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Abstract
Central America is frequently affected by droughts that cause significant socio-economic and environmental problems. Drought
characterisation, monitoring and forecasting are potentially useful to support water resource management. Drought indices are
designed for these purposes, but their ability to characterise droughts depends on the characteristics of the regional climate and the
quality of the available data. Local comprehensive and high-quality observational networks of meteorological and hydrological
data are not available, which limits the choice of drought indices and makes it important to assess available datasets. This study
evaluated which combinations of drought index and meteorological dataset were most suitable for characterising droughts in the
region. We evaluated the standardised precipitation index (SPI), a modified version of the deciles index (DI), the standardised
precipitation evapotranspiration index (SPEI) and the effective drought index (EDI). These were calculated using precipitation
data from the Climate Hazards Group Infra-Red Precipitation with Station (CHIRPS), the CRN073 dataset, the Climate Research
Unit (CRU), ECMWFReanalysis (ERA-Interim) and a regional station dataset, and temperature from the CRU and ERA-Interim
datasets. The gridded meteorological precipitation datasets were compared to assess how well they captured key features of the
regional climate. The performance of all the drought indices calculated with all the meteorological datasets was then evaluated
against a drought index calculated using river discharge data. Results showed that the selection of database was more important
than the selection of drought index and that the best combinations were the EDI and DI calculated with CHIRPS and CRN073.
Results also highlighted the importance of including indices like SPEI for drought assessment in Central America.

1 Introduction

The quantification and understanding of drought characteris-
tics is necessary for water management and planning, espe-
cially in a region like Central America where droughts occur
frequently and lead to large economic and social problems.
Drought-induced problems include rationing of drinking

water, disruption of irrigation, negative consequences for
freshwater fisheries and tourism, and energy rationing as a
result of loss of hydropower (Brenes 2010). Agriculture,
drinking water, and hydropower are very important for the
socio-economic development and food security in the region,
but they are highly vulnerable to droughts (GWP 2016).
Negative effects on agriculture include disruption of the
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production at small and large scales, which affects food secu-
rity and in turn triggers other detrimental effects for the whole
society (Brenes 2010). Reduced water level in dams used for
hydropower production forces countries to ration energy and
to use more expensive alternative energy sources, usually
based on fossil fuels. Reduced water levels in surface and
subsurface water bodies increase the costs of water extraction
and mean that alternative—usually more expensive—ways of
providing drinking water are needed, which in turn may in-
crease the costs of water treatment. All these negative effects,
however, do not occur simultaneously. Deficits in soil mois-
ture and, thus, effects on agriculture, are usually not observed
until after a period of sustained precipitation deficits (meteo-
rological drought), and it may take an even longer period for
deficits to occur in surface and subsurface water bodies (hy-
drological drought). Different drought indices—or alternative-
ly, different accumulation times of meteorological drought
indices—are available to capture different types of droughts.
Typically, short accumulation times are used to estimate me-
teorological drought (e.g. 1, 3 months), medium accumulation
times are used for agricultural drought (e.g. 3, 6 months) and
long for hydrological drought (e.g. 6, 12 months).

Droughts affect large parts of Central America simulta-
neously, and for this reason, it is important to study drought
at the regional scale and identify areas with high drought risk.
Knowledge of such spatiotemporal drought characteristics is
necessary to support water management and planning. Peer-
reviewed studies that assess the spatiotemporal characteristics
of drought in Central America are scarce, though there are a
few available at a local scale. Patterson (1992), for example,
found that May, July and August were the months with the
highest drought risk in the north-western part of Costa Rica.

The reliability of drought characterisation depends on the
quality and quantity of the data used. In Central America,
meteorological and hydrological observational data availabil-
ity is limited at the regional scale (Portig 1965; Aguilar et al.
2005; Westerberg et al. 2014), though the situation is more
serious for hydrological than for meteorological data. For this
reason, a regional drought characterisation of soil moisture
and/or hydrological drought in Central America cannot be
done with indices requiring soil moisture or streamflow data,
but it can instead be based on meteorological drought indices
accumulated at different time scales. However, local studies
have shown that precipitation data are often affected by sub-
stantial quality problems (Westerberg et al. 2010), and these
need to be taken into account in hydro-meteorological analy-
ses. To the authors’ best knowledge, no study has previously
evaluated different meteorological datasets in terms of their
suitability for drought applications in Central America, though
such studies are available for other parts of the world, e.g. Iran
Raziei et al. 2011) and Africa (Sylla et al. 2012). There are,
however, studies that review meteorological datasets in
Central America in terms of their use for climate variability

studies. One example is the study by Hannah et al. (2017),
who compared five historical precipitation datasets in terms of
their trends and concluded that care should be taken when
using only one precipitation dataset in climate variability stud-
ies in the region.

Apart from data quality, the robustness of drought charac-
terisation depends on the choice of a suitable drought index.
An important step in drought characterisation is therefore to
evaluate the applicability of different drought indices in any
given region. Drought is a complex phenomenon, and to find
appropriate ways of evaluating a drought index using
independent data is a challenging task. Several evaluations
of commonly used drought indices are available in the
literature, but these are often based on rather subjective set
of criteria developed by experts. Keyantash and Dracup
(2002) evaluated and ranked 14 drought indices in two areas
of the United States (US) according to an evaluation criterion
measuring aspects, such as robustness to different physical
conditions and simplicity of calculation. They found that dec-
iles and standardised precipitation index (SPI), in that order,
ranked best amongst the evaluated indices. Morid et al. (2006)
compared the performances of six drought indices in Iran in
terms of how these captured a specific drought-spell event in
1998–2001 and found that the effective drought index (EDI)
and SPI scored highest. The DI performed well, but varied
very abruptly, both in space and time, between extremely
wet and extremely dry conditions. Recently, more experts
stress the importance of incorporating water demand in the
calculation of drought indices, since this is an important factor
when quantifying drought severity. For example, even though
many of these studies show many advantages of the SPI com-
pared to other indices, recent studies emphasize the impor-
tance of considering the role of temperature through evapo-
transpiration (i.e. potential evapotranspiration, PET) for the
estimation of water deficit (Tsakiris et al. 2007; Vicente-
Serrano et al. 2010). This is especially important for applica-
tions for agriculture and climate warming (Tabrizi et al. 2010;
Cook et al. 2014; Asadi Zarch et al. 2014). In this study, we
included the standardised precipitation and evapotranspiration
index (SPEI, Vicente-Serrano et al. 2010) to compare with
other indices and thereby assess the importance of temperature
for drought estimation.

Considering (a) the large number of drought indices avail-
able, (b) that their suitability changes with the region of appli-
cation (Mishra and Singh 2010) and (c) the key importance of
droughts for water planning and management in Central
America, there is a need to investigate the performance of
different drought indices in the region. The aim of this study
was therefore to investigate which combinations of databases
and drought indices are best suited for characterising—and
potentially for monitoring—droughts in Central America.

A description of the study area can be found in Section 2.
Section 3 introduces the different meteorological datasets we
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evaluated and the hydrological data used to evaluate the dif-
ferent combinations of dataset and drought index. A descrip-
tion of the different drought indices and the analysis to assess
the meteorological datasets and the drought indices is present-
ed in Section 4. Results are presented in Section 5, discussion
in Section 6 and conclusions in Section 7.

2 Study area

The Central-American region is the relatively narrow and
mountainous strip of land that connects North and South
America, located between the Caribbean Sea to the east and
the Pacific Ocean to the west (Fig. 1). The interaction of the
region’s high mountain range with the predominant atmo-
spheric flow patterns plays a central role in shaping the spatial
and temporal precipitation distribution. This results in two
general precipitation regimes, one on the Caribbean slope
and the other on the Pacific slope (Magaña et al. 1999;
Rivera and Amador 2008; Amador et al. 2010). The Pacific
regime is characterised by a bimodal precipitation distribution,
with peaks in June and September–October and a secondary
minimum during July–August (clearly visible in Fig. 2, points
10, 17 and 3). The secondary minimum is known as the mid-
summer drought (MSD) or locally as Bveranillo^ or
Bcanícula^ and has been found to be associated with a
strengthening of the trade winds during these months
(Magaña et al. 1999). The dry season on the Pacific side oc-
curs, in general, during the months of November to April,

whereas there is no consistently defined dry season on the
Caribbean side (Alfaro et al. 1998) (Fig. 2, point 12). Runoff
is not delayed by snow storage anywhere in the region.

Droughts in Central America are often related to inter-
annual anomalies in the temporal distribution of precipitation
(FAO 2012)—i.e. to an early starting date, or late ending date
of the dry season or to changes in the timing of the MSD.

3 Data

The Central-American hydro-meteorological monitoring net-
work is, in general sparser, on the less populated Caribbean
Coast. The station-network density has varied significantly
over time with a substantial increase around 1971 as a result
of the International Hydrological Decade initiative and with a
major decline at the beginning of the 2000s. We assessed four
large-scale gridded meteorological datasets to calculate the
indices. The quality of the different datasets was assessed
against station data in 24 study points that were selected to
cover the two major climatic regimes (Fig. 1). Study points 8,
12, 20, 19 and 24 in Fig. 1 have a Caribbean type of precip-
itation regime, while the rest of the study points have a Pacific
type of regime. We evaluated the meteorological drought in-
dices using a streamflow-based drought index at seven study
points, where discharge data were available. Data are de-
scribed below. Table 1 summarises the spatial and temporal
characteristics of the meteorological datasets used, and
Table 2 summarises the metadata for the streamflow stations.

Fig. 1 The Central-American re-
gion and the locations of the study
points, the CIGEFI-UCR precipi-
tation stations (1965–1990) and
the GRDC hydrological stations
used in this study

Characterising droughts in Central America with uncertain hydro-meteorological data



3.1 Meteorological datasets

3.1.1 CRN073

The CRN073 precipitation dataset was produced by the
Centro de Ciencias de la Atmósfera de la Universidad
Autónoma deMéxico (Magaña et al. 1999, 2003). The dataset
covers both the continental and the oceanic regions and was
made for Central America and southern Mexico using rain
gauge data for the land areas and satellite rainfall estimates
over the oceans. Station data were obtained from the National

Center for Atmospheric Research (NCAR) and from the
Mexican and Central-American weather services. Satellite da-
ta correspond to estimates from the microwave sounding unit
(Spencer 1993). Data were available for the period 1958–
2000, but after evaluating the homogeneity of the dataset, it
was decided that 1958–1985 was the most suitable period.

3.1.2 CIGEFI-UCR (stations)

The CIGEFI-UCR dataset consists of 154 daily rain-gauge
stations with data covering the period 1958–2009. We used

Table 1 Spatial and temporal
characteristics of the
meteorological datasets

CHIRPS CRN073 CRU ERA-
Interim

Station data

Spatial resolution
(° latitude × ° longitude)

0.05 × 0.05 0.5 × 0.5 0.5 × 0.5 0.5 × 0.5 Point scale

Period used 1981–2014 1958–1985 1950–2013 1979–2009 1965–1990

Fig. 2 Medianmonthly precipitation for each of the 12months for five of the study points, for the two study periods, 1965–1985 (left column) and 1981–
1990 (right column)
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1965–1990, which covered the period with the most complete
data series. Completeness was defined as the maximum num-
ber of stations with ≤ 15% missing data for the whole period
(while making sure that there were no large consecutive gaps).
A simple quality control was applied to eliminate outliers in
the data, and the resulting dataset was visually inspected. No
homogenisation was applied.

3.1.3 CHIRPS

The Climate Hazards Group Infra-Red Precipitation with
Station data version 2.0 (CHIRPS, Funk et al. 2014) was pro-
duced using ground-based observations, satellite observations
and global climatologies. The dataset was originally devel-
oped for drought monitoring around the globe, and it is avail-
able to the near present. Its advantage with respect to the other
datasets is its relatively high spatial resolution.

3.1.4 CRU

This dataset was produced by the Climatic Research Unit at
the University of East Anglia. We used the precipitation and
temperature data products of CRU TS3.21 (Jones and Harris
2013). The data were developed by interpolating station data
to a 0.5° latitude × 0.5° longitude grid and consequently
correcting the interpolated product using existing local
climatology.

3.1.5 ERA-Interim

ERA-Interim (ERAI) is a global atmospheric reanalysis pro-
duced by the European Centre for Medium Range Weather
Forecasts (ECMWF). ERAI covers the period from 1 January
1979 onwards and is extended forward in near real-time
(www.ecmwf.int; Dee et al. 2011). ERAI is bias-corrected
using data from the Global Precipitation Climatology Project
(GPCP) v2.1 product (Huffman et al. 2009). We used ERAI
data until 2009 since GPCP v2.1 is not available beyond 31
December of that year.

3.2 Discharge data

We used discharge data from the Global Runoff Database
from the Global Runoff Data Centre (GRDC 2013), which
contains 91 Central-American stations with daily and/or
monthly discharge. Discharge simulations produced with the
four-parameter hydrological model WASMOD (Xu 2002),
driven by CRN073 data, by Westerberg et al. (2014), were
used to fill gaps in the GRDC data. These gaps were few
and short (see Table 2), for which we still consider the filled
hydrological data to be independent from CRN073. We used
seven hydrological stations (Fig. 1 and Table 2) that were
selected based on their locations at non-regulated streams,
their relative proximity to the meteorological stations used in
this study, and that simulated data from the study of
Westerberg et al. (2014) were available to fill data gaps. The
discharge stations cover different time periods depending on
the available data; only gaps shorter than a month were
allowed so that potential uncertainties in the simulated data
used for gap filling had a small effect on the index calculation
(Table 2).

4 Methods

4.1 Assessment of the meteorological datasets

The ability of all the datasets to represent key features of the
regional rainfall regime was first assessed by analysing how
these captured the intra-annual precipitation distribution. This
analysis was done at the 24 study points where we assessed
the local representativeness of the large-scale datasets in com-
parison to station data. Differences between the datasets were
assessed to see how the selection of a particular dataset could
affect the drought characterisation. Since the data were avail-
able for different periods for the different datasets, we used the
two periods 1965–1985 and 1981–1990, to optimise the com-
parison. First, visual comparisons of the median monthly
intra-annual regime and the cumulative distributions were
made. Then, the Spearman’s rank correlation of the monthly

Table 2 GRDC discharge
stations used in this study and
catchment areas from Westerberg
et al. (2014)

Station Catchment
area (km2)

Country Time period used Missing data filled
with simulated data
(% of data series)

Camaron (no. 21) 1172 Panama 1966–1996 None

Chico (no. 24) 409 Panama 1978–1986 None

San Francisco (no. 22) 1379 Panama 1957–1994 2.8

Rio Grande (no. 23) 505 Panama 1956–1995 < 1

Guanas (no. 14) 5527 Nicaragua 1965–1982 1.7

Agua Caliente (no. 10) 1578 Honduras 1969–1980 < 1

Balsa (no. 17) 1638 Costa Rica 1978–1992 None

Characterising droughts in Central America with uncertain hydro-meteorological data
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and annual precipitation was calculated between all dataset
combinations (using the difference between the monthly
values and the long-term mean monthly values to remove
the effect of the annual cycle).

4.2 Drought index calculations

We used four meteorological drought indices: a variation of
the deciles index (DI), SPI, SPEI and EDI. All these indices
were calculated at 1-, 3-, 6-, 9- and 12-month accumulation
times, to capture different drought types, i.e. meteorological,
agricultural and hydrological drought. The standardised
streamflow index (SSI) calculated at one-month accumulation
time was used to define hydrological drought events and to
evaluate the meteorological drought indices.

To calculate the indices at the n-month (n = 1, 3, 6, 9, 12)
accumulation time scale, the monthly precipitation series was
aggregated with an n-month moving sum, i.e. the current
monthly value and the previous n − 1 monthly values. For
example, at a 3-month accumulation time, data for January–
February–March was used to calculate an index for the month
ofMarch. Note that it is not possible to have values for the first
two months of the series, so these values are therefore not
included in the calculation of the indices. In general, for accu-
mulation times larger than one, the first n – 1months of data in
the time series are excluded since complete accumulations are
not available. Accumulation times longer than 12 months
were not included since reliable calculation of the indices at
such time scales would require longer time series than what
was available here.

4.2.1 Modified deciles index

With the deciles index (DI) (Gibbs and Maher 1967), precip-
itation data for each calendar month (or n-month accumula-
tion) are ranked from lowest to highest and grouped into ten
groups or deciles. The first decile contains the data that are
equal or fall below the 90th exceedance percentile, the second
contains data between the 90th and 80th exceedance percen-
tiles and the third decile data between the 80th and 70th ex-
ceedance percentiles. The first, second and third deciles are
used to define extreme, severe and moderate drought events,
respectively. This definition can have limitations at dry loca-
tions because it can occur that more than one of the exceed-
ance percentile values are equal to zero. We therefore included
a modification and redefined the thresholds to 90th, 70th and
60th exceedance percentiles, for those cases in which the 90th
was equal to the 80th exceedance percentile (and both equal to
zero), and to 90th, 40th and 35th exceedance percentiles for
the cases in which the 90th = 70th = 60th exceedance percen-
tiles (i.e. with values of 0). Similar variations of the threshold
values have been used in other areas with high seasonality
(e.g. Fleig et al. 2006; van Huijgevoort 2012). To be able to

compare the DI with the other indices, we flagged the values
defined as extreme droughtwith a value of − 3, severe drought
as − 2 and moderate drought as − 1. A similar categorisation
was used by Morid et al. (2006) in a study where different
drought indices were compared.

4.2.2 Standardised precipitation index

The standardised precipitation index (SPI) is calculated by
first fitting precipitation data for each calendar month (or n-
month accumulation) to a theoretical distribution (Mckee et al.
1993), in our study, to a gamma distribution. Since the gamma
distribution is undefined for zero, only precipitation values
different to zero were included in the distribution fitting. For
values equal to zero, we followed the recommendation given
by Stagge et al. (2015) for a n-month accumulation as

p0 ¼ np¼0þ1= 2nþ1ð Þ ð1Þ

where p0 is the probability of a value equal to zero, np = 0 is
the number of zeroes in the precipitation time series and n is
the total number of precipitation values in the time series. The
formula adjusts the probability of non-exceedance events to
assure that the mean SPI is zero, thus retaining better the
statistical properties of the distribution. A large number of
zero precipitation events would have the effect of lowering
the lowest possible SPI value so that it reaches 0 for areas
without precipitation.

Finally, the probabilities are transformed to the standard
normal distribution through the respective inverse cumulative
distribution functions. We used the categorisation from
Agnew (2000), where SPI values ≤ − 0.84 and > − 1.28 fall
in the moderate drought category, SPI ≤ − 1.28 and > − 1.65
are considered to be severe drought events and SPI ≤ − 1.65
are considered to be extreme drought events, according to their
probability of occurrence.

4.2.3 Effective drought index

Byun and Wilhite (1999) developed the effective drought in-
dex (EDI) to consider the effect of depletion of water re-
sources through time. The index was initially developed at a
daily time step, but Smakhtin and Hughes (2007) adapted the
index to a monthly time step. Effective precipitation (EP, Eq.
(2)) is used to represent water resource depletion by giving
different weights to precipitation falling during m previous
months and giving a higher weight to the values closest to
the month of calculation (Eq. (2)):

EPi ¼ ∑
i

n¼1
∑
n

m¼1
Pm

� �
=n

� �
ð2Þ
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where i is the accumulation time scale and Pm is the pre-
cipitation m months before the current month. The mean of

EP, EP, is then calculated for each calendar month or n-month
accumulation. Byun andWilhite (1999) recommend using the
30-year mean, but we sometimes had to use shorter periods
because of limited temporal availability of some datasets
(Table 1). Finally, the deviation from the mean (DEP) and
the EDI is calculated as:

DEP ¼ EP−EP ð3Þ
EDI ¼ DEP�

Std DEPð Þ ð4Þ

where Std (DEP) is the standard deviation of DEP.

4.2.4 Standardised precipitation evapotranspiration index

The standardised precipitation evapotranspiration index
(SPEI) index was developed by Vicente-Serrano et al.
(2010). It is calculated in the same way as that of SPI, but
instead of using the time series of precipitation, it uses the
monthly difference between precipitation and potential evapo-
transpiration (PET). This difference is fitted to a probability
distribution, in our case to a log-logistic distribution. In this
study, we used the SPEI package developed by Beguería and
Vicente-Serrano (2013) available in R (R Development Core
Team 2011) and fitted the data to the log-logistic distribution.
The SPEI has been found to be sensitive to the method used
for the calculation of the PET (Stagge et al. 2014; Beguería
et al. 2014). The Penman-Monteith methodology has been
recommended as the most suitable method (Beguería et al.
2014), but it requires meteorological variables that were not
available here. We, therefore, used the Hargreaves method
(Hargreaves and Samani 1985; Hargreaves and Allen 2003),
which was the alternative recommendation in the study by
Beguería et al. (2014) and only requires monthly maximum
and minimum temperature data:

ET ¼ 0:0023Ra Tm þ 17:8ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tmax−Tminð Þ

p

where ET is potential evapotranspiration, Tm, Tmax and Tmin

are mean, maximum and minimum temperature, respectively,
and Ra is net radiation at the relevant latitude.

4.2.5 Standardised streamflow index

The standardised streamflow index (SSI) is calculated in the
same way as that of the SPI, but using monthly discharge
instead of monthly precipitation data (Lorenzo-Lacruz et al.
2013). We fitted the monthly discharge data to a gamma dis-
tribution, which provided a good fit. The categories used for
streamflow drought were the same as those for SPI and SPEI.

4.3 Comparison of themeteorological drought indices

The four meteorological drought indices were calculated
using the five datasets to analyse the different combinations
of drought indices and datasets and then evaluated against
independent streamflow data (Section 4.4). The drought indi-
ces were calculated only for the datasets that matched their
respective data requirements (Table 3). To evaluate the level of
agreement between the indices, we calculated the correlation
between the drought indices at the different accumulation time
scales. The comparison was done in the following two ways:
(1) by comparing the same drought index calculated with dif-
ferent datasets and (2) by comparing the different drought
indices calculated with the same meteorological dataset.

4.4 Evaluation of meteorological drought indices
using discharge data

To evaluate the performance of all drought indices and mete-
orological datasets, we compared each of these combinations
against independent data, through a hydrological drought in-
dex, the SSI. By doing this comparison, we assumed a strong
connection between meteorological and hydrological
droughts. The latter is justified since the seven basins used
here are rain-dominated and unregulated. In addition,
Central-American catchments typically have a fast response
where groundwater processes do not play a dominant role.
The comparison was done between the SSI at 1-month accu-
mulation time against the meteorological drought index at 1-,
3-, 6-, 9- and 12-month accumulation times. This was done
since streamflow usually has a longer memory than precipita-
tion and the highest correlation values might occur at either of
these accumulation times for the different catchments. The
SPI, SPEI, Deciles and EDI were compared with SSI using
the correlation coefficient and the Peirce skill score (PSS;
Peirce 1884). For the correlation, the actual values, both pos-
itive and negative, were used. For the PSS, a contingency table
was calculated where hits (H), misses (M), false alarms (FA)
and correct negatives (CN) were defined. Events with index
values below the threshold − 1 were treated as drought events,
for both meteorological drought indices and SSI. The PSS is
defined from the contingency table as:

Table 3 Combinations of meteorological datasets and drought indices
used in the study

Dataset DI SPI EDI SPEI

Station X X X

CHIRPS X X X

CRN073 X X X

CRU X X X X

ERA-Interim X X X X

Characterising droughts in Central America with uncertain hydro-meteorological data



PSS ¼ H � CNð Þ− FA �Mð Þ
H þMð Þ FA þ CNð Þ ð5Þ

The PSS is 1 for a perfect prediction, 0 for a random or
constant (climate) prediction, whereas values below 0 denote
performance worse than a random prediction. An ANOVA
table was used to compare the performances of the different
datasets and indices at the five accumulation times.

5 Results

5.1 Assessment of the meteorological datasets

The visual comparison of the intra-annual precipitation
distribution at the 24 study points revealed that the
datasets captured the bimodal intra-annual precipitation
distribution for most points in the Pacific-side regime,
but that the Caribbean-side regime was less well captured
(Fig. 2). There were sometimes large differences between
the datasets, e.g. at study points no. 10 (Fig. 2a) and no. 3
(Fig. 2d), where there was more than 100% difference in
the median precipitation values. At no. 12 (Fig. 2j), the
regional datasets captured a Pacific-side regime compared
to the station data that has a Caribbean-side regime. This
is likely caused by errors in the source data used to create
the gridded datasets (e.g. too few precipitation stations
being included in the compilation). Spearman’s rank cor-
relation values at a monthly scale were between 0.45 and
0.65, with the highest average correlation between the
station data and CHIRPS or CRN073 and the lowest be-
tween the station data and CRU or ERAI. The analysis at
the annual scale confirmed those at the monthly scale,
meaning that CHIRPS and CRN073 were good at captur-
ing the characteristic climate of the region.

We found some inhomogeneities in the datasets. For
the CRN073 data, there were large step changes in the
time series for points 1 and 7 in Guatemala in 1969 and
1967, respectively. For the ERA-Interim data, there were
suspiciously high peaks in November 2009 at points 17
and 19 in Costa Rica.

5.2 Comparison of themeteorological drought indices

The Spearman’s rank correlation was considerably higher
when comparing the different indices calculated with the same
dataset than when comparing the same index using different
datasets (Tables 4 and 5). The average results when varying
the drought index for all the datasets (that is, averaging the
results for station data, CHIRPS, CRN, ERAI and CRU)
ranged from 0.78 to 0.97 (Table 4), with the highest correla-
tions between SPI–SPEI and Deciles–SPI. On the other hand,
the results of varying the dataset and taking the average result

for all drought indices resulted in lower correlation values,
ranging from 0.45 to 0.57 (Table 5). Note also that the corre-
lation values were smaller than 0.5 for CRU–ERAI and CRN–
CRU. A spatial comparison of the combinations showed sim-
ilar results for the spatial extent of the severe drought of 1997
(Fig. 3), which has been associated with a strong El Niño
(WFP 2002). SPI, DI and SPEI calculated with the CRU
dataset (Fig. 3 bottom row) agree relatively well in their rep-
resentation of the spatial drought pattern, with differences
mainly related to how each index classified the event.
Conversely, the SPI showed a rather different spatial pattern
when calculated with different datasets (Fig. 3 top row).
According to the FAO (1997), the situation during this
drought event was like the one depictured by SPI-3
CHIRPS, with a drought on the Pacific side of Central
America and anomalous wet events on the Caribbean side.
ERAI and especially CRU indicated a different situation.
ERAI captured a drought over most of Central America, with
a weaker wet event over the Caribbean coast of Costa Rica
and most of Panama. CRU showed almost the opposite, a wet
event over most of Central America, with the drought occur-
ring only at the south of Costa Rica and Panama.

Table 4 Average correlations between the different drought indices
evaluated in this study. For the correlations, the indices were calculated
using the same dataset. For example, to obtain the value on the second
row and first column, the average correlation of the SPI and Deciles
indices was taken at the 24 study points for the five meteorological
datasets. For correlations including the SPEI, the average could only be
calculated with CRU and ERA-interim

Accumulation time Drought index SPI Deciles EDI SPEI

1 month SPI 1.00 0.94 0.99 0.94

Deciles 0.94 1.00 0.94 0.90

EDI 0.99 0.94 1.00 0.94

SPEI 0.94 0.90 0.94 1.00

3 months SPI 1.00 0.95 0.89 0.94

Deciles 0.95 1.00 0.85 0.90

EDI 0.89 0.85 1.00 0.83

SPEI 0.94 0.90 0.83 1.00

6 months SPI 1.00 0.95 0.85 0.97

Deciles 0.95 1.00 0.81 0.93

EDI 0.85 0.81 1.00 0.81

SPEI 0.97 0.93 0.81 1.00

9 months SPI 1.00 0.96 0.83 0.97

Deciles 0.96 1.00 0.79 0.94

EDI 0.83 0.79 1.00 0.80

SPEI 0.97 0.94 0.80 1.00

12 months SPI 1.00 0.96 0.81 0.97

Deciles 0.96 1.00 0.78 0.94

EDI 0.81 0.78 1.00 0.78

SPEI 0.97 0.94 0.78 1.00

B. Quesada-Montano et al.



A visual comparison of varying different drought indices
(Fig. 4a) and varying different datasets (Fig. 4b) confirms that
uncertainties are larger for the latter than for the former. The
differences were observed in terms of duration, timing and
category of the drought events.

5.3 Evaluation of meteorological drought indices
using discharge data

The comparison with SSI showed that the meteorological
drought indices had average PSS values between 0.01 and

Table 5 Average of the
correlations obtained from
calculating the same index with
different datasets. Each cell shows
the average of the results for SPI,
DI, EDI and SPEI (SPEI for CRU
and ERA-Interim only)

Accumulation time Dataset Station CRN CRU Dataset CHIRPS ERAI CRU
1981–1985 1981–1990

1 month Station 1.00 0.54 0.46 CHIRPS 1.00 0.56 0.50

CRN 0.54 1.00 0.45 ERAI 0.56 1.00 0.47

CRU 0.46 0.45 1.00 CRU 0.50 0.47 1.00

3 months Station 1.00 0.54 0.51 CHIRPS 1.00 0.57 0.53

CRN 0.54 1.00 0.48 ERAI 0.57 1.00 0.49

CRU 0.51 0.48 1.00 CRU 0.53 0.49 1.00

6 months Station 1.00 0.54 0.54 CHIRPS 1.00 0.56 0.54

CRN 0.54 1.00 0.49 ERAI 0.56 1.00 0.51

CRU 0.54 0.49 1.00 CRU 0.54 0.51 1.00

9 months Station 1.00 0.54 0.56 CHIRPS 1.00 0.56 0.55

CRN 0.54 1.00 0.50 ERAI 0.56 1.00 0.54

CRU 0.56 0.50 1.00 CRU 0.55 0.54 1.00

12 months Station 1.00 0.53 0.57 CHIRPS 1.00 0.55 0.54

CRN 0.53 1.00 0.50 ERAI 0.55 1.00 0.54

CRU 0.57 0.50 1.00 CRU 0.54 0.54 1.00

Fig. 3 Spatial extent of drought during the period August–September–
October 1997 for SPI-3 with the gridded datasets available for that year
(first row) and with the CRU dataset for different drought indices (second

row). Note that the SPI-3 (CRU) is repeated in the first column for com-
parison clarity. The colour scale represents the index value

Characterising droughts in Central America with uncertain hydro-meteorological data



0.48 and average correlations between 0.08 and 0.54 (Tables 6
and 7). Note that all combinations could not be compared
because of non-overlapping time periods. The highest PSS

values were obtained with the meteorological indices comput-
ed at 6-month accumulation time. The highest correlation
values with SSI were obtained at 3-month accumulation time
for SPI, SPEI and DI and at 6-month accumulation time for
EDI. In terms of datasets, the PSS and Spearman’s correlation
results showed that station data performed best, followed by
CRN073 and CHIRPS. CRU and ERAI were the worst
performing datasets, in agreement with the results found in
Section 5.2. Avisual example of this is shown in Fig. 5, which
shows that SPI calculated with CHIRPS agrees better with the
SSI than the SPI calculated with ERAI. ERAI missed impor-
tant events, such as that in 1988 in study point no. 17 (Fig. 5a)
and that at the end of 1983 in study point no. 21 (Fig. 5b).
ERAI also showed more false drought events, such as in those
in the period 1990–1992 in study points no. 21 and 22 (Fig.
5c). Note also that SPI calculated with CHIRPS also missed
drought events, such as that in the period 1983–1985 in study
point no. 22 (Fig. 5c).

In terms of drought index, the DI resulted, on average, in
the highest PSS values followed by the EDI. The EDI resulted
in the highest Spearman’s correlations, followed by the SPI
and DI (which resulted in similar values). The SPEI was only
calculated for the CRU and ERAI datasets, but in terms of
correlation, it outperformed the EDI when using ERAI data

and ranked as second best with CRU data. In terms of the best
combination of drought index and dataset, the highest PSS
values were obtained with the DI using station data, with an
average value of 0.41 for all accumulation times, and the
highest correlations were obtained with the EDI using
CHIRPS data with an average value of 0.56.

The ANOVA test, calculated to compare the PSS values,
showed that even though both aspects—i.e. dataset and
drought index—are important for the resulting skill, the
dataset selection has a higher impact, since the F values were
considerably larger with respect to the datasets than for the
drought indices. This pattern did not change with longer ac-
cumulation times.

6 Discussion

6.1 Quality of the meteorological datasets

We selected the datasets first based on their spatial resolution.
A dataset with a resolution lower than 0.5° latitude × 0.5°
longitude would have limitations in capturing the heteroge-
neous climate of the region. Our assessment of the local rep-
resentativeness of the meteorological datasets showed that
most of them captured the Pacific-side intra-annual precipita-
tion regime described by Amador et al. (2010) and Rivera and
Amador (2008), including the presence of the MSD (Magaña

Fig. 4 Drought events for Agua Caliente, Panama (no. 12), for (a) drought indices at 12-month accumulation time using CRU data and for (b) DI at 12-
month accumulation time using the different meteorological datasets

Table 6 Average Peirce skill
score for DI at the different
accumulation times and SSI-1 for
the seven discharge stations

Accumulation time Station data CHIRPS ERA-
Interim

CRN073 CRU

1 month 0.30 0.30 0.17 0.34 0.22

3 months 0.45 0.33 0.08 0.43 0.25

6 months 0.48 0.34 0.09 0.41 0.27

9 months 0.45 0.33 0.05 0.38 0.20

12 months 0.38 0.29 0.01 0.35 0.23
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et al. 1999). However, the Caribbean-side regime was less
well captured (Fig. 2), since the regional datasets erroneously
showed a Pacific-side regime for some of the study points.
This can be contributed to a combination of factors, such as
our point measurement to grid cell comparison, a sparse sta-
tion network on this side of the region and other errors asso-
ciated with the data used to produce the gridded datasets.
There were sometimes large differences between the datasets,
which makes the dataset selection highly important for reli-
able drought characterisation. CRN073 and CHIRPS, in that
order, had the highest correlation with the meteorological sta-
tion data at the intra-annual time scale, as well as the best
performance in comparison to the hydrological drought indi-
ces. This means that these two gridded products could be a
good complement to ground-based observations for drought
characterisation and drought studies in general.

Ideally, to increase the reliability of the indices, data should
cover long periods of time (e.g. for SPI is recommended to
have at least 30–40 years of data) (Guttman 1994; McKee

et al. 1993). This ensures that a larger sample of extremes, in
our case, drought events, is represented in the data and that the
statistical drought models are robust. CRN073 showed good
agreement with station data, and we could use 42 years of
data, which makes it suitable for historical drought character-
isation. However, the dataset has been discontinued since the
year 2000. This is a limitation in studying droughts, especially
considering that studies suggest that the frequencies of ex-
treme precipitation events are increasing in the region
(Aguilar et al. 2005; IPCC 2007). CHIRPS on the other hand
covers a shorter time period but is regularly updated. In addi-
tion, its high spatial resolution allows assessing drought at the
local scale. CHIRPS data has been found to be a valuable
complement to station data for drought monitoring in other
regions of the world (e.g. Gao et al. 2018). CRU and ERAI
showed large differences in comparison with station and
streamflow data, which suggests that these datasets are not
suitable candidates for drought characterisation in the region.

The comparisons and evaluations between the datasets
were subject to some limitations mainly related to the spatial
scale and temporal coverage of the datasets. The locations
of the hydrological and meteorological stations differed in
some cases, and it should be remembered that the meteoro-
logical data represent point values whereas the regional
datasets represent values averaged over a large grid cell.
The comparison with independent discharge data strength-
ened the findings of the assessment of the large-scale mete-
orological datasets and station data (and substantiated the
use of the latter as a reference for the regional datasets). This
was important since the comparison with station data was
limited by the possibility that some of these data had been
used to compile the regional data.

6.2 The use of drought indices in Central America

The choice of dataset was more important than the selection of
drought index when studying droughts in Central America.
All drought indices showed good agreement when based on
the same dataset. However, it should be considered that there
were differences in drought duration and category. With the
comparison of the drought indices, we assume that the drought
categories are equivalent. We based the selection of the cate-
gories on that made by Morid et al. (2006). However, the

Table 7 Average correlation of
SPI at the different accumulation
times and SSI-1 for the seven
discharge stations

Accumulation time Station data CHIRPS ERA-
Interim

CRN073 CRU

1 month 0.42 0.52 0.27 0.44 0.31

3 months 0.53 0.54 0.25 0.51 0.39

6 months 0.54 0.42 0.19 0.49 0.39

9 months 0.47 0.35 0.16 0.42 0.33

12 months 0.41 0.25 0.08 0.36 0.31

Fig. 5 Time series of SPI using CHIRPS and ERAI and SSI at a 3-month
accumulation time period for the (a) Balsa, (b) Camarón and (c) San
Francisco discharge stations
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categories for the different drought indices might not be ex-
actly equivalent and this can be an additional source of uncer-
tainty in the evaluation of the drought indices.

We used the SSI to evaluate the performance of the differ-
ent combinations. Several studies have found that meteorolog-
ical drought indices accumulated at time scales of several
months can be a good approximation for hydrological
droughts (Nalbantis and Tsakiris 2009; Zhai et al. 2010; Liu
et al. 2012; Xuchun et al. 2016). Even though we acknowl-
edge the limitations of this approximation, e.g. that precipita-
tion data cannot capture natural- and human-related processes
at the catchment scale (Teuling et al. 2013; Wanders et al.
2015) and droughts therefore propagate differently from
catchment to catchment (Van Loon and Laaha 2015), we used
a streamflow index as the best available proxy to a meteoro-
logical index. The highest agreements between SSI (1-month
accumulation) and the meteorological drought indices were at
3- and 6-month accumulation times, which suggests that such
configurations are most suitable for hydrological drought
characterisation in the region.

We found that the best combination was EDI calculated
with the CHIRPS dataset. In general, EDI and DI performed
best when considering all the datasets and all accumulation
times. Other studies have found the EDI to be suitable for
drought assessment (e.g. Morid et al. 2006, in Iran). DI has
also been recommended for drought assessment in two re-
gions in the US (Keyantash and Dracup 2002) and is used
by the Australian Bureau of meteorology for drought moni-
toring. The SPI, which is recommended by the World
Meteorological Organisation for drought characterisation
(Hayes et al. 2011), closely followed the EDI and DI, but it
did not rank as the best index. The SPEI did not show an
overall good performance in terms of correlation values and
the PSS score. This may be more a result of the quality of the
CRU and ERAI dataset than the index itself, since in the
evaluation of the drought indices calculated with the same
datasets, the SPEI was amongst the indices with the highest
correlations with SSI. This result confirms those of the study
by Vicente-Serrano et al. (2012), who assessed the perfor-
mance of drought indices and reported SPEI to perform better
than SPI. We still think that the use of a drought index includ-
ing PET and precipitation should be considered in Central
America, because of its relevance to agriculture and
warming-climate studies (Tsakiris et al. 2007; Khalili et al.
2011; Cook et al. 2014; Asadi Zarch et al. 2014), especially
given that scenarios show future rising temperatures for
Central America (Hidalgo et al. 2013).

7 Conclusions

This study evaluated which combinations of drought index
and meteorological dataset were most suitable for

characterising droughts in Central America.We evaluated five
meteorological datasets in terms of their ability to capture
climate variability in the region. Four drought indices were
calculated using the five meteorological datasets and evaluat-
ed using independent streamflow data, in the form of a hydro-
logical drought index, the SSI. Differences between the avail-
able meteorological datasets were so substantial that the
choice of dataset was more important than the choice of
drought index. We found that for drought characterisation in
the region, station data should be used and complemented
with CRN073 and/or CHIRPS. In terms of drought index,
the assessment with SSI showed that EDI and DI performed
best amongst the meteorological drought indices. Even though
the suitability of the SPEI was affected by the quality of CRU
and ERAI, results showed that including drought indices that
consider temperature might be relevant. Future drought as-
sessments in the region should also aim at incorporating in-
formation on social dynamics (e.g. population, water use, wa-
ter abstraction and policy implementation during drought
events) since these may likely play an important role in how
droughts evolve (Montanari et al. 2013; McMillan et al.
2016).
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