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This document is not intended to be a thorough scientific review, but rather a useful source 
of information. While it is based on a sound, updated review of the scientific literature, the 
major intention is to provide clear statements and practical recommendations that are 
relevant to the Latin American population. The inquisitive reader is directed to recent 
excellent reviews on this topic 3,4,35,55,89 
 
Introduction. 
 
Physical activity, structured or not, is becoming a very important aspect of life. It is now widely 
accepted that physical inactivity is a risk factor for chronic disease and a threat to quality of life 
12,24,65. Millions of people around the world exercise regularly to improve their health, and millions 
more participate in organized sport. In Latin America, much of this physical activity is carried out 
in hot and humid conditions, which poses particular challenges to the human body. 
 
People who exercise in the heat face potential problems such as heat illness and impaired 
performance. During physical activity, muscles generate large amounts of heat that must be 
dissipated to the environment, or an increase in central (core) temperature will occur. This 
generation of heat by the muscles is proportional to the work rate, therefore, short-duration, 
high-intensity exercise (such as 5-10 km fun runs), and longer-duration, lower-intensity activities 
(such as marathon running) all present a risk. Players in games such as soccer, with many short 
sprints repeated over a long period, may be at particular risk. 
 
Sweating is a physiological response that attempts to limit the rise in core temperature by placing 
water on the skin for evaporation, but if this fluid loss is not compensated with ingestion of fluids, 
temperature regulation, performance, and possibly health, will be impaired. The challenge, 
therefore, is twofold: to effectively dissipate excess heat to the environment, and to avoid reaching a 
state of hypohydration. 
 
Consequences of heat stress and dehydration. 
 
The combination of physical activity and heat stress poses a significant challenge to the human 
cardiovascular system. In addition, whenever fluid loss from sweat is faster than fluid replacement, 
the individual is in a process of dehydration. Hypohydration modifies many physiological variables 
during exercise. The direct consequence of hypohydration combined with heat stress is an impaired 
physical performance, as a result of the inability of the cardiovascular system to maintain the same 
cardiac output 31. This fall is a consequence of the reduction in stroke volume, due to a reduced 
blood volume and lower ventricular filling to a level which cannot be compensated by the increase 
in heart rate 18. There is also a linear relationship between the level of hypohydration and body core 
temperature, because hypohydration impairs thermoregulatory function, making exercise in the heat 
even more difficult 19. 
 
Hypohydration has a progressively negative impact on exercise performance, even at levels as low 
as 1% 3,20, 2% 7 or 3% 83 of body weight. It appears that environmental heat stress not only plays an 
important role per se 84, but it also has a potentiating effect on the reduction of maximal aerobic 
power elicited by hypohydration. Time to fatigue at sub-maximal intensities is also shorter when 
exercise is performed in the heat. Prolonged aerobic efforts are more likely to be negatively 
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influenced by hypohydration than short-term anaerobic exercise tasks 7. There are few studies on 
the effects of hypohydration on anaerobic power, muscular strength, speed, coordination, and 
agility, and their results are not conclusive. 
 
The negative effect of hypohydration on thermoregulatory function increases the risk of heat 
exhaustion and heat stroke, two heat-related illnesses 4,34,41. Heat stroke is a serious condition that 
may be life-threatening 16, and therefore should be treated immediately by medical personnel, 
whose major goal will be to lower core temperature 69,91. Kidney function complications have also 
been associated with hypohydration and high body core temperatures during exercise in the heat 
44,45,86,91,95,97,100. Finally, a rather common problem are so-called heat cramps, or 
"exercise-associated muscle cramping" (EAMC) 46,50,96. These "painful spasmodic involuntary 
contractions of skeletal muscle that occur during or immediately after muscular exercise" 87, are 
commonly associated with profuse sweating while exercising in the heat, but the scientific evidence 
supporting the hypothesis of a direct relationship between hypohydration and EAMC is very 
limited. This issue warrants further investigation. 
 
Effect of the environment on thermoregulation. 
 
As mentioned above, body heat production during exercise is a function of exercise intensity. 
Dissipation of this heat will depend on heat transfer from body core to skin, on clothing, and on 
ambient heat stress. The ambient heat stress imposed on an individual is a function of air 
temperature, wind speed, relative humidity, and solar radiation. A practical combined measure of 
ambient heat stress is the Wet Bulb Globe Temperature (WBGT) index 26,105. The American College 
of Sports Medicine (ACSM) has established guidelines for long-distance runners clad in shorts, 
T-shirts, and running shoes, in terms of risk of heat illness: if WBGT is above 28o C there is a very 
high risk; when WBGT is between 23 and 28o C the risk is high. A WBGT index of 18-23oC 
indicates a moderate risk, and if WBGT < 18o C, the risk is low 4. The risk of heat illness is also 
higher whenever WBGT is unusually high, relative to the normal climate where people have been 
exercising. 
 
A large number of Latin American countries are located in the tropical region. While altitude can 
make a considerable difference (e.g., Mexico City and Bogotá are cooler cities), the tropics are 
characterized by relatively constant, high temperature and humidity for most of the year. WBGT 
values higher than 28°C are not uncommon, especially at sea level. 
 
There is preliminary evidence to indicate that inhabitants of tropical regions have a greater tolerance 
to ambient heat stress, possibly due to their level of chronic heat acclimatization 78,80. However, 
until more complete data are published regarding heat stress tolerance of chronically 
heat-acclimatized people, the ACSM guidelines should be followed. 
 
Heat acclimatization is a collection of physiological adaptations that enable an individual to 
withstand greater ambient heat stress. It includes an increase in the sweating capacity, a more dilute 
sweat, and an enhanced ability to sustain a high sweat rate during prolonged exercise 54,88. All of 
these adaptations help minimize heat accumulation, allowing a longer endurance time and a lower 
risk of heat-related illness. Because acclimatized individuals have higher sweat rates, they need to 
pay more attention to hydration. 
 
Heat acclimatization is a normal result of regular exposure to physical activity in the heat. When 
athletes or physically active people move or travel to a hotter region, acclimatization can be induced 
by progressive exposure to heat. At the beginning of the acclimatization process, the duration and 
intensity of the exercise sessions should be lower than usual. Duration and intensity may be 
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gradually increased every day as heat tolerance improves. Significant adaptations occur within the 
first 7-14 days of heat exposure 54. 
 
While heat exposure during exercise is very important for acclimatization, it is also true that a 
higher aerobic fitness per se enables individuals to better dissipate the thermal load of exercise, 
mostly because of an expanded blood volume and an improved sweating capacity 63. The quantity 
and quality of exercise needed to improve aerobic fitness is greater than what is recommended for 
health-related benefits. Frequency should be between 3 and 5 days per week, with a session 
duration of 20 to 60 minutes, at an exercise intensity of 55/65% to 90% of maximum heart rate 6. 
 
All individuals, acclimatized or not, need to pay attention to climatic conditions and make the 
appropriate adjustments whenever ambient heat stress is unusually high. Shorter and lighter 
warm-up sessions prior to training and competition will prevent core temperature from rising 
unnecessarily. Competition or training strategy should accommodate a lower duration and intensity, 
together with longer and more frequent breaks, to reduce heat production. Finding cooler areas in 
the shade or wind for warm-up sessions, breaks, and recovery periods or siestas is often possible; 
this helps keep body temperature lower and prevent dehydration. 
 
Contrary to the recommendations above, it is common in Latin America to see exercising 
individuals wearing rubber suits or accessories to promote sweating, believing this will result in fat 
loss. Rubber suits create a microenvironment around the individual where humidity is very high and 
evaporation of sweat is virtually impossible, severely limiting heat dissipation. Body core 
temperature increases rapidly, profuse sweating quickly produces dehydration, and fatigue ensues. 
This procedure is not only useless to facilitate fat loss, it is also a threat to thermoregulation and 
promotes heat illness. 
 
While it is clear that individuals may adapt to the physiological challenges of physical activity and 
heat stress by progressively increasing their level of activity and exposure to heat, there is no 
evidence to show that it is possible to adapt to hypohydration. In fact, hypohydration compromises 
the advantages of acclimatization. Exercising without drinking may be muy macho and strengthen 
the will, but it hurts the body seriously. 
 
The hydration process. 
 
Euhydration, a normal, balanced level of hydration, is only maintained in physically active people if 
they ingest enough fluid before, during, and after physical activity. The ability to match fluid loss 
with fluid intake is limited by the maximal rates of drinking, gastric emptying, and intestinal 
absorption. Under hot and humid conditions, sweat rates can easily exceed these limits 67. 
 
It has been known for decades that when people exercise and sweat they do not voluntarily replace 
all the fluid lost through sweating 72,81,94, even when fluids are widely available. This is called 
voluntary dehydration, and it occurs in unacclimatized children 10,11,102, in acclimatized children 80, 
and in adults 14,33,81. 
 
Spontaneous fluid intake is influenced by a variety of sensory-related information such as odor, 
taste, temperature, color, and subjective quality. Only a few of these factors have been studied 
systematically, the major ones being fluid temperature and flavor. Studies with different fluids show 
that voluntary fluid intake is maximum when liquids are cool, that is, at a temperature between 15 
and 20°C 3,13,98. Slightly flavored drinks are preferred over plain water, but strong natural flavors 
like beer, milk, and carbonated drinks are not highly acceptable during exercise 38. 
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The voluntary consumption of a well-formulated sports drink is greater than that of plain water, in 
part due to the palatability of sports drinks 37,98,102. Beverage temperature, sweetness, flavor 
intensity, mouthfeel, tartness, and aftertaste are all characteristics that influence palatability and 
thereby encourage or discourage fluid consumption during physical activity. A series of studies with 
boys exercising in the heat have shown that voluntary intake of a flavored drink was high enough to 
maintain euhydration, even when sweat rates were high 78,102,103. 
 
Once fluid has been ingested, it must first be emptied from the stomach. Gastric emptying depends 
on several factors. The exponential nature of the emptying curve indicates the crucial importance of 
the volume of stomach contents in controlling the emptying rate: as the fluid is emptied and the 
stomach volume falls, so the rate of emptying is decreased. Maintaining a large fluid volume in the 
stomach will promote emptying 66,75, although the presence of large volumes in the stomach is not 
well tolerated by all individuals and is against the preference of many soccer players. This tolerance 
is subject to training, allowing the individual to handle larger volumes after repeated trials. 
 
Fluids with a greater energy content have slower gastric emptying rates. This pattern is the same 
during exercise as that observed at rest 39,40,59,62,68,101. The negative effect of a high energy content on 
gastric emptying rate is much greater than the effect of a high fluid osmolality. High-intensity 
exercise will slow down or even stop gastric emptying, but exercise at intensities around 70 to 75% 
VO2max has little or no effect on the rate of gastric emptying 36,48,59,71,74. Severe hypohydration in 
combination with hyperthermia and intense exercise slows gastric emptying and increases the risk 
of gastrointestinal distress 73,82. 
 
The third rate-limiting process during hydration is intestinal absorption of fluids. Two major factors 
governing net water transport in the small intestine are osmolality and solute flux 28,29,90. Solutions 
markedly hypertonic to human plasma cause less water absorption and more secretion, while 
hypotonic solutions promote net water absorption. The addition of carbohydrate to a fluid 
replacement solution can enhance intestinal absorption of water 29,60,75,90. The use of multiple 
substrates (carbohydrates) stimulates several different solute absorption mechanisms, yielding 
greater water absorption than solutions with only one substrate 90. The proper amount and type of 
carbohydrate dramatically stimulates fluid and electrolyte absorption in the small intestine, even in 
slightly hypertonic drinks. 
 
An adequate hydration before physical activity is essential to preserve all physiological functions. 
Fluid deficit before exercise can potentially compromise thermoregulation, and produce greater 
cardiovascular strain during the exercise session 3,8,64,83. Ingestion of 250 to 600 mL of fluids at least 
two hours before exercise will help assure beginning with a proper hydration level, plus it allows 
some time for any unnecessary fluid to be released via urine. 
 
There is not enough evidence to support hyperhydration before exercise as a means to improve 
exercise performance 49,77. Hyperhydration is difficult to achieve because plasma volume expansion 
results in hypotonicity and increases diuresis. There is a strong possibility that hyperhydration 
protocols are simply allowing chronically-hypohydrated subjects to reach a normal level of 
hydration, a clearly positive physiological achievement that would be meaningless to euhydrated 
subjects, but is very important in Latin America where cultural influences may promote chronic 
hypohydration. 
 
During physical activity, the goal of fluid ingestion should be to match fluid loss from sweat or, 
when sweat rates are too high, to replace as much fluid as possible. This is achieved by drinking 
small volumes (125 to 500 mL of fluid) regularly, every 15 minutes or so. The amount and 
frequency need to be adjusted according to particular sweat rates and tolerance of fluid ingestion. 
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Fluid loss during an exercise session may be estimated by weighing the person nude and dry before 
and after exercise: approximately 100 mL of sweat were lost for every 100 g of weight loss 
obtained. 
 
Restoration of water and electrolyte balance is an essential part of the recovery process after 
exercise that results in sweat loss. Adequate rehydration after one exercise session translates into 
euhydration before the next session. Because of ongoing urine output, subjects are in net negative 
fluid balance throughout the recovery period, unless the volume ingested exceeds the loss. When 
the sodium concentration of the ingested fluid is varied (0, 25, 50 or 100 mmol/L) and fluid is 
ingested in a volume equal to 1.5 times the sweat loss, urine output is inversely proportional to the 
sodium concentration of the ingested fluid. For effective rehydration, drinks and food should 
replace electrolytes lost in sweat as well as the volume loss: this means that the intake of sodium 
should be moderately high (perhaps 50-60 mmol Na+/L fluid), and there should also be some 
potassium. To balance this requirement with drink palatability, some of the sodium could be 
ingested as food. To surmount ongoing obligatory urine losses, the volume consumed should be 
greater (by at least 50%) than the volume of sweat lost 51,52,53,68,92,93. 
 
Utilization of sports drinks. 
 
Water is a widely available fluid for hydration. While ingestion of water can help offset many 
problems of dehydration, research conducted over the last five decades has repeatedly confirmed 
that physically active people can benefit from ingesting a proper mixture of fluid, carbohydrates, 
and electrolytes. The benefits are proportional to the need for fluid, energy, and minerals of each 
individual. Physiological efficacy requires that the beverage be formulated to avoid (or to at least 
minimize) the limitations imposed by voluntary drinking, gastric emptying and intestinal 
absorption, while providing fluid, carbohydrate, and electrolytes in amounts and at rates known to 
provoke positive physiological and performance responses 3,17,30,32,47,60,85. 
 
The right amount and types of carbohydrate are important determinants of sports drink efficacy. In 
addition to imparting the sweetness level that improves palatability, carbohydrate plays a number of 
other important roles.  The proper amount and type of carbohydrate has minimal effect on gastric 
emptying and yet dramatically stimulates fluid and electrolyte absorption in the small intestine, as 
mentioned above. The glucose provided by sports drinks is taken up by active muscle cells, helping 
sustain a high rate of carbohydrate oxidation, which can improve exercise performance. Sports 
drinks should contain a mixture of carbohydrates (e.g., a combination of sucrose, glucose, and 
fructose) in a concentration of about 60-70 g/L61. 
 
Electrolytes play a key role in maintaining fluid intake and promoting rehydration. Fluid intake 
during physical activity can be maintained by ingesting a small amount of sodium chloride. 
Absorption of salt into the bloodstream prevents plasma osmolality from dropping below the thirst 
threshold too quickly and thereby helps preserve the drive to drink. After physical activity, rapid 
and complete rehydration requires the replacement of the sodium and chloride that was lost in 
sweat.  For these reasons, sports drinks should contain at least 100-mg sodium per 250 ml. 
 
To this date, there is no compelling scientific evidence to support the inclusion of other ingredients 
in sports drinks. Glycerol, caffeine, certain amino acids, numerous metabolites (e.g., pyruvate, 
lactate, etc.), and various vitamins and minerals have been suggested as possible ingredients in 
sports drinks.  Although there have been some published reports of purported benefits, there is no 
scientific agreement that such inclusion would improve sports drink efficacy.  
 
Special population groups. 
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Exercise and hydration guidelines for physical activity in the heat are generally directed to active 
adults. Whether they are applicable to healthy children, older adults and pregnant women is an 
important question since these groups may exercise as much as adults, and they represent a large 
segment of the population in Latin America. People with common chronic diseases such as 
hypertension, diabetes mellitus or coronary heart disease may benefit from regular physical activity, 
but due to the nature of their disease, need special consideration as well. Health professionals are 
encouraged to study the scientific literature on exercise in specific populations cited below. 
 
Potential thermoregulatory disadvantages of children are their lower sweating rate per surface area 
and per sweat gland, and a higher increase of core temperature as they dehydrate 9. Despite the 
lower sweating rate, children may dehydrate as much as adults. When flavored and isotonic sports 
drinks are available during or after prolonged exercise, the voluntary intake of children is higher 
58,78,102, although preliminary evidence suggests this may not be true in heat-acclimatized girls 79. 
Coaches and parents have a responsibility to ensure adequate opportunities for fluid intake, to make 
palatable drinks available, and to encourage drinking before, during and after exercise. About 1.8 
ml·kg-1 every 15 minutes is enough to keep a healthy child euhydrated during exercise at a 
moderate intensity in the heat 57. A higher intake should be considered for acclimatized children, 
and those living in the tropics who might be chronically hypohydrated. 
 
Much of the heat intolerance of older adults is due to their sedentary life, which impairs their 
aerobic fitness and acclimatization 42. Independent of the lifestyle, decreased skin blood flow and 
sweating output were shown to be inevitable changes with aging 43. When guiding them about 
exercise in the heat, we should consider their health (including the use of medications), fitness and 
acclimatization levels. Because of their lower thirst perception for any given degree of 
hypohydration 56, drinking should be encouraged even if they do not feel thirsty. 
 
Thermoregulatory concerns about exercising during pregnancy are related to maternal and fetus 
responses 15. Fetal temperature is about 0.5°C higher than that of the mother at rest, so there is a 
greater risk for baby’s hyperthermia during exercise. Hyperthermia may damage fetus growth and 
formation. After physician clearance and specific advice such as aquatic exercise, a pregnant 
woman should avoid hypohydration and exercising in hot conditions, to keep her body core 
temperature below 38.5°C 104. Fluid replacement may include carbohydrate since hypoglycemia is 
another concern that may affect growth of the baby and maternal comfort.  
 
Therefore, children, older adults, and pregnant women need extra care to prevent hyperthermia and 
dehydration. Hydration procedures follow the same basic principles as those for average adults. 
There is no clinical or physiological reason to contra-indicate utilization of a regular sport drink in 
these groups, since the composition represents no overload for the body (100 mL of a typical sports 
drink has about 6 g of carbohydrate, 46 mg Na+, and 13 mg K+. This is about half the carbohydrate 
concentration of many soft drinks and fruit juices, and about the same amount of Na+ in 100 mL of 
milk). Because sports drinks are clearly labeled regarding their composition, the amounts can be 
easily included in the nutritional assessment of individuals. Future studies may indicate if there is an 
optimal drink formula for each particular group. 
 
Hypertension and diabetes mellitus are two common chronic diseases that produce high morbidity 
and mortality in the world. After seeking for medical advice, the initial treatment of these diseases 
usually includes nutrition counseling and several lifestyle modifications, such as increased regular 
physical activity 1,23,25,76. Basically, the same recommendations for average adults apply to 
hypertensive and diabetic patients who have no complications, with only a few specific concerns. 
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It is standard practice to have hypertensive and diabetic patients cleared by a physician for exercise. 
Physicians and nutritionists should be familiar with the present document and other relevant 
publications 2,5, and must consider the supply of carbohydrate and sodium in sports drinks when 
evaluating the diet of their patients. 
 
Diabetic patients should not exercise in extreme temperatures because of potential problems with 
thermoregulation related to autonomic neuropathies 22,27. Thermoregulatory responses, including 
sweating, are often abnormal with different body anhidrotic zones 22, and exercise tolerance is 
impaired. If carbohydrate content is carefully balanced with the normal diet, sports drinks may be 
consumed by patients with diabetes to help maintain blood sugar levels during exercise -thus 
preventing exercise hypoglycemia- and to stay well hydrated. Sports drinks have a high glycemic 
index, but they normally do not cause or contribute to hyperglycemia during exercise99. Individual 
needs should be determined with the help of a nutritionist or physician. 
 
Hypertensive patients using β-blockers may experience compromised heat dissipation due to 
reduced skin blood flow, and also an accelerated sweat rate response which could worsen 
dehydration. Fluid replacement is especially important under these circumstances 21. Furthermore, 
diuretic therapy can produce hypokalaemia and hypohydration, but with adequate fluid intake and 
potassium supplementation, exercise impairment can be avoided 70. Hypertensive patients under 
sodium-restricted diets must include the sodium provided by sports drinks into their total intake 
calculations. 
 
Conclusion. 
 
Scientific evidence shows that regular exercise brings many health benefits, but hot humid 
conditions pose a major challenge to the body’s ability to perform physical activity. Exercise 
performance is significantly reduced, and the risk of dehydration and heat illness is also increased. 
Because high heat stress conditions prevail in much of Latin America, a few important strategies are 
necessary to minimize the impact of these conditions on physically active people and on athletes. 
These strategies are clearly summarized in the consensus statement attached to this document. 
 
There is a need for further research in the area of physical activity in the heat. The following 
specific needs have been identified for Latin America: 
 
1. What is the incidence of heat-related illness during sports participation in Latin America? What 
are the safe limits of WBGT for prolonged physical activity in chronically heat-acclimatized 
people? 
 
2. What are the risk factors for exercise-associated muscle cramping? Is it possible to reduce the 
incidence of cramping by maintaining euhydration? 
 
3. Are hyperhydration protocols achieving a true hyperhydration, or simply enabling subjects to 
overcome chronic hypohydration? What are the physiological and performance benefits or side 
effects of hyperhydrating athletes before exercise? 
 
4. In the area of sensory characteristics of beverages, there is a need for a multidimensional model 
of analysis where the relative importance of the different elements can be weighed, and also where 
dose-response manipulations can be done. 
 
5. Is there a shift on perceptual preferences (e.g., palatability) during exercise related to level of 
hypohydration, overall fatigue, or sensory fatigue? 
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6. Besides voluntary fluid ingestion, there is a need to further examine questions about alliesthesia 
and addiction from both acute and long-term perspectives. 
 
7. Is there a relationship between ingestion of fluids and exercise-related transient abdominal pain 
(colics)? 
 
8. Is there an optimal sport drink formula specific for children, older adults, pregnant women, or 
chronically ill people? 
 
9. What are the advantages or disadvantages of sports drink ingestion during physical activity in 
diabetic or hypertensive patients? 
 
10. Is there a negative effect of hypohydration on motor fitness, as measured by tests of speed, 
coordination, reaction time, accuracy, and agility? Is this effect in addition to the effect of heat? 
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Appendix. 
 
The Wet Bulb Globe Temperature index. This index combines measures of air temperature (Tdb), 
humidity (Twb) and solar radiation (Tg), according to the equation used by ACSM4, modified from 
Yaglou & Minard 105: 
 

WBGT= 0.7 Twb + 0.2 Tg + 0.1 Tdb 
 
Because this index uses non-ventilated wet bulb and globe temperatures, that is, the only air 
movement around the thermometers is due to natural wind speed conditions, this index also 
includes an indirect measure of the cooling effect of wind. 
 
When black globe temperature is not available, WBGT may be calculated according to Gagge & 
Nishi: WBGT = (0.567 Tdb) + (0.288 Pa) + 3.38, where Pa is the water vapor pressure in Torr 26. 
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