across different clusters is observed. The logFC values 
at time 5 h are shown in the network in Figure S4B.

Enrichment analysis. In order to gain insight about the biological meaning of DEGs, gene set enrichment 
analysis (GSEA) was performed. The 518 DEGs were shown to be implemented in a total of 15 KEGG pathways 
(Figs. 6 and 7, and Table 3). The enriched pathways included ribosomal functions, RNA degradation, biosyn-
thesis of antibiotics, fatty acids metabolism, propanoate metabolism, fatty acids biosynthesis, quorum sensing, 
amino acid degradation, carbon metabolism and citrate cycle, butanoate metabolism, phenazine biosynthesis, 
among others (see Fig. 7). Details of gene counts, FDR and regulation are shown in Table 3. Additionally, path-
ways by co-expression modules (Table 3) showed that some of them are enriched in specific pathways. For exam-
ple, the blue module is down-regulated for ribosomal activity and RNA degradation (exclusive functions for this 
module), meanwhile the yellow module has multiple but tightly related pathways, most of them associated to 
interconnected metabolism pathways, down-regulated.

Figure 6.  Definitive large scale network of DEGs, identification of hub genes and associated groups in PaeAG1 
after treatment with ciprofloxacin. Network showing all 518 DEGs genes and their interactions (449 genes have 
at least one connection). Known interactions according to STRINGdb (database-based method) are shown 
as solid lines and data-driven interactions according to data-driven co-expression analysis as dashed lines. 
Enriched nodes associated to KEGG annotation are colored according to each pathway (more details in Table 3). 
Phages genes, virulence factors and antibiotic resistance genes are represented as triangles, arrowheads and 
rhomboids, respectively. Other genes are represented as ellipses.
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Only 14 hub genes are able to represent the key pathways regulated by CIP in PaeAG1.  With 
the aim of identifying an inter-modular key or central genes in the DEGs network of PaeAG1 after exposure 
to CIP, an analysis of hub gene identification was conducted. This approach revealed 14 connected hub genes 
(Fig. 7A and details in Table 4). Two genes, identified as PaeAG1_03660 and PaeAG1_03610, are part of the 
phage JBD44 and they were up regulated at 5 h. Topologically, they are part of the two identified phage gene 
clusters in the main network (Fig. 6). Two genes, sdhB and sdhC, (down-regulated) have functions related to 

Figure 7.  Identification of hub genes and first-stage subnetwork of their associated groups in PaeAG1 after 
treatment with ciprofloxacin. (A) Hub genes identification using cytoHubba (betweenness and bottleneck 
methods) in the network of DEGs (large nodes). Details in Table 4. (B) Subnetwork of nodes that directly 
interact with the 14 hub genes were used to build a first-stage elements network. Details of node shapes and 
colors are the same as described in Fig. 6.
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carbon and butanoate metabolism, and biosynthesis of secondary metabolites. Interestingly, the ribosomal pro-
tein L32 (rpmF, down-regulated), a chaperonin (groL, up-regulated) and the sigma factor (rpoS, up-regulated) 
were also identified as single molecular determinants of the network. Also, the fahA gene, which was previously 
recognized as a bottleneck for the phage genes cluster and coding for fumarylacetoacetase enzyme, was identi-
fied as a hub gene.

Analysis of gene clusters of first-stage connected genes (Fig. 7B) showed not only the same profile of enriched 
pathways for those hub genes (Fig. 7A), but also other pathways such as lipids metabolism, phenazine biosynthe-
sis, quorum sensing and others. These groups include many elements of phages, virulence factors and multiple 
uncharacterized genes, as well as one antibiotic resistance gene (PaeAG1_05751). The logFC values at time 5 h 
are shown in Figure S4C.

Six hub genes were consistently identified by both bottleneck and betweenness approaches (Table 4). Together 
with rpoS and groL, eight hub genes (57%) are part of the turquoise module, and all of them are up-regulated 
by CIP. All other genes are part of the brown (4) and blue modules (2). Only four genes were found to be down 
regulated, three of them belonging to the brown module.

To compare the expression profiles of hub genes to other studies, we included information in Table 4 of the 
effect of perturbations or stressors of P. aeruginosa in the modulation of gene expression. Similar effects of CIP 
on hub genes were found when comparing our results to a previous  report26. The effects of azithromycin seem to 
be opposite to CIP for these genes. More variable results were found for other perturbations (e.g. colistin, copper 
and  H2O2); and lecB was the only hub gene that was up-regulated for all perturbations.

Thus, as expected, hub genes are strongly linked to elements of highly connected gene clusters and at the 
same time with the key pathways in response to CIP. Together, these three elements (hub genes, gene clusters 
and enriched pathways) represent the determinants of the response to CIP in PaeAG1, many of them related to 
the bacterial growth modulation, as initially hypothesized.

Concentration dependent effect of CIP in PaeAG1 phage induction.  According to transcriptomic 
analysis, phage genes were up-regulated under 12.5 μg/mL CIP treatment in PaeAG1. To validate these results at 
phenomic level, evaluation of lytic plaque formation was done using a phage plaque assay. As shown in Fig. 8A, 
after treatment with 12.5 µg/mL CIP, phage induction was increased by tenfold (1,000 PFU/mL) with respect to 
control condition without antibiotics, in concordance with the molecular findings. More drastic changes were 
evidenced for higher concentrations, where more than 10 000 or 100 000 PFU/mL were quantified for PaeAG1 
after treatment with 25.0 and 50.0 µg/mL CIP concentrations, respectively. Figure 8C shows phage plaques on 
culture plate during in vitro assays. Unlike CIP, when the same analysis was done for imipenem and tobramycin 
(supplementary assay), no induction was evidenced. Indeed, a slight reduction was observed for imipenem (Sup-
plementary Figure S1C–E, right).

Table 3.  Pathways related to DEGs network of PaeAG1 exposed to ciprofloxacin, according to KEGG 
annotation.  Annotation of modules of co-expressed genes and the general regulation are also included. *Based 
on logFC of DEGs at both times 2.5 and 5 h.

KEGG term ID Term description Total gene count
DEGs 2.5 h DEGs 5 h

Modules
Regulation (% 
DEGs)*Observed gene count FDR Observed gene count FDR

paeb01130 Biosynthesis of 
antibiotics 266 30 0.0015 34 0.00047 Brown, Yellow Down (61%)

paeb01110 Biosynthesis of sec-
ondary metabolites 320 30 0.0352 31 0.0205 Yellow Down (70%)

paeb00650 Butanoate metabolism 37 8 0.0133 9 0.0068 Yellow Down (55%)
paeb01200 Carbon metabolism 126 15 0.0258 18 0.0068 Yellow Down (80%)

paeb00020 Citrate cycle (TCA 
cycle) 30 7 0.0158 8 0.0068 Yellow Down (75%)

paeb00061 Fatty acid biosynthesis 27 7 0.0131 9 0.0014 Yellow Down (100%)
paeb01212 Fatty acid metabolism 49 8 0.0309 10 0.0068 Yellow Down (90%)

paeb00405 Phenazine biosyn-
thesis 20 5 0.0309 6 0.0127 Brown Up (100%)

paeb00640 Propanoate metabo-
lism 47 12 0.00061 16 3.87e-06 Brown, Yellow Variable (50/50)

paeb03060 Protein export 15 5 0.026 3 0.0014 Yellow Down (100%)
paeb02024 Quorum sensing 86 11 0.0317 14 0.0068 Brown Up (69%)
paeb03010 Ribosome 55 27 1.95e-14 27 2.63e-13 Blue Down (100%)
paeb03018 RNA degradation 17 5 0.0258 5 0.0273 Blue Down (60%)

paeb00072
Synthesis and deg-
radation of ketone 
bodies

10 4 0.0258 4 0.0273 Brown, Turquoise Up (100%)

paeb00280 Valine, leucine and 
isoleucine degradation 46 11 0.0015 11 0.0023 Brown, Turquoise Up (82%)
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Table 4.  Characterization of hub genes in the DEGs network of PaeAG1 after treatment with ciplofloxacin. 
*Cases with gray numbers refer to genes which were no selected as a DEG at that time (logFC and adjusted 
p-value). **Cases with “-” refer to no annotation information. ***Results from other studies: ↑ up-regulated, 
↓down-regulated, ↕ variable regulation or “– “ no information. All results from GEO-NCBI according to 
stress conditions: Cu (copper) from (Teitzel et al., 2006), CIP (ciprofloxacin) from (Cirz, O’Neill, Hammond, 
Head, & Romesberg, 2006), COL (colistin) from (Cummins, Reen, Baysse, Mooij, & O’Gara, 2009), AZM 
(Azithromycin) from (Kai et al., 2009) and  H2O2 (hydrogen peroxide) from (Chang, Small, Toghrol, & Bentley, 
2005).

PaeAG1 Locus 
ID Gene name

Betweenness 
score*

Bottleneck 
score* logFC 2.5 h* logFC 5 h*

Co-expression 
module

KEGG 
Annotation**

Annotation 
details

Other 
studies***

PaeAG1_01864 acpP (PA2966) 6,268.3 17 2.64 3.63 Turquoise
Metabolic 
pathways, 
biosynthesis of 
antibiotics

Acyl carrier pro-
tein; fatty acid 
biosynthesis

↑ AZM,
↕ CIP COL

PaeAG1_06246 ygaU 6,340.4 – 1.79 0.9 Blue –
LysM domain/
BON superfam-
ily protein

–

PaeAG1_04068 sdhB (PA1584) 6,401.4 – − 1.37 − 1.17 Blue

Biosynthesis 
of antibiotics, 
Carbon metabo-
lism, Citrate 
cycle (TCA 
cycle), Butanoate 
metabolism, 
Biosynthesis 
of secondary 
metabolites

Succinate dehy-
drogenase and 
fumarate reduc-
tase iron-sulfur 
family protein

↑ COL AZM
↓ CIP Cu

PaeAG1_04991 prpC (PA0795) 6,485.7 14 1.58 1.7 Turquoise Propanoate 
metabolism

Belongs to the 
citrate synthase 
family

↑  H2O2 CIP ↓ 
AZM ↕ COL

PaeAG1_03610 DR97_5412 7,285.4 15 0.9 1.84 Turquoise –
Phage: JBD44; 
Tail tape meas-
ure protein

–

PaeAG1_05221 groL or groEL
(PA4385) 8,440.2 – 1.16 1.21 Turquoise RNA degrada-

tion

60 kDa chaper-
onin; Prevents 
misfolding and 
promotes the 
refolding and 
proper assembly 
of unfolded 
polypeptides 
generated under 
stress conditions

↑ CIP Cu
↓ AZM ↕  H2O2

PaeAG1_04071 sdhC (PA1581) 8,716.8 – − 1.68 − 1.54 Brown

Biosynthesis 
of antibiotics, 
Carbon metabo-
lism, Citrate 
cycle (TCA 
cycle), Butanoate 
metabolism, 
Biosynthesis 
of secondary 
metabolites

Succinate 
dehydrogenase, 
cytochrome b556 
subunit

↑ AZM
↓CIP Cu

PaeAG1_03660 PaeAG1_03660 9,477.2 17 1.05 1.23 Turquoise – Phage: JBD44 –

PaeAG1_03555 fahA (PA2008) 11,245.9 16 1.19 1.93 Turquoise Tyrosine 
metabolism

Fumarylacetoac-
etase

↑ CIP ↕ COL
↓ Cu AZM

PaeAG1_01837 lecB (PA3361) 13,150.8 17 1.71 3.88 Turquoise Quorum sensing fucose-binding 
lectin PA-IIL ↑ CIP COL AZM

PaeAG1_01229 DR97_3944 – 15 1.3 1.45 Brown – Uncharacterized 
protein –

PaeAG1_01591 rpoS
(PA3622) – 15 1.03 1.49 Turquoise Transcription 

machinery
RNA polymerase 
sigma factor 
RpoS

↑ COL CIP
↓ AZM ↕ Cu

PaeAG1_01361 DR97_4078 – 19 -1.22 -1.48 Brown – Uncharacterized 
protein –

PaeAG1_02250 rpmF (PA2970) – 22 -1.17 -1.39 Brown Ribosome

Ribosomal pro-
tein L32; Belongs 
to the bacterial 
ribosomal 
protein bL32 
family

↓ CIP  H2O2
↕ COL Cu
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Analysis of module genes to traits of PaeAG1 (phage production and time after CIP exposure) is presented 
in Fig. 5B. This analysis revealed a significant association of gene expression of the blue module, with changes 
at 2.5 h after CIP treatment and the low phage induction at this same time point. In a similar way, the turquoise 
module was significantly associated with changes of gene expression at 5 h and stronger phage induction. Other 
modules were not directly associated with these traits.

Altogether, these results indicate that phage induction in PaeAG1 is strongly dependent on CIP concentra-
tion, as shown with an exponential regression  (R2 = 0.97) in Fig. 8B.

Discussion
P. aeruginosa is a remarkable organism that can successfully resist, adapt, and survive in a wide variety of 
 environments29. This versatility is conferred by the large proportion (> 8%) of regulatory genes encoded in its 
large genome (6–7.5 Mb, 7.2 Mb in the case of PaeAG1)5,22. This particular case of PaeAG1 strain is a high-risk 
ST-111 strain isolated from an immune-compromised patient in a Costa Rican Hospital, with resistance to mul-
tiple antibiotics including CIP and carbapenems. Although many P. aeruginosa strains are resistant to  CIP6,10,12,48 
and other antibiotics, the effects of sub-lethal concentrations on the development of antibiotic resistance had been 
ignored for decades due to the assumption that resistance emerges only with lethal concentrations (> MIC)14.

Therefore, we evaluated the effect of different CIP concentrations on PaeAG1 growth rate (Fig. 2). We detected 
a concentration-dependent reduction of growth rate as the CIP concentration was increased, similar to another 
study with CIP in P. aeruginosa12. We then employed RNA-Seq analysis to investigate the influence of a sub-
inhibitory CIP concentration on the gene expression of PaeAG1 and its relationship with the bacterial growth, 
similar to recent studies in P. aeruginosa76,77 and other  bacteria16,44,78–81. Differential expression analysis (Fig. 3) 
highlighted 518 DEGs at 2.5 and 5 h. Contrasting results have been previously reported in P. aeruginosa after 
CIP exposure, with some variations attributed mainly to differences in CIP concentration, time after exposure 
and/or the technical  approach12,26,48.

We used a top-down systems biology approach to build the interaction network across the 518 DEGs. Inter-
actions were modeled using a database-based method and co-expression analysis. A total of 14 hub genes, gene 
clusters and 15 KEGG pathways were associated with the molecular response to CIP, many of them related to 
bacterial growth, in line with other  studies26,82,83. Discovery and description of these strong relationships between 
genes provided not only biological insights of the molecular regulation under stress  conditions42, but also helped 
to reduce data complexity to only several central  elements40, as other studies in P. aeruginosa  PAO147 and E. coli40.

Figure 8.  Phage plaques assay of PaeAG1 after exposure to ciprofloxacin. (A) Phages of PaeAG1 are induced 
under CIP exposure, with a pattern of higher induction of phage plaques at higher concentration of the drug, 
evidenced with an exponential regression as shown in (B). (C) Example of visualization of phage plaques on 
culture plate during in vitro assays.
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Sigma factor RpoS as a hub gene.  Not surprisingly, one of the identified hub genes in PaeAG1 after CIP 
treatment was rpoS. This gene was only up-regulated at 5 h after exposure, suggesting a late regulation in com-
parison with other DEGs. RpoS is considered a master regulator of the general stress  response35 which is induced 
when bacterial growth decreases, or under starvation, antibiotics and osmotic or oxidative  stress18. In addition, 
RpoS participates in the protection of cellular  macromolecules18, modulation of metabolism, virulence, and 
changes in cell envelope and  morphology11. The overexpression of RpoS suggests that bacteria enter a station-
ary phase-like state upon stress conditions, as reported  previously44. This is further supported by the observed 
significant lack of growth of bacteria under CIP treatment of various concentrations.

According to growth curves, PaeAG1 was in exponential phase at the time points used for the transcrip-
tomic analysis (Fig. 2 and supplementary Figure S1A). This is a key point to ensure that RpoS induction (and 
all the response) is explained by the antibiotic and not due to stationary-phase entry (i.e. experimental design). 
The reliance of the observed changes on CIP treatment was further supported by the fact the curves at same 
conditions showed no changes for imipenem or tobramycin antibiotics (supplementary Figure S1C–E). Other 
fluoroquinolones were not tested for their effect on the production of phages in PaeAG1.

In addition, DNA binding site analysis using consensus sequence described  in75 revealed 49 sites for RpoS 
in PaeAG1 genes, however none of these were found to be DEGs. In the same work, RpoS was regulating 772 
genes at the stationary phase, of which 41 genes (5%) were identified as DEGs in our study. Since our analysis 
was performed at the exponential phase, the small number of common genes could be attributed to growth phase 
differences in each study. In another study using a de novo approach to identify binding sites using ChIP-Seq, 
RpoS showed to have 199 binding motifs in P. aeruginosa  PA1437, including six transcription factors. In PaeAG1, 
23 of these 199 genes corresponded to promoter regions of DEGs, including the RhlR and RpoS (itself) transcrip-
tion factor genes. This suggests that 12% of the RpoS regulon was modulated by CIP in PaeAG1. Interestingly, 
context-centric analysis revealed that up to 28 transcription factors (including RpoS) are associated with the 
response to CIP, regulating gene expression with pleiotropic consequences and defining a crosstalk among fac-
tors in P. aeruginosa37.

On the other hand, the RpoS response contributes to the robustness of bacterial cells facing stress conditions, 
acting synergistically with the SOS  response18. Although SOS response is known to be induced by CIP in P. aer-
uginosa and other  bacteria20,26,27,84, in this study the SOS response was not significantly induced in response to 
CIP treatment at 2.5 and 5 h. The absence of SOS induction may be due to the timing and concentration of CIP 
treatment. In E. coli, dynamic models have shown that the time of response to cell stress is very fast, and stability 
of the SOS response can be achieved in minutes, around 30 min according  to85 or up to 90 min according  to86, 
until homeostasis is recovered or stronger stress responses are induced. Also, the SOS regulon of P. aeruginosa 
was established using a supra-inhibitory CIP concentration (8 × MIC) at times 30 and 120 min26. These differ-
ences in concentration and time (0.4 × MIC at 2.5 and 5 h for PaeAG1) could explain absence of SOS elements as 
DEGs. Our results are similar to another proteomic study using P. aeruginosa; profiles at 1.5, 5.5 and 14.5 h after 
CIP treatment were evaluated, and neither LexA nor other SOS proteins were differentially expressed, except 
for RecA, which was found to be up-regulated87.

phage induction as a response determinant.  Regarding phage genes, two gene clusters with hub genes 
were defined in PaeAG1 after CIP treatment. Phage induction is known to be modulated upon stress conditions, 
including the SOS  response88. As found recently for some antimicrobials, phage activity is product of pleiotropic 
 regulation89. In the presence of sub-lethal concentrations of certain antibiotics, phages have been observed to be 
induced or to form larger phage  plaques88,90. Under fluoroquinolones exposure, P. aeruginosa DNA is affected 
and the SOS response is triggered. In a similar manner to LexA, repressor cleavage reaction is stimulated by 
activated RecA, allowing virus  assembly91,92, and killing of the  bacterium93. In some cases, alternative RecA-
independent mechanisms have been  described91,94.

PaeAG1 has six prophages in the genome, including two complete  elements5. After CIP exposure 85 phage 
genes were up-regulated, most of them from JBD44 (65 genes out of 105 JBD44 genes). In the co-expression 
analysis, when association between modules and traits was assessed, the turquoise module (Fig. 5) was sig-
nificantly related to CIP exposure time and phage induction, indicating a coordinated gene expression activity 
belonging to this cluster/traits (Fig. 5B).

Although general information on PaeAG1 phages is scarce, there is evidence to suggest that JBD44 is one of 
the most prevalent in P. aeruginosa95. Effects of JBD44 induction on growth have been previously described in 
P. aeruginosa PAO1, showing that JBD44 expression significantly decreased the growth of PAO1, unlike other 
 phages96. Similarly, SOS-mediated phage induction has been reported in P. aeruginosa  PAO112,26 and  LESB5897. 
In addition, effect evaluation of several antibiotics found that CIP and norfloxacin (another fluoroquinolone) 
caused a high level of phage induction, but variable results were found for other  antibiotics92. As observed in our 
experiments, no induction was found for imipenem nor tobramycin (supplementary Figure S1C–E).

The underlying relationship between the up-regulation of multiple phage genes in PaeAG1 after CIP exposure 
and the effect on bacterial lysis was validated through the effect of CIP concentrations in the phage induction. 
A concentration-dependent effect of CIP on both growth curves (rate reduction, Fig. 2) and phage plaques 
formation (exponential increment, Fig. 8) was demonstrated. This validated the transcriptomic findings of up-
regulation of phage genes in PaeAG1.

In congruence with this and the enriched pathways in PaeAG1, it has been reported that cells can adapt 
to stresses by disrupting their own metabolism in such a way that will impair the success of phage  activity98. 
This implies that effects are observed not only on the host cell fate but also modulation of different responses, 
including RpoS regulation. These changes can be a product of tight modulation of functions reliant on molecu-
lar interactions from both phage and  bacteria99. Similarly, as phages generally appear to consume amino acid 
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 metabolites100, the bacterial up-regulation response of genes involved in amino acid catabolism has been sug-
gested as a strategy for reducing the infection  success98 and disrupting phage  propagation100. Blasdel et al. 2017 
found that maiA, fahA, hmgA and hpd genes of tyrosine catabolism were up-regulated by P. aeruginosa during 
phage  activity98. In our study, all four genes were up-regulated, including fahA as a hub gene and a bottleneck 
element for the main phage gene cluster, indicating a catabolic effect after exposure to CIP that may be related 
to phage induction. More details of the fahA gene are discussed later.

Although different possibilities of the regulation of phage genes have been suggested, in the case of PaeAG1 
phages, most of the predicted phage genes cannot be associated with a putative function, as in other  studies26. 
This complicates the interpretation of the results for particular  genes99. Validation of phage induction at phe-
nomic level in congruence with transcriptomic results suggests that modulation of phages by CIP (but not for 
imipenem or tobramycin as discussed before) in PaeAG1 is possible. This is particularly relevant since this strain 
is a ST-111 high-risk clone and a critical organism Priority 1 (resistant to carbapenems) according to  WHO8. 
Modulation could be achieve targeting phage production as a therapeutic option, with the advantage that the 
induced phages are resident elements of the genome and not exogenous elements as in other studies. Thus, 
treatment of antibiotic-resistant bacterial infections can potentially be improved by using phage therapy and 
traditional antibiotics, regardless if cells are growing in biofilms or as planktonic  bacteria88. In addition, phage 
therapy can be used as a bactericidal element against multiresistant  strains93. However, this does not necessarily 
apply to all P. aeruginosa strains since phage induction in other cases (with different strains and antibiotics) have 
been shown to be  variable92.

other transcriptomic determinants.  Of the 15 pathways recognized as enriched in PaeAG1 after CIP 
treatment, ribosomal activity, RNA degradation and several metabolic routes were prominently enriched with 
respect to others. Reduction in the abundance of ribosomal proteins and protein implicated in cell division over 
time indicate a shift by tolerant cells away from  growth87, as it was evidenced by the changes in the growth curves 
under different CIP concentrations in PaeAG1. In the case of ribosomal activity, a cluster is clearly recognized 
in the whole network and the subnetwork of hub genes, where the rpmF gene is the up-regulated hub element. 
The rpmF gene encodes for the 50S ribosomal subunit protein L32, which is responsible for protein synthesis 
and membrane lipid  synthesis101. It is also involved in multidrug tolerance by modulating biofilm formation and 
persister cell  induction102.

Regarding metabolism, several reports have shown a down-regulation of energy production and carbohy-
drates, amino acids and lipids  metabolism15,36,87,103, 104. Five hub genes (sdhB, sdhC, prpC, acpP and fahA) are 
particularly associated with metabolism. For instance, fahA is key in the inhibition of amino acid  metabolism105, 
coding for a fumarylacetoacetase necessary for the tyrosine catabolism pathway. In addition, fahA is a topologi-
cal bottleneck in the networks (Fig. 6A–C), separating the main phage genes cluster from the rest of the nodes. 
As detailed before, regulation of this gene could be used to restrict amino acids access to the phage and thus 
restraining the full phage  activity98.

In the case of RNA degradation pathways, we identified groL (or groEL) as a hub gene, a homolog of heat 
shock protein  60106. DnaK and GroL are major ubiquitous chaperones that play crucial roles in promoting protein 
folding during normal growth and under stress  conditions107 such as oxidative stress, antibiotics or  heat26,107,108. 
In PaeAG1, both chaperones were up-regulated.

In relation to virulence factors, CIP modulated adherence and phenazines. A total of 19 DEGs implicated in 
adherence were identified with down-regulation observed for LPS O-antigen, flagella, and type IV pili biosyn-
thesis elements. Similar results were found for P. aeruginosa after CIP treatment in another  study26. Under other 
stress conditions, this down-regulation has been suggested to be a mechanism to avoid biofilm formation as a 
possible way to escape as planktonic  cells46 and, in general, to modulate mechanisms for colonization, survival 
and invasion within the host  tissues93.

Regarding phenazines, six genes were up-regulated. This profile is associated with tolerance to oxidative stress, 
iron availability, biofilms, virulence and killing microbial  competitors109. Phenazine biosynthesis is regulated 
by the  Rhl76 and  PQS110 quorum sensing systems in P. aeruginosa. The rhlR gene was found to be up-regulated, 
suggesting a possible regulation of the phenazines.

More details of specific genes and their relationship with other virulence factors, antibiotic resistance and 
other responses (all with few number of DEGs) are discussed in the supplementary material “Extended discus-
sion: Other transcriptomic determinants of PaeAG1 in response to CIP”.

Altogether, the transcriptomic analysis in PaeAG1 allowed us to identify key molecular determinants of the 
response to CIP, many of them related to the bacterial grown, such as RpoS and phage induction. This agrees 
completely with our hypothesis in which transcriptomic response to CIP was related to bacterial growth modula-
tion. After a DNA damage response is induced by sub-inhibitory CIP treatment, there is a subsequent pathway 
modulation and transcriptional changes that define changes in the bacterial growth. A conceptual representa-
tion of these results is shown in Fig. 9, aiming to integrate our results, literature reports and possible unknown 
connections.

All these features are particularly relevant for high-risk strains, such as PaeAG1. As it has been suggested, 
the biological markers of P. aeruginosa high-risk clones could be useful for the future design of specific treat-
ments and infection control  strategies7. Thus, more detailed analyses are needed to study the different levels of 
transcriptomic regulation in PaeAG1, including targeted expression analysis, other stress conditions, genetic and 
phenotypic variability, validation of the effect and power of hub genes, explorations of the relationship between 
presence of specific virulence traits and severity, and phage induction as a potential therapy.
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conclusions
In this work, we report a concentration-dependent reduction of PaeAG1 growth rate upon increasing sub-
inhibitory CIP concentrations by comparing growth curves. The RNA-Seq analysis of PaeAG1 after treatment 
with a sub-inhibitory CIP concentration allowed us to identify 518 DEGs along time at 2.5 and 5 h. Using a 
top-down systems biology approach, we identified diverse transcriptomic determinants: 14 hub genes, multiple 
gene clusters and 15 enriched pathways. These included down-regulation of pathways related to metabolism, 
ribosomal activity and adherence factors, most of them related to bacterial growth reduction. Phages, phenazines 
and specific virulence factors were found to be up-regulated. In most cases, hub genes and complex relationships 
were identified, showing pleiotropic effects that are mainly illustrated by clusters of highly connected genes. 
Two particular clusters of phages genes were up-regulated by CIP. Validation of CIP effects on phage induction 
was done at phenomic level with a phage plaque assay, showing an exponential induction as CIP was increased. 
To our knowledge, this is the first report of the analysis of CIP response in a ST-111 high-risk P. aeruginosa 
strain, in particular by a combined strategy using a top-down systems biology approach. This led us to identify 
transcriptomic determinants in response to CIP, including resident phages induction as a potential therapeutic 
strategy to overcome antibiotic resistance.

Data availability
The RNA-seq raw data and processed files of transcripts quantification are available at the NCBI Gene Expression 
Omnibus (GEO) database under accession number GSE139866. Processed data and scripts for bioinformat-
ics analyses (RNA-Seq data, differential expression using DESeq2 and co-expression analyses) are available at 
https ://githu b.com/josem olina 6/PaeAG 1_CIP_RNA-Seq). Genome sequence and annotation files in all required 
formats for mapping and quality control of the RNA-Seq reads alignment are available from our previous work 
at https ://githu b.com/josem olina 6/PaeAG 1_genom e. More details of the genome assembly and annotation  in5.
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GENERAL DISCUSSION AND CONCLUSIONS 
 

Antibiotic resistance is a major threat to public health because of its continuous emergence, 

worldwide spread, and increasing prevalence (Hong et al., 2015). Unlike highly host-adapted 

pathogens and symbionts undergoing genome reduction, as a versatile environmental organism, P. 

aeruginosa continually expands its genomic repertory (Mathee et al., 2008). With a high-risk ST-111 

profile, PaeAG1 is a critical organism given its resistance to multiple antibiotics, including 

carbapenems (World Health Organization, 2017). In this context, a comprehensive multi-omics 

approach was implemented to study the molecular determinants of antibiotic tolerance in this 

strain. 

The case of PaeAG1 genome assembly was a first and important step to understand the 

genomic architecture of an ST-111 high-risk strain. A de novo approach was preferred since PaeAG1 

has around 1.0 Mb of an additional DNA sequence when compared to the reference genome. These 

exclusive regions are composed of 57 genomic islands harboring two MBL-carrying integrons, pro-

phages, and many other genes. The annotation also revealed all the genomic content and molecular 

determinants related to phenotypes, which for PaeAG1 are related to multi-resistance and virulence 

mainly.  

As it was shown here, those advances in sequencing technology play an outstanding and 

determinant role in infection investigation and tracking evolution of international lineage of high-

risk bacterial clones in clinical context over long times and in great detail (Dößelmann et al., 2017). 

However, genome assembly is not obvious and it is challenged by sequencing technology, genomic 

features, and all bioinformatics algorithms, making it a real and open problem. An exhaustive 

comparison of different strategies to assembly the genome and their assessment give a better way 

to get close to the real genome sequence. Benchmarking using the 3C criterion is a consensus 



156

 
 

approach that includes different levels and aims of comparison for the robust selection of a final 

assembly. A hybrid assembly was the best approach to achieve a single circular sequence with high-

quality 3C for the case of the genome of a high-risk P. aeruginosa strain. Thus, the best features of 

short and long-read sequencing technologies are included and their drawbacks are compensated.  

Second, since PaeAG1 is a high-risk and critical organism due to its resistance to carbapenems, 

we performed a comparative genomic analysis to describe the genomic context associated with the 

MBL-carrying integrons. We analyzed 211 complete genome sequences using a pan-genome 

analysis, separating strains by MLST profile. Then, the analysis of the 57 PaeAG1 genomic islands 

showed a varying pattern of the presence/absence among all the strains, in particular for the closest 

genomes to PaeAG1. Two selected genomic island clusters, GICVIM-2 and GICIMP-18, were studied in-

depth. GICVIM-2 sequence was completely found in other two known ST-111 strains, which contained 

the VIM-2-carrying integron as an old-acquaintance In59-like element. GICIMP-18 was partially found 

in another genome, but the IMP-18-carrying integron has an architecture never reported before, 

being considered as a novel In1666 integron. We provided new insights about the genomic 

determinants associated with this high-risk P. aeruginosa clone and its resistance to carbapenems 

using comparative genomics.  

Third, proteomic profiles of PaeAG1 after exposure to antibiotics demonstrated that 

ciprofloxacin effects are similar to the control without antibiotics, contrasting with the results for 

other antibiotics and the growth curves.  In a subsequent analysis, to study the central response to 

multiple perturbations in the P. aeruginosa group, the core perturbome, and to identify gene 

expression patterns, we used a machine learning approach. Using public microarray data, two 

independent partition strategies (single and multiple with SP and MP methods respectively) and 

three classification algorithms, we were able to identify 46 perturbome elements. Both, network 

analysis and functional annotation of these genes showed coordinated modulation of biological 
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processes in response to multiple perturbations (including metabolism, biosynthesis and molecule 

binding, associated with DNA damage repairing, and aerobic respiration), all related to tolerance to 

stressors, growth arrest, and molecular regulation.  

In the last step, the particular gene expression response to CIP in PaeAG1  was studied using 

RNA-Seq. A concentration-dependent reduction of the PaeAG1 growth rate upon increasing sub-

inhibitory CIP concentrations was reported when comparing growth curves. The RNA-Seq analysis 

of PaeAG1 after treatment with a sub-inhibitory CIP concentration allowed us to identify 518 DEGs 

along time at 2.5 and 5 h. Using a top-down systems biology approach, we identified diverse 

transcriptomic determinants: 14 hub genes, multiple gene clusters, and 15 enriched pathways. 

These included down-regulations of pathways related to metabolism, ribosomal activity, and 

adherence factors, most of them related to bacterial growth reduction. Phages, phenazines, and 

specific virulence factors were found to be up-regulated. In most cases, hub genes and complex 

relationships were identified showing pleiotropic effects that are mainly illustrated by clusters of 

highly connected genes. Two particular clusters of phage genes were up-regulated by CIP. The 

validation of CIP effects on phage induction was done at a phenomic level with a phage plaque assay, 

showing an exponential induction as CIP was increased. To our knowledge, this is the first report of 

the analysis of CIP response in an ST-111 high-risk P. aeruginosa strain, in particular by a combined 

strategy using a top-down systems biology approach. This led us to identify transcriptomic 

determinants in response to CIP, including resident phage induction as a potential therapeutic 

strategy to overcome antibiotic resistance. 

Together, these genomic and transcriptomic elements are molecular determinants of antibiotic 

tolerance and resistance in PaeAG1. This is particularly relevant for critical clones with the ability to 

conquer nosocomial environments and to develop a multi-resistance profile. As has been suggested, 

the biological markers of high-risk clones could be useful for future design of specific treatments 
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and infection control strategies (Mulet et al., 2013). Thus, in order to study the implications of these 

genomic and transcriptomic determinants in PaeAG1, more detailed analyses are needed, which 

include: different levels of molecular regulation, other expression analyses (including proteomic 

level), other stress conditions to define the perturbome, genetic and phenotypic variability, 

validation of the effect and power of hub genes, modeling molecular circuits, explorations of the 

relationship between the presence of specific virulence traits and severity, and phage induction as 

a potential therapy to overcome resistance. 

Finally, as shown here, the study of the molecular determinants in PaeAG1 was possible thanks 

to the integration of sequencing data, phenotypes, and bioinformatics pipelines. In view of the data 

complexity and results depending on algorithms, benchmarking strategies were required to analyze 

the data and to select the best protocols according to different criteria. Although we studied a 

bacterial genome (small in comparison to eukaryotic models), high-performance computational 

infrastructure was necessary mainly for comparative genomic and transcriptomic analyses. In 

addition, isolation and antibiotic resistance profiling, genome and RNA sequencing, as well as  

proteomic and other phenomic assays have been implemented for the last 10 years to study this 

bacterial model, implying a cost that can be estimated at more than $30 000, only considering 

sequencing and experimental assays. All these considerations remind us that these types of projects 

demand high-performance computational infrastructure, best bioinformatics practices, and 

investment in scientific research in general.   
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Abstract. A classical strategy to analyze the protein content of a biological sample is 
the two-dimensional gel electrophoresis (2D-GE). This technique separates proteins by 
both isoelectric point and molecular weight, and images are taken for subsequent anal-
yses. However, analyses of 2D-GE images require standardized image analysis due to 
susceptibility of gels to get deformed, presence of overlapping spots and stripes, fuzzy 
and unstained spots, and others. This represent a difficulty for final users (researchers), 
which demand for free and user-friendly solutions. We have previously reported the 
standardization of a protocol to analyze 2D-GE images, and in the current study we 
applied it to two new bacterial isolates Pseudomonas aeruginosa C25 and C50. We first 
extracted periplasmic proteins after exposure to antibiotics, and we then run a 2D-GE 
analysis. Images were analyzed using our standardized protocol, achieving the identifi-
cation of protein spots using CellProfiler after pre-processing step. Comparison be-
tween strains was done using differential spot analysis, revealing a specific pattern in 
the protein expression between bacteria. These results will help to study the biological 
meaning of these strains using proteomic profiling under different conditions.   
 

Keywords: 2D-GE, Image analysis, CellProfiler, P. aeruginosa C25, P. aeru-
ginosa C50. 

1 Introduction 

The study of the protein content in biological systems is the main study subject of pro-
teomics. This included not only to identify the particular proteins that are expressed 
that can explain a biological context, but also the comparison between conditions to 
recognize differential proteomic patterns [1].  

mailto:jose.molinamora@ucr.ac.cr
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A classical strategy to analyze the proteomic profile of a sample is the two-dimensional 
gel electrophoresis (2D-GE) [2]. This technique separates proteins in a layer of poly-
acrylamide gel by both isoelectric point (pI, pH at which a molecule is electrically neu-
tral) and molecular weight [3], creating spots that are then stained.  

Analyses of 2D-GE images require standardized image analysis [3], due to suscep-
tibility of gels to get deformed, presence of overlapping spots and stripes, fuzzy and 
unstained  spots, and others. [1], [4]. However, the 2D-GE image analysis is not 
straightforward. This represent a difficulty for final users (such as microbiologist, biol-
ogist and researchers in general), which demand for user-friendly solutions. However, 
these user-friendly software are expensive commercial packages. Free options regularly 
requires command-line work, making it a drawback for researchers.  

In this scenario, we have previously reported the standardization of a protocol to 
analyze 2D-GE images using the Costa Rican bacteria Pseudomonas aeruginosa AG1 
as model [5]. Now, in this work we applied our protocol to two new isolates, P. aeru-
ginosa C25 and C50, which are two clones obtained from the former strain when ex-
posed to high ciprofloxacin (antibiotic) concentrations. P. aeruginosa is an opportun-
istic bacteria able to infect immunocompromised hosts, which is frequently associated 
with antibiotic multiresistance [6]. The three Costa Rican isolates have a multire-
sistance profile. They are categorized as a high risk clones because are coming from a 
strain causing infections in hospitals. Thus, the goal of this study was to implement and 
assess an image analysis protocol using our previously reported protocol to identify 
protein spots in 2D-GE gels images from two P. aeruginosa strains C25 and C50. 

To achieve this, we first extracted periplasmic proteins of P. aeruginosa C25 and 
C50 after exposure to antibiotics, and we then run a 2D-GE analysis. Images were an-
alyzed using our standardized protocol, by identifying spots using CellProfiler. Then, 
comparison between conditions was done using differential spot analysis. 

2 Methods 

For the extraction of periplasmic proteins of P. aeruginosa C25 and C50, we followed 
the protocol by [5], [7]. Briefly, cells were cultured until the exponential phase in LB 
medium. The 2D-GE was performed using strips for separation by isoelectric point (GE 
HealthCare Immobiline Dry Strip GelsTM), and a SDS-GE gradient was done for the 
molecular weight separations. Images were taken using ChemiDoc™ photo viewer (Bi-
oRad®). 
 The processing step included an image alignment using bUnwarpJ package in the 
ImageJ program [8]. In this program, five spots were used as reference for the defor-
mation of images and to achieve the alignment.  Identification of spots was done using 
our previously reported protocol [5]. Briefly, CellProfiler (https://CellProfiler.org/) was 
used to analyze images following the next steps: images inversion, primary object 
recognition and segmentation, manual editing, intensity measuring and visualization of 
objects.  

 

https://cellprofiler.org/
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To compare 2D-GE images, a differential spot analysis was implemented. Pairs of 
images were compared to identify shared spots using an analysis of primary objects 
(segmentation) of overlapping spots, identification of exclusive spots in each image 
using the no-overlapping regions, and the subsequent representation spot borders sep-
arating shared (red circles) or exclusive dots (green or blue circles).  

 
 

A 

 
 

B 

 
 
 
Fig. 1. Example of two-dimensional gel electrophoresis (2D-GE) of P. aeruginosa C25 (A) and 
C50 (B) after growing in LB medium. Assays was performed after cells were growth in LB me-
dium.  
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3 Results and discussion 

Proteomics is considered an essential field for the systematic analysis of biological sys-
tems, an assessment of changes in the abundance of proteins that occur in living organ-
isms and that can be studied at various levels [4].  

The two-dimensional gel electrophoresis 2D-GE is a classical technique used to an-
alyze the protein content in biological samples [1]. Here we first performed a 2D-GE 
assay for the bacterial clones P. aeruginosa C25 and C50, as shown in Fig. 1-A-B.   

However, 2D-GE image analysis requires specific protocols due to image complex-
ity [3]. In this way, we previously established a standardized protocol to identify protein 
spots using CellPro-filer and other image analysis tools [5].   

For the pre-processing step, bUnwarpJ package in the ImageJ program was used to 
align images. According to this pipelines, five points between the target image (to be 
modified) and a reference image are selected as common denominator to make the 
alignment, creating a deformation field and grid (Fig. 2-A-B).  

 
 

A 
 

 

B 
 

 
 

C 

 

 
D 

 
 
Fig. 2. Analysis of 2D-GE images. Examples of deformation field (A) and deformation grid (B) 
to align images against a reference in the pre-processing step. (C) Example of a raw image used 
for the identification of spots using CellProfiler pipeline, as resulted in (D).  
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As shown in Fig. 2-C-D, identification of spots was achieved using CellProfiler soft-
ware. Different metrics were used to optimize the segmentation algorithm, as previ-
ously described [5]. Although automatic spot recognition is sensitive to complex re-
gions, manual edition helped to solve these drawbacks. Commercial solutions have sim-
ilar tools to deal with this particular features that are common un 2D-GE image analyses 
[3].  

With a modified protocol, the pipeline was also able to recognize common and 
shared spots when comparison of proteomic profiles of the two strains was done.  

For this, a new consensus image was built using image operations (pixel operations), 
making possible the identification of common spots, which were identified in the same 
way as before but using the new image. After subtraction of shared dots, exclusive spots 
were marked and a final visualization was done in the initial images, as shown in Fig. 
3.  

A 
 

 
 

B 
 

 
 

Fig. 3. Example of the differential spot identification with 2D-GE images from two P. aeruginosa 
strains C25 (A) and C50 (B). Shared spots were identified using red circles, and exclusive spots 
were marked as blue or green spots.   
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Regarding the CellProfiler program, this is a known tool used for cell imaging, for 
example for microscopy images. However, as we have demonstrated before [5] and 
here, it is possible to use the algorithms to recognize spots in 2D-GE images. See our 
previous work for details of the implementations, more details of the pipeline and com-
parison of samples [5].  

In summary, in this work we presented a new analysis of 2D-GE images using a 
standardized protocol to identify spots and compare conditions by proteomic profile. 
This was done using two P. aeruginosa clones, in which was possible to identify both 
shared and exclusive dots. Although this work is focused on the image analysis, these 
results will help us to apply this protocol to study P. aeruginosa strains under different 
experimental conditions, including antibiotics or other stressors and their effect on the 
proteomic profile of the bacteria.  
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Abstract— Pseudomonas aeruginosa is an opportunistic 

pathogen that causes a variety of infections in humans and 
frequently develops mechanisms of resistance to antibiotics, which 
makes its treatment difficult. In this study we applied gene 
expression analysis using data mining techniques and network 
analysis to evaluate the temporal effects of exposure to 
ciprofloxacin and the changes caused by the loss of function of 
LexA, a regulator of the SOS response to the cellular stress. 
Initially, global differential expression profiles using clustering 
algorithms suggested that the effects of antibiotic exposure were 
determined primarily by time and not by loss of LexA function. 
This was verified by performing attribute selection and 
differential expression analysis among conditions, where less than 
3.3% of maximum difference between strains but up to 21% of 
differences were observed over time. Together with network 
analysis, a significant increase in topological metrics was 
determined when evaluating temporal changes. Functional 
annotation showed metabolic pathways enriched over time but not 
when comparing strains. Overall, the results obtained revealed 
that the response to ciprofloxacin tends to be exacerbated over 
time and that it remains stable in the face of the loss of function of 
LexA activity. 

Keywords— P. aeruginosa; Data mining; Network analysis; 
Differential expression; Ciprofloxacin. 

I. INTRODUCTION 
Pseudomonas aeruginosa is a Gram-negative bacterium, 

metabolically and genomically versatile, found in natural 
environments, but it also causes infections in animals and plants 
[1]. In humans, it is an important opportunistic pathogen, being 
the third most common cause of nosocomial infections [2]. 
Many P. aeruginosa infections can be controlled with 
antibiotics, but are difficult to eradicate [3] due in part to the 
ability of this pathogen to carry out progressive modifications 
that facilitate infection and persistence, between those that 
emphasize their ability to adapt to environmental stress [4], [5]. 

As in other bacterial groups, cellular stress induces changes 
in DNA architecture, either by direct damage to DNA or 
indirectly in the replication process as a result of stress, which 

culminates with the exposure of single stranded DNA (ssDNA) 
and which represents the start signal of the SOS response [6]. 
In this process, protein RecA binds to ssDNA mediating 
recombinational repair but it also joins to LexA, a SOS 
repressor gene, and induces its autocleavage. The loss of 
repression by LexA results in the induction of proteins that 
mediate the SOS response for DNA repair and regulate damage 
tolerance mechanisms [7]. 

Ciprofloxacin, an antibiotic of the fluoroquinolone family 
and classically used for the treatment of P. aeruginosa 
infections, is an inducer of the SOS response in this bacterium. 
The antibiotic alters the activity of the bacterial enzymes DNA 
gyrase and topoisomerase IV, so it affects the correct 
replication of DNA, its recombination, repair and transcription 
[8], [9]. This condition causes activation of the SOS response; 
however it has been characterized that in P. aeruginosa the SOS 
response is mediated by 15 genes, which is much lower than 
that reported for other bacterial groups [5]. In addition to SOS 
response, P. aeruginosa generates a LexA-independent 
response after exposition to ciprofloxacin [2], [5].  

The biological aim of the present study is to describe the 
dynamics of the global differential expression response to 
perturbation with ciprofloxacin and the effects of loss of LexA 
function in P. aeruginosa. For this, curated data of the bacterial 
strain P. aeruginosa PAO1, a reference strain, were used. In 
addition, data of a PAO1 mutant, produced by mutagenesis with 
loss of function of LexA, were available. Both strains were 
exposed to ciprofloxacin and data from the global differential 
expression profiles were obtained at 0, 30 and 120 minutes post 
exposure and using microarray technology. 

Due to the type of high-throughput technology used, 
amount of data (5900 genes per replicate, for 12 samples) and 
the complexity and diversity of data available, an analysis 
mediated by data mining was required for classification, 
clustering and selection of genes. Additionally, an analysis for 
the creation, interpretation and evaluation of networks with a 
large-scale systems biology approach was implemented. 



II. MATERIALS AND METHODS 

A. Data source 
Data from 12 gene expression microarrays (GPL84 

Affymetrix P. aeruginosa Array, with 5900 genes per sample) 
was available in NCBI database, accession number GSE5443 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5443). 
The data included duplicates of each sample at 3 time points (0, 
30 and 120 minutes) for two strains, PAO1 (wildtype, called WT 
strain) and an isogenic mutant strain with affectation of LexA 
activity (S125A in lexA gene, called mlexA strain), which were 
exposed to ciprofloxacin. 

B. Normalization and evaluation of quality 
The temporal data from microarray readouts were analyzed 

with two quality protocols. First, an RMA algorithm (Robust 
Multi-array Average, molmine.com/magma/loading/rma.htm) 
was applied to create an expression matrix from the row data. 
In short, the values of unprocessed intensity were normalized 
and corrected compared to the background noise, with a 
subsequent logarithmic transformation (log2) and 
quantification by quartiles. Next, a linear model was fitted to 
the normalized data to obtain an adjusted measure of expression 
for each set of probes. 

Second, in order to carry out a global study of the 
differential expression profiles, a hierarchical clustering (HC) 
algorithm and a PCA (Principal Components Analysis) were 
implemented. In both cases, data were loaded into the program 
MATLAB and defined functions were directly called (pca() and 
clustering()). For visualization, PCA components were 
exported as a table and the three components with the greatest 
variation were plotted in 3 dimensions using the Plot3D 
function of the Wolfram-Mathematica software. In the case of 
HC, a 95% confidence and Euclidean metric were used. 

C. Expression level comparisons with subsets of genes  
  In order to evaluate expression profile variations among 

strains and times, we proceeded to select defined sets of genes 
using three different methodologies.  

First, for a strict quantitative comparison based on 
housekeeping genes, as normally done in classic studies of gene 

expression, we proceeded to compare the relative values of 
expression of the housekeeping genes proC and rpoD. Both 
genes have been previously reported as the most stable for P. 
aeruginosa faced with disturbances [10]. This was done to 
verify that there was no significant difference between genes 
under the effects of ciprofloxacin, mutation and time. 
Differential expression protocol is detailed in the next section. 

Second, an algorithm for ranking and selection of attributes 
was applied, using the classes (experimental conditions) to 
verify that it was possible to separate the conditions by selecting 
groups of genes. For this, we applied a classification by SVM 
Suppport Vector Machine algorithm [11], creating a ranked list 
of the total genes (tolerance=1.0e-10,  complexity=1). Using 
quartiles as the parameter for selecting attributes, we eliminated 
the last 25% of the ranked list of genes and evaluated with HC 
the top 75% remaining. The elimination was repeated leaving 
50 and 25% of the top genes, and in each step repeating the 
clustering by HC until obtaining the separation of classes (by 
strains and times). 

Third, in order to validate the loss of LexA function in the 
mutated strain, we proceeded to compare the expression levels 
of the 15 genes associated with the SOS response at all times 
and for both strains (with respect to the initial time for WT). In 
addition, for the time 120 minutes a representation of the 
connections was made with a non-directed graph and 
comparing the values of expression between strains. To do this, 
Cytoscape (http://www.cytoscape.org) was used to create the 
subnetwork of 15 genes, and coloring according to the level of 
expression. 

D. Differential expression analysis  
In order to identify differentially expressed genes among the 

evaluated conditions, the algorithm of Benjamini & Hochberg 
[12] was implemented, using as a criterion a two-fold change 
with respect to the control (all with values p>0.001). The 
relative comparison was made in two different ways. First, the 
gene expression profile of the mlexA mutant strain was 
compared with the corresponding WT strain at the same time, 
allowing to evaluate the differences between the strains at each 
time when exposed to ciprofloxacin.  

A. Dispersion of intensities B. Hierarchical Clustering (HC) C. Principal Component Analysis (PCA) 
 

  

 

 
 

 
 
Figure 1. Evaluation of quality, distribution and global differential expression profiles of samples. Quality was evaluated using dispersion of intensities for all 
samples using Robust Multi-array Average (RMA) algorithm, showing similar distribution (A). Global differential expression profiles were compared by two 
clustering techniques. HC shows separation of samples by time but not by strain (B). Similar results were found when a PCA was applied (C).  



 
TABLE 1. Relative comparison of expression of housekeeping 

genes proC and rpoD 

 
In order to study the dynamics over time in the mlexA 

strain, a second analysis was performed comparing the 
differential expression of the mlexA mutant strain at different 
times with the WT strain (time 0 minutes). 

E. Annotation and construction of gene networks 
In order to annotate and characterize the differentially 

expressed genes, an ontology analysis was carried out by 
biological process and metabolic pathways using the 
PANTHER database (http://pantherdb.org/). The genes, both 
up and down regulated, were directly incorporated into the 
functional modules of the resource and with the specifications 
for P. aeruginosa. In addition, using the PseudomonasNET 
database (www.inetbio.org/pseudomonasnet/), we performed a 
screening of biological functions and their relationships at the 
network level. To do this, the genes were incorporated and 
prioritized by candidate functions for P. aeruginosa using the 
Gene-centric search module. The resultant network was 
exported in graph format and was incorporated into the 
Cytoscape program. The network analysis was established to 
visualize expression levels. The expression data matrix was 
adjusted to the PseudomonasNET identifiers, and specifications 
were selected to differentiate down and up regulated genes by 
color.  

III. RESULTS 

A. Clustering algorithms suggest that global differential 
expression due to exposure to ciprofloxacin in P. aeruginosa 
tend to differ by time than by loss of LexA function 

With the aim to study the time effect due to exposure to 
ciprofloxacin and the loss of LexA function in P. aeruginosa, 
we analyzed microarray data. For this, we implemented different 
analyses to evaluate dispersion, quality and comparability of 
total data. First, an RMA algorithm was applied to evaluate 
dispersion of total data to obtain normalized, logarithmically 
transformed and adjusted values (Figure 1-A). The general 
dispersion of all the tests shows equivalence in the intensity 
signals for each of the samples and their replicates, which is 
consistent with the criteria proposed by Bolstad et al. regarding 
the correction of variation [13]. 

Second, a hierarchical clustering (HC) algorithm based on 
Euclidean distance was applied to the data set with the aim of 
conducting a study of the global differential expression profiles 
and the relationship between conditions and replicates. 
According to the result of the HC, it is observed that the 
separation between the experimental conditions is achieved by 
time but not clearly by strain (Figure 1-B). A second evaluation 
criterion with PCA algorithm provided congruent results with 
HC (Figure 1-C). Moreover, differences obtained by both 
algorithms showed a cluster between samples at time 0 and 30 
minutes. 

Third, in order to evaluate the variation of differential 
expression profiles from the perspective of housekeeping genes, 
we compared gene expression from proC and rpo. We proved 
that there are no statistical significant differences among 
expression values (presented as a ratio between conditions) for 
both genes (p>0.001) under the perturbations by ciprofloxacin, 
the mutation and the different times (Table 1).  

Finally, given the biological importance of LexA in the SOS 
response, we verified its inactivity in mlexA strain by comparing 
the expression level of the 15 characterized genes in this 
pathway (relative to the initial profile of WT). As shown in 

Condition logFC (p-value) 
proC rpoD 

mlexA_0min/WT_0min 0.2619 (0.4483) 0.1043 (0.7342) 

mlexA_30min/WT_30min 0.1150 (0.8076) 0.0439 (0.9015) 

mlexA_120min/WT_120min -0.4476 (0.1859) 0.3062 (0.3237) 

mlexA_30min/WT_0min 0.0337 (0.9373) 0.4769 (0.2138) 

mlexA_120min/WT_0min -0.3480 (0.2838) 0.4040 (0.2112) 

A. Values of logFC for genes of the SOS response 

 

B. mlexA strain 
at time 120 min 

 

 

C. WT strain 
at time 120 min 

 

 

Figure 2. Comparison of logFC of strains mlexA and WT for genes of the SOS response. All logFC values were obtained by relative comparison with WT-
0min. In strain mlexA, which has no LexA function, SOS response is completely inactive as expected, in contrast to WT which has high levels of expression 
(A). Representation of values using relations between genes was done by building a subnetwork of the SOS response (B-C).    



Figure 2-A, the loss of LexA function affects gene expression of 
SOS genes, however all them are active for the WT at 30 and 
120 minutes. The representation as a non-directed graph 
alternatively shows the same observations for 120 minutes, 
although some connections are unknown (Figure 2-B-C). 

Altogether, these results suggest that differential expression 
profiles of the samples exposed to ciprofloxacin differentiate 
better in time than among strains. To study genes differentially 
expressed post exposition to ciprofloxacin, we conducted two 
comparisons: (i) strain-to-strain in the same time, and (ii) 
dynamical (time course) analysis of mlexA strain relative to the 
initial profile of WT, as detailed in the next sections. 

B. SVM and differential expression analysis show that 
exposure to ciprofloxacin has a similar effect independently of 
LexA activity in P. aeruginosa 

In order to contrast the differential expression profiles of the 
mlexA and WT strains at each specific time and to verify that 
there are few differences among them, we performed a 
screening analysis based on data mining to select attributes. For 
this, variation of differential expression profiles was evaluated 
with defined sets of genes by first ranking all genes using SVM 
algorithm, then last genes were eliminated from the rank, and 
finally we evaluated the clustering with HC algorithm. Because 
successive elimination of genes was done by quartiles, it was 
necessary to remove the last three quartiles of ranked genes 
(leaving the top 25% genes or the top quartile) to generate a 
separation of classes. This means that differences in expression 
level between strains are defined by less than 25% of genes. As 
shown in Figure 3-A, separation of the experimental classes and 

the generation of groups was achieved first by time and then by 
strain. This is consistent with previous results of global profiles, 
however now we clearly observed the separation of strains.  

In addition, an analysis of differential expression between 
the mlexA strain and WT was carried out at the same time in 
order to estimate accurately differences and variation with 
statistical meaning at single gene resolution and not by global 
profiles (Figure 3-B-C). The statistically significant differences 
(at least 2-fold change with p>0.001) provided evidence that a 
discrete number of genes would be affected by the loss of 
function of LexA. This in turn corresponded to a minimum 
number of pathways affected. For example, at 30 minutes, a 
total of 109 genes were differentially expressed beloging to 8 
metabolic pathways; while at 120 minutes 195 genes were 
identified corresponding to only 7 routes. Moreover, only 4 
genes were identified for the 3 times and no metabolic pathway 
was common for all 3 times. With these results, we concluded 
that a low number of transcripts, at most 195 genes (about 
3.3%), differentiate the strains when exposed to ciprofloxacin. 

Notably, when screening was done for expression networks 
using the PseudomonasNET database (networks not shown), 
we observed that differentially expressed genes were not 
significantly associated with any particular metabolic pathway 
at any time (Table 2, last row). This is consistent with previous 
results and suggests that expression differences between the 
two strains (given by LexA activity) at any time have no greater 
biological effects (they have similar response). Topological 
metrics of the networks are included and compared in Table 2 
to contrast with networks obtained by time (next section). 

A. Comparison of differential expression profiles  
post-attribute selection  

 

B. Differentially expressed genes 
between strains  

 

Conditions 

Differentially 
expressed 

genes 
Pathways 
(number) 

Down Up 
mlexA-0min/ 

WT-0min 67 79 4 
mlexA-30min/ 

WT-30min 55 54 8 
mlexA-120min/ 

WT-120min 115 80 7 
 

 
C. Comparison by strains in each time 

 
Figure 3. Differentially expressed genes by strain, using WT strain at same time for comparisons. Because initial analysis showed less differences betweens strain 
than by time, a features selection was done by SVM algorithm. An analysis by quartiles show that no more than 25% of top ranked genes can separate conditions, 
however, in  order to incorporate variation at single gene level, an differential expression analysis was done, showing relatively few changes (differences were 
no higher than 3.3% when comparing mlexA and WT) (B-C). 



C. Large-scale network approach and differential expression 
analysis reveals time-intensified effects in P. aeruginosa mlexA 
after exposure to ciprofloxacin   

In order to analyze the temporal dynamics of differential 
gene expression in P. aeruginosa mlexA strain after exposure 
to ciprofloxacin, we compared the expression of this strain at 
all times with respect to the WT strain at 0 minutes using the 
same criteria applied to previous analysis of gene expression. 
As shown in the Figure 4-A, the number of differentiated genes 
triples from time 0 to 30 minutes, and increases 10 times 
between time 0 and 120 minutes. Between time 30 and 120 
minutes, 280 differentially expressed genes were shared, 
representing more than 62% of the genes at 30 minutes (Figure 
4-C). At 120 minutes, 1223 genes were differentially expressed, 
representing 20.7%, which contrasts with the analyses among 
strains, where the differences did not exceed 3.3%.  

In addition, ontologies with characterized genes showed a 
significant increase in the metabolic pathways involved, with 
22 pathways at 30 minutes and 38 pathways at 120 minutes, as 
detailed in Figure 4-B.  

When annotation and screening of expression networks 
was done with PANTHER and PseudomonasNET databases, at 
0 minutes the differentially expressed genes are not 

significantly associated with any metabolic pathway, however, 
this changes at 30 and 120 minutes (Figure 5 and Table 2, last 
row). When performing a general analysis of the networks 
obtained for each of the comparisons, as shown in Table 2, the 
topological metrics revealed relevant changes by time of 
exposure to the antibiotic in mlexA strain, but not significant 
when considering the difference between strains at the same 
time. For example, as shown in Table 2, when comparing the 
networks obtained between strains in each time (networks not 
shown), the number of nodes and edges was oscillating but with 
relatively stable variations compared to the other cases, the 
same for the degree of the nodes (1.92 at the beginning and then 
it passes to 1.49 at 30 minutes and 2.41 at 120 minutes). Despite 
this observation, all networks generated presented significant 
relationships (based on the p-value of the PPI) but none were 
significantly associated with any metabolic pathway (based on 
functional enrichment). 

When comparing the time for mlexA strain, the changes 
were significant with a drastic increase in various metrics. For 
example, between 0 and 120 minutes, the number of nodes 
changed from 146 to 1223 and the average number of 
connections per node increased from 1.49 to 16.1.  

 
 
 

 
 

 
 

0 min 30 min 120 min 
 
Figure 5. Transcriptional networks of differentially expressed genes of strain mlexA by time, using WT-0min for comparison. Identification of one cluster was 
possible at times 30 and 120 minutes (logFC of up-regulated genes are shown in green and down-regulated genes in red).  

      A. Differentially expressed genes by 
time 

 

Conditions 
Differentially 

expressed genes 
Down Up 

mlexA-0min/  
WT-0min 67 79 

mlexA-30min/ 
WT-0min 288 161 

mlexA-120min/ 
WT-0min 614 609 

 

B. Diversity of pathways 
 
 

   
Time 0 min 
4 pathways 

Time 30 min 
22 pathways 

Time 120 min 
38 pathways 

   
 

C. Comparison by time 

 
 
Figure 4. Differentially expressed genes of strain mlexA by time, using WT-0min for comparison. Differences shows an increment by time (A) with enrichment 
of pathways (B). 280 differentially expressed genes were found to be shared between 30 and 120 minutes (C). 
 

logFC 



At 30 and 120 minutes, using the annotation with 
PANTHER (Figure 4-B), the diversity of metabolic pathways 
was significantly linked to the differential expression profile by 
functional enrichment. 

On the other hand, in order to compare the values of 
expression of the down and up regulated genes in the network, 
the preliminary graph was imported into Cytoscape and was 
edited to incorporate expression data. When performing the 
representation of the relative expression values (Figure 5, up-
regulated genes are shown in green and down-regulated genes 
in red), we observed a random distribution of genes, except a 
group of up-regulated genes that formed a cluster (at 30 and 120 
minutes). These clusters are also formed when networks for WT 
are created at 30 and 120 minutes (with differential expression 
relative to WT-0min), so they are independent of LexA activity 
(networks not shown). When carrying out the characterization 
of the genes that conformed these clusters, the functional 
annotation revealed that the majority corresponded to: 
hypothetical proteins of P.aeruginosa (not characterized), 
phage-associated proteins (mostly hypothetical), pyocin 
metabolism, transcription, SOS response and other metabolic 
processes (Table 3). 

IV. DISCUSSION 
The complexity of biological systems and the amount of 

data obtained with high-performance technologies continue to 
represent a limitation when extracting relevant information 
[14]. This is also true for prokaryotic biological systems like P. 
aeruginosa, whose physiology and regulatory mechanisms at 
the global level are barely understood. At the transcriptomic 
level, the need to associate RNA molecules to decipher their 
complex interactions can be solved with pattern recognition 
within the data sets. This can be complemented with the 
knowledge stored in databases to characterize interactions and 
analyze them as a complex network. 

P. aeruginosa is a bacterium of high relevance for human 
health due to the infections it causes and the common loss of 
susceptibility to antibiotics leading to multiple drug resistance 
[2], [15], [16]. This is worsened by the absence of new 
antimicrobials and the inability to control the development of 
antibiotic resistance. Moreover, lack of knowledge of the 
antibiotic-pathogen interactions and the mechanisms of action 
of antimicrobial agents at the complete system level delay the 
formulation of new strategies to control infections [15].  

The model for studies, the strain PAO1 with loss of LexA 
function, it is of particular relevance because LexA is a 
regulator of the SOS response, which constitutes a mechanism 
of tolerance to DNA damage. For this strain, the SOS response 
is induced with the exposure to ciprofloxacin. 

To perform an initial evaluation, the data was normalized 
with RMA, an algorithm regularly used to evaluate the quality 
and comparability of the data [13]. This process guarantees that 
the differences in expression are biologically significant, 
referred to as interesting variation. In contrast with variation 
introduced during sample preparation, array manufacture and 
array processing (labeling, hybridization, and scanning),  
referred to as obscuring variation [17]. 

Notably, clustering algorithms such as PCA and HC (Figure 
1) showed that the effect of the mutation is reduced compared 
to the effect of time when the bacteria is exposed to 
ciprofloxacin. In the PCA, the trajectory of global profiles is the 
same for the two strains, to the point that it is not possible to 
clearly differentiate the strains. Additionally, the global profiles 
were validated with housekeeping genes (Table 1) showing no 
significant differences between conditions as expected. 

When comparing the two strains at each time, with or 
without LexA function, transcriptomic responses showed less 
than 3.3% differences between strains when a single gene 
analysis was performed. The initial screening was done by gene 
ranking and elimination of quartiles; indicating that no more 
than 25% of the genes could differentiate the classes using the 
SVM algorithm. 

 
TABLE 3. Cluster genes annotation of mlexA strain  

(30min and 120min) 

Functional Annotation 
Number of genes  

30 min 120 min 
Bacteriophage protein 10 10 

Hypothetical protein 39 40 

Pyocin metabolism 5 5 

SOS response regulator 4 - 

Transcriptional regulator 3* 3* 

Others (with only 1 gene)  7 2 
Total 66 58 

         * Two genes were also counted in pyocin metabolism 

TABLE 2. Comparison of topological metrics of networks created using the differentially expressed genes 
 

Topological metrics 
Comparison of conditions 

mlexA-0min/   
WT-0min 

mlexA-30min/ 
WT-30min 

mlexA-120min/ 
WT-120min 

mlexA-30min/ 
WT-0min 

mlexA-120min/ 
WT-0min 

Number of nodes 146 109 193 448 1223 
Number of edges 140 81 233 2080 9841 

Average node degree 1.92 1.49 2.41 9.29 16.1 
Average local clustering 

coefficient 0.506 0.39 0.431 0.476 0.384 

PPI enrichment p-value 5.99e-08 1.42e-08 2.58e-12 < 1.0e-16 < 1.0e-16 
Functional enrichments detected No No No Yes Yes 



This combination of algorithms and analyses has not been 
previously reported for expression analyses of P. aeruginosa, 
since they are regularly performed separately. The aim was to 
verify with two different techniques the variations among 
conditions, where global profiles are used (using SVM by 
quartiles) and then individual gene level is applied for 
separation of classes (with analysis of differential expression). 

These results are consistent with what was expected for P. 
aeruginosa, because LexA seems to regulate a discrete number 
of genes, including 15 of the SOS response, as well as others in 
various metabolic pathways [5]. Therefore, global profiles in 
response to ciprofloxacin do not allow a clear separation of the 
strains conditions, i.e. both are affected in a similar way. The 
functional effects of LexA loss were verified by comparing the 
strains, as shown in Figure 2. In other organisms such as 
Escherichia coli and Bacillus subtilis [5], the SOS response also 
involves a relatively small number of genes, although higher 
than for P. aeruginosa, so the loss of LexA function could also 
have discrete effects on the global differential expression 
profiles. Additionally, no significantly enriched pathways for 
diferentially expressed genes were found and the topological 
metrics of correlation networks remained oscillating in 
relatively narrow ranges (Table 2). 

However, when making the temporal comparison of the 
mlexA strain with the initial profile of WT, a significant 
increase of differentially expressed genes is evidenced, both for 
30 minutes and much larger for 120 minutes. For the latter case 
reaching almost 21% of differences compared to the initial 
control. For instance, the gene networks showed increasing 
exponential changes in the number of genes and interactions 
among them (according to the topological metrics), and that 
corresponded to an increase in metabolically enriched routes. 
Inclusively, a cluster was identified at 30 and 120 minutes, 
whose characterization revealed many hypothetical proteins 
involved. This gap in knowledge regarding the function and 
importance of these proteins is a limitation of the current state 
of knowledge in P. aeruginosa, because although there is 
experimental evidence that they are related, it is not possible to 
characterize them completely from the curated databases. 

As previously reported, the knowledge of the transcriptional 
dynamics during exposure to ciprofloxacin contributes to the 
understanding of its pathogenicity by the biological processes 
it regulates (phages, mobility, toxin production, others) and can 
potentially offer alternatives to modulate the stress response 
[5], particularly the SOS response. This has an impact not only 
in the susceptibility to antibiotics, but could also regulate other 
biological processes such as the induction of errors in the DNA 
polymerases and emergence of spontaneous mutations [18]. 
Such mechanisms are of particular importance in P. aeruginosa 
since resistance to multiple drugs originate mainly from point 
mutations [19]. Moreover, SOS response affects other 
determinants of production of pyocins and transference and 
expression of exogenous genes of resistance [18]. Potentially, 
all these biological processes could be targets for modulation of 
the SOS response based on the knowledge obtained from this 
and other studies. 
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