Local divisibility and model completeness of a theory of real closed rings.

Jorge I. Guier.
Centro de Investigación en Matemática Pura y Aplicada, Escuela de Matemática, Universidad de Costa Rica, 11501 San Pedro, COSTA RICA.

e-mail: jorge.guier@ucr.ac.cr
January 7, 2021

Abstract

Let T^{*} be the theory of lattice-ordered rings convex in von Neumann regular real closed f-rings, without minimal idempotents (non zero) that are divisible-projectable and sc-regular. I introduce a binary relation describing local divisibility. If this relation is added to the language of lattice ordered rings with the radical relation associated to the minimal prime spectrum (cf. [12]), it can be shown the model completeness of T^{*}.

1 Introduction.

The theory T^{*} can also be described as the theory of real closed, reduced, projectable f-rings that are divisible-projectable, sc-regular, satisfying the first convexity property, and without minimal idempotents (non zero), cf. [8, Theorem 10].

By [7], T^{*} admits elimination of quantifiers in $\mathcal{L}^{*}=\{0,1,+,-, \cdot, \wedge$, div $\}$, the language of lattice-ordered rings where $\operatorname{div}(\cdot, \cdot)$ is a binary function symbol defined by:

$$
\begin{aligned}
& T^{*} \vdash \operatorname{div}(x, y)=c \longleftrightarrow c \in y^{\perp \perp} \wedge \exists z \exists w(x=z+w \wedge z \perp w \wedge c y=z \wedge \\
&\left.\forall w^{\prime}\left(w^{\prime} \neq 0 \wedge w^{\prime} \perp\left(w-w^{\prime}\right) \rightarrow y \nmid w^{\prime}\right)\right)
\end{aligned}
$$

If A is a reduced f-ring, it is known by [3] that $\forall x \forall y(x \perp y \leftrightarrow x y=0)$ is a valid formula in A. For $a \in A$, the polar of a is defined by $a^{\perp}=\{b \in A: b \perp a\}$ and the bipolar by $a^{\perp \perp}=\{b \in A: b \perp c \forall c \perp a\}$. It is also known by [3] that:

$$
b \in a^{\perp \perp} \Longleftrightarrow a^{\perp} \subseteq b^{\perp} \Longleftrightarrow \operatorname{Ann}(a) \subseteq \operatorname{Ann}(b) .
$$

If A is a projectable reduced f-ring, then [9] says that:

$$
A \in \Gamma_{\mathcal{L}}^{a}\left(\pi A,(A / p)_{p \in \pi A}\right)
$$

where \mathcal{L} is the language of ordered rings (see notations in [4]) and,

$$
\pi A=\{p \in \operatorname{Spec}(A): p \text { is a minimal prime ideal }\}=\operatorname{Specmin}(A)
$$

In this case:

$$
\begin{aligned}
b \in a^{\perp \perp} & \Longleftrightarrow \llbracket b \neq 0 \rrbracket \subseteq \llbracket a \neq 0 \rrbracket \\
& \Longleftrightarrow \operatorname{supp}(b) \subseteq \operatorname{supp}(a) \\
& \Longleftrightarrow \llbracket a=0 \rrbracket \subseteq \llbracket b=0 \rrbracket \\
& \Longleftrightarrow \forall p \in \pi A(a \in p \Rightarrow b \in p)
\end{aligned}
$$

In [12], the authors used radical relations, introduced in [11], in order to study the model theory of von Neumann regular real closed f-rings without minimal idempotents (non zero). Radical relations are given, cf [11], by a subset $X \subseteq \operatorname{Spec}(A)$ through:

$$
b \preceq_{X} a \Longleftrightarrow \forall p \in X(b \notin p \Rightarrow a \notin p) .
$$

The case $X=\pi A$ is relevant and studied in [12] and we then have:

$$
\begin{aligned}
b \preceq_{\pi A} a & \Longleftrightarrow \forall p \in \pi A(b \notin p \Rightarrow a \notin p) \\
& \Longleftrightarrow \forall p \in \pi A(a \in p \Rightarrow b \in p) \\
& \Longleftrightarrow b \in a^{\perp \perp} \\
& \Longleftrightarrow a^{\perp} \subseteq b^{\perp} \\
& \Longleftrightarrow \operatorname{Ann}(a) \subseteq \operatorname{Ann}(b) .
\end{aligned}
$$

Following [12], let us extend the language of lattice-ordered rings $\mathcal{L}=\{0,1,+, \cdot, \wedge\}$ introducing a binary relation symbol \preceq defined by:

$$
b \preceq a \Longleftrightarrow b \in a^{\perp \perp} \Longleftrightarrow \operatorname{Ann}(a) \subseteq \operatorname{Ann}(b) .
$$

In fact, a radical relation \preceq is a binary relation defined in [12] by:
(1) $a \preceq a$, for all $a \in A$;
(2) if $a \preceq b$ and $b \preceq c$ then $a \preceq c$, for all $a, b, c \in A$;
(3) if $a \preceq c$ and $b \preceq c$ then $a+b \preceq c$, for all $a, b, c \in A$;
(4) if $a \preceq b$ then $a c \preceq b c$, for all $a, b, c \in A$;
(5) $a \preceq 1$, for all $a \in A$ and $1 \npreceq 0$;
(6) $b \preceq b^{2}$, for all $b \in A$.

In the theory of real closed valuation rings the divisibility plays a key role (see [5]), it is therefore interesting to ask if the divisibility relation can be given by a radical relation. Looking the defining properties (1) to (6) of a radical relation, let us set:

$$
a \preceq b \Longleftrightarrow b \mid a .
$$

Let us see if in this case \preceq is in fact a radical relation. The first five conditions are easily seen to be satisfied. But for the sixth condition, it is seen that:

$$
b \preceq b^{2} \Longleftrightarrow b^{2} \mid b \Longleftrightarrow \exists x\left(b^{2} x=b\right) \Longleftrightarrow \exists x(b x b=b),
$$

that is precisely the definition of a von Neumann regular ring. Then $a \preceq b \Longleftrightarrow b \mid a$ is a radical relation if and only if the ring is von Neumann regular.

In fact, if A is a von Neumann regular f-ring, then the relation given by:

$$
a \preceq \pi A c b^{\perp} \subseteq a^{\perp} \Longleftrightarrow \llbracket b=0 \rrbracket \subseteq \llbracket a=0 \rrbracket,
$$

is the divisibility. For $a, b \in A$:

- If $b \mid a$ then there exists $x \in A$ with $b x=a$. Then $\llbracket b=0 \rrbracket \subseteq \llbracket a=0 \rrbracket$.
- If $\llbracket b=0 \rrbracket \subseteq \llbracket a=0 \rrbracket$, consider $x \in A$ defined by:

$$
x=0_{\lceil[b=0]} \cup\left(\frac{a}{b}\right)_{\Gamma_{[b \neq 0]}} \in A,
$$

and it is such that $b x=a$. Then $b \mid a$.
This is an indication that the divisibility relation can not be consider in the context of models of T^{*} as a radical relation. For this reason and by the definition of the binary function symbol $\operatorname{div}(\cdot, \cdot)$ is that I will introduce a binary relation symbol of local divisibility. First of all, observe that the definition of the $\operatorname{div}(\cdot, \cdot)$ symbol can be written using the radical relation \preceq associated to the minimal prime spectrum:

$$
\begin{aligned}
T^{*} \vdash \operatorname{div}(x, y)=c \longleftrightarrow c \preceq y & \wedge \exists z \exists w(x=z+w \wedge z \perp w \wedge c y=z \wedge \\
\forall w^{\prime}\left(w^{\prime} \neq 0\right. & \left.\left.\wedge w^{\prime} \perp\left(w-w^{\prime}\right) \rightarrow y \nmid w^{\prime}\right)\right) .
\end{aligned}
$$

In order to study the theory T^{*} from an existential formula or model completeness point of view, I introduce a binary relation given by:

$$
R(y, w) \longleftrightarrow \forall w^{\prime}\left(w^{\prime} \neq 0 \wedge w^{\prime} \perp\left(w-w^{\prime}\right) \rightarrow y \nmid w^{\prime}\right),
$$

that express the fact that y does not divide locally w. It will more pleasant to have in a positive form:

$$
\left.y\right|_{\text {loc }} w \longleftrightarrow \neg R(y, w) \longleftrightarrow \exists w^{\prime}\left(w^{\prime} \neq 0 \wedge w^{\prime} \perp\left(w-w^{\prime}\right) \wedge y \mid w^{\prime}\right)
$$

Observe that this two last expressions in the language of lattice-ordered rings can be reformulated in the language of rings by:

$$
R(y, w) \longleftrightarrow \forall w^{\prime}\left(w^{\prime} \neq 0 \wedge w^{\prime}\left(w-w^{\prime}\right)=0 \rightarrow y \nmid w^{\prime}\right)
$$

and

$$
\left.y\right|_{\text {loc }} w \longleftrightarrow \neg R(y, w) \longleftrightarrow \exists w^{\prime}\left(w^{\prime} \neq 0 \wedge w^{\prime}\left(w-w^{\prime}\right)=0 \wedge y \mid w^{\prime}\right)
$$

For the "global" divisibility relation $y \mid w$ it is obvious that $y \mid 0$. But observe that if $\left.y\right|_{\text {loc }} 0$ in a reduced ring A then there exists $w^{\prime} \in A$ with $w^{\prime} \neq 0$ and $w^{\prime}\left(-w^{\prime}\right)=0$ such that $y \mid w^{\prime}$. Therefore $w^{\prime} \neq 0$ and $w^{\prime 2}=0$, that gives a contradiction in the reduced ring A. That is why I redefined:

$$
\left.y\right|_{\text {loc }} w \longleftrightarrow \exists w^{\prime}\left(w^{\prime} \neq 0 \wedge w^{\prime}\left(w-w^{\prime}\right)=0 \wedge y \mid w^{\prime}\right) \vee w=0
$$

2 Local divisibility relation.

This section is related to the study of this "local divisibility" relation in the general theory of rings. A list of properties is given, they will be stated as general as possible. Some of them will be stated in the theory of reduced (f)-rings.

Proposition 2.1 Let A be any ring and $y, w \in A$. If $y \mid w$ then $\left.y\right|_{\text {loc }} w$.
Proof: If $w=0$ then clearly $\left.y\right|_{\text {loc }} w$. If $w \neq 0$, then take $w^{\prime}=w$. Clearly $w^{\prime} \neq 0$ and $w^{\prime}\left(w-w^{\prime}\right)=w \cdot 0=0$ with $y \mid w$. Then the formula $\exists w^{\prime}\left(w^{\prime} \neq 0 \wedge w^{\prime}\left(w^{\prime}-w\right)=0 \wedge y \mid w^{\prime}\right)$ is valid in A. In both cases: $\left.y\right|_{\text {loc }} w$.

Proposition 2.2 Let A be any ring and $y, w \in A$. For $n \in \mathbb{N}^{*}=\mathbb{N} \backslash\{0\}$, if $\left.y^{n}\right|_{\text {loc }} w$ then $\left.y\right|_{\text {loc }} w$.

Proof: Let us suppose that $\left.y^{n}\right|_{\text {loc }} w$ for $n \in \mathbb{N}^{*}$. If $w=0$ then clearly $\left.y\right|_{\text {loc }} w$. If $w \neq 0$, then exists $w^{\prime} \in A$ with $w^{\prime} \neq 0, w^{\prime}\left(w-w^{\prime}\right)=0$ and $y^{n} \mid w^{\prime}$. Since $y \mid y^{n}$ then $\exists w^{\prime}\left(w^{\prime} \neq 0 \wedge w^{\prime}\left(w^{\prime}-w\right)=0 \wedge y \mid w^{\prime}\right)$ is a valid formula in A. In this case we also have $\left.y\right|_{\text {loc }} w$.

Proposition 2.3 Let A be any ring and $w \in A$. Then $\left.1\right|_{\text {loc }} w$.
Proof: If $w=0$ then clearly $\left.1\right|_{\text {loc }} w$. If $w \neq 0$, declaring $w^{\prime}=w$ we obtain $1 \mid w^{\prime}$ and then $\exists w^{\prime}\left(w^{\prime} \neq 0 \wedge w^{\prime}\left(w^{\prime}-w\right)=0 \wedge 1 \mid w^{\prime}\right)$ is valid in A. In this case one also have $\left.1\right|_{\text {loc }} w$.

Proposition 2.4 Let A be any ring and $y \in A$. Then $\left.y\right|_{\text {loc }} 0$.
Proof: By definition.

Proposition 2.5 Let A any ring and $c, y, w \in A$. If cy $\left.\right|_{\text {loc }} w$ then $\left.y\right|_{\text {loc }} w$.
Proof: If $w=0$ then by definition $\left.y\right|_{\text {loc }} w$. If $w \neq 0$, as we have $\left.c y\right|_{\text {loc }} w$ then exists $w^{\prime} \in A \backslash\{0\}$ such that $w^{\prime}\left(w^{\prime}-w\right)=0$ and $c y \mid w^{\prime}$. Since $y \mid c y$ then by transitivity $y \mid w^{\prime}$. Then the formula $\exists w^{\prime}\left(w^{\prime} \neq 0 \wedge w^{\prime}\left(w^{\prime}-w\right)=0 \wedge y \mid w^{\prime}\right)$ is valid in A. In this case we also have $\left.y\right|_{\text {loc }} w$.

Proposition 2.6 Let A be any ring and $w \in A$. If $\left.0\right|_{\text {loc }} w$ then $w=0$.
Proof: Let us suppose that $w \neq 0$. Since $\left.0\right|_{\text {loc }} w$ there exists $w^{\prime} \in A$ with $w^{\prime} \neq 0$, $w^{\prime}\left(w^{\prime}-w\right)=0$ and $0 \mid w^{\prime}$. But $0 \mid w^{\prime}$ gives us $w^{\prime}=0$, a contradiction. Then $w=0$.

Proposition 2.7 Let A be any ring and $y, w \in A$. Then $\left.y\right|_{\text {loc }} w$ if and only if $-\left.y\right|_{\text {loc }} w$.

Proof: (\Leftarrow) Let us suppose that $-\left.y\right|_{\text {loc }} w$. If $w=0$ then by definition we have that $\left.y\right|_{\text {loc }} w$. If $w \neq 0$, then there exists $w^{\prime} \in A$ con $w^{\prime} \neq 0, w^{\prime}\left(w^{\prime}-w\right)=0$ and $-y \mid w^{\prime}$. Evidently $y \mid w^{\prime}$. The formula $\exists w^{\prime}\left(w^{\prime} \neq 0 \wedge w^{\prime}\left(w^{\prime}-w\right)=0 \wedge y \mid w^{\prime}\right)$ is valid in A and therefore in this case $\left.y\right|_{\text {loc }} w$. We have proved that if $-\left.y\right|_{\text {loc }} w$ then $\left.y\right|_{\text {loc }} w$, for all $y, w \in A$.
(\Rightarrow) This implication can be deduced by the previous one interchanging y by $-y$.
Fact 2.8 Observe that if the ring A is unitary, then the previous property can be proved using the proposition 2.5 with $c=-1$.

Proposition 2.9 Let A be any ring and $y, w \in A$. Then $\left.y\right|_{\text {loc }} w$ if and only if $\left.y\right|_{\text {loc }}-w$.
Proof: (\Rightarrow) Let us suppose that $\left.y\right|_{\text {loc }} w$. We want to show that $\left.y\right|_{\text {loc }}-w$. If $w=0$ then $-w=0$ and $\left.y\right|_{\text {loc }}-w$ by definition. If $w \neq 0$, since $\left.y\right|_{\text {loc }} w$ there exists $w^{\prime} \in A$, $w^{\prime} \neq 0$ with $w^{\prime}\left(w^{\prime}-w\right)=0$ and $y \mid w^{\prime}$. Declaring $w^{\prime \prime}=-w^{\prime} \in A$ one has clearly that $w^{\prime \prime} \neq 0$. Since $w^{\prime}\left(w^{\prime}-w\right)=0$ then $\left(-w^{\prime}\right)\left(-w^{\prime}+w\right)=0$. Observe that since $y \mid w^{\prime}$ then $\left.y\right|_{\text {loc }}-w^{\prime}=w^{\prime \prime}$. Then the formula $\exists w^{\prime \prime}\left(w^{\prime \prime} \neq 0 \wedge w^{\prime \prime}\left(w^{\prime \prime}-(-w)\right)=0 \wedge y \mid w^{\prime \prime}\right)$ is valid in A. This says that $\left.y\right|_{\text {loc }}-w$. It is been shown that if $\left.y\right|_{\text {loc }} w$ then $\left.y\right|_{\text {loc }}-w$, for $y, w \in A$.
(\Leftarrow) This implication is deduced from the previous one replacing w by $-w$.
Proposition 2.10 Let A be any ring and $y, w \in A$. Then $\left.y\right|_{\text {loc }}-w$ if and only if $-\left.y\right|_{\text {loc }} w$.

Proof: This property is deduced immediately from previous propositions 2.7 and 2.9.
Proposition 2.11 Let A be any ring, $y \in A$ and $n \in \mathbb{N}^{*}$. Then $\left.y\right|_{\text {loc }} y^{n}$.
Proof: - If $y^{n}=0$ then by proposition 2.4 one has $\left.y\right|_{\text {loc }} 0$.

- If $y^{n} \neq 0$. Declaring $w^{\prime}=y^{n}$ one obtains $w^{\prime} \neq 0, y^{n}\left(w^{\prime}-y^{n}\right)=0$ and clearly $y \mid y^{n}=w^{\prime}$ for $n \geqslant 1$. Then the formula $\exists w^{\prime}\left(w^{\prime} \neq 0 \wedge y^{n}\left(w^{\prime}-y^{n}\right)=0 \wedge y \mid w^{\prime}\right)$ is valid in A; one then has in this case $\left.y\right|_{\text {loc }} y^{n}$.

One needs to prove a previous lemma in order to prove one more property on "local divisibility".

Lema 2.12 Let A be any lattice-ordered ring and let $w, w^{\prime} \in A$ such that $w^{\prime} \perp w-w^{\prime}$. Then $\left|w^{\prime}\right| \leqslant|w|$.
Proof: By the definition of \wedge one has that $\left|w^{\prime}\right| \wedge|w| \leqslant\left|w^{\prime}\right|$ and $\left|w^{\prime}\right| \wedge|w| \leqslant|w|$. Observe that one has the following inequality:

$$
\begin{aligned}
\left|w^{\prime}\right|=\left|w^{\prime}\right| \wedge\left|w^{\prime}\right|=\left|w^{\prime}\right| \wedge\left|w^{\prime}-w+w\right| & \leqslant\left|w^{\prime}\right| \wedge\left(\left|w^{\prime}-w\right|+|w|\right) \\
& =\left(\left|w^{\prime}\right| \wedge\left|w^{\prime}-w\right|\right)+\left(\left|w^{\prime}\right| \wedge|w|\right)
\end{aligned}
$$

Since $w^{\prime} \perp w-w^{\prime}$, then $\left|w^{\prime}\right| \wedge\left|w-w^{\prime}\right|=0$ and therefore one obtains:

$$
\left|w^{\prime}\right| \leqslant 0+\left(\left|w^{\prime}\right| \wedge|w|\right)=\left|w^{\prime}\right| \wedge|w| \leqslant\left|w^{\prime}\right| .
$$

Then $\left|w^{\prime}\right| \wedge|w|=\left|w^{\prime}\right|$, and this shows us that $\left|w^{\prime}\right| \leqslant|w|$.
The previous lemma help us to prove the following proposition:

Proposition 2.13 Let A be any lattice-ordered ring and let $y, w_{1}, w_{2} \in A$. If $\left.y\right|_{\text {loc }} w_{1}$ and $\left.y\right|_{\text {loc }} w_{2}$ with $w_{1} \perp w_{2}$ then $\left.y\right|_{\text {loc }} w_{1}+w_{2}$.

Proof: Let us suppose that $\left.y\right|_{\text {loc }} w_{1}$ and $\left.y\right|_{\text {loc }} w_{2}$ with $w_{1} \perp w_{2}$. There are various cases:

- If $w_{1}=0$, since $\left.y\right|_{\text {loc }} w_{2}$ then $\left.y\right|_{\text {loc }} w_{1}+w_{2}$.
- If $w_{2}=0$, since $\left.y\right|_{\text {loc }} w_{1}$ then $\left.y\right|_{\text {loc }} w_{1}+w_{2}$.
- if $w_{1} \neq 0$ and $w_{2} \neq 0$. If $w_{1}+w_{2}=0$ then by definition one has that $\left.y\right|_{\text {loc }} w_{1}+w_{2}$.

Let us suppose that $w_{1}+w_{2} \neq 0$. Since $\left.y\right|_{\text {loc }} w_{1}$ and $w_{1} \neq 0$ then there exists $w_{1}^{\prime} \in A$, $w_{1}^{\prime} \neq 0$ such that $w_{1}^{\prime} \perp w_{1}-w_{1}^{\prime}$ with $y \mid w_{1}^{\prime}$. Since $\left.y\right|_{\text {loc }} w_{2}$ and $w_{2} \neq 0$ then there exists $w_{2}^{\prime} \in A, w_{2}^{\prime} \neq 0$ such that $w_{2}^{\prime} \perp w_{2}-w_{2}^{\prime}$ and $y \mid w_{2}^{\prime}$. Let us see that $w_{1}^{\prime}+w_{2}^{\prime} \neq 0$. If $w_{1}^{\prime}+w_{2}^{\prime}=0$ then $w_{2}^{\prime}=-w_{1}^{\prime}$ and therefore:

$$
\left|w_{1}^{\prime}\right| \wedge\left|w_{2}^{\prime}\right|=\left|w_{1}^{\prime}\right| \wedge\left|-w_{1}^{\prime}\right|=\left|w_{1}^{\prime}\right| \wedge\left|w_{1}^{\prime}\right|=\left|w_{1}^{\prime}\right| .
$$

By the lemma 2.12 one has that $\left|w_{1}^{\prime}\right| \leqslant\left|w_{1}\right|$ and $\left|w_{2}^{\prime}\right| \leqslant\left|w_{2}\right|$. Then:

$$
\left|w_{1}^{\prime}\right| \wedge\left|w_{2}^{\prime}\right| \leqslant\left|w_{1}\right| \wedge\left|w_{2}\right| .
$$

Since $w_{1} \perp w_{2}$ then $\left|w_{1}\right| \wedge\left|w_{2}\right|=0$ and by the previous inequality one has $\left|w_{1}^{\prime}\right| \wedge\left|w_{2}^{\prime}\right|=0$. By the asumption one should have that $\left|w_{1}^{\prime}\right|=0$, meaning that $w_{1}^{\prime}=0$; which is impossible since $w_{1}^{\prime} \neq 0$.

Once we stated that $w_{1}^{\prime}+w_{2}^{\prime} \neq 0$, we want to see that:

$$
w_{1}^{\prime}+w_{2}^{\prime} \perp\left(w_{1}+w_{2}\right)-\left(w_{1}^{\prime}+w_{2}^{\prime}\right) .
$$

We have the following inequalities :

$$
\begin{aligned}
0 & \leqslant\left|w_{1}^{\prime}+w_{2}^{\prime}\right| \wedge\left|\left(w_{1}+w_{2}\right)-\left(w_{1}^{\prime}+w_{2}^{\prime}\right)\right| \\
& =\left|w_{1}^{\prime}+w_{2}^{\prime}\right| \wedge\left|\left(w_{1}-w_{1}^{\prime}\right)+\left(w_{2}-w_{2}^{\prime}\right)\right| \\
& \leqslant\left|w_{1}^{\prime}+w_{2}^{\prime}\right| \wedge\left(\left|w_{1}-w_{1}^{\prime}\right|+\left|w_{2}-w_{2}^{\prime}\right|\right) \\
& \leqslant\left(\left|w_{1}^{\prime}\right|+\left|w_{2}^{\prime}\right|\right) \wedge\left(\left|w_{1}-w_{1}^{\prime}\right|+\left|w_{2}-w_{2}^{\prime}\right|\right) \\
& =\left(\left|w_{1}^{\prime}\right| \wedge\left|w_{1}-w_{1}^{\prime}\right|\right)+\left(\left|w_{1}^{\prime}\right| \wedge\left|w_{2}-w_{2}^{\prime}\right|\right)+\left(\left|w_{2}^{\prime}\right| \wedge\left|w_{1}-w_{1}^{\prime}\right|\right)+\left(\left|w_{2}^{\prime}\right| \wedge\left|w_{2}-w_{2}^{\prime}\right|\right) \\
& =0+\left(\left|w_{1}^{\prime}\right| \wedge\left|w_{2}-w_{2}^{\prime}\right|\right)+\left(\left|w_{2}^{\prime}\right| \wedge\left|w_{1}-w_{1}^{\prime}\right|\right)+0 \\
& =\left(\left|w_{1}^{\prime}\right| \wedge\left|w_{2}-w_{2}^{\prime}\right|\right)+\left(\left|w_{2}^{\prime}\right| \wedge\left|w_{1}-w_{1}^{\prime}\right|\right) \\
& \leqslant\left(\left|w_{1}^{\prime}\right| \wedge\left(\left|w_{2}\right|+\left|w_{2}^{\prime}\right|\right)\right)+\left(\left|w_{2}^{\prime}\right| \wedge\left(\left|w_{1}\right|+\left|w_{1}^{\prime}\right|\right)\right) \\
& =\left(\left|w_{1}^{\prime}\right| \wedge\left|w_{2}\right|\right)+\left(\left|w_{1}^{\prime}\right| \wedge\left|w_{2}^{\prime}\right|\right)+\left(\left|w_{2}^{\prime}\right| \wedge\left|w_{1}\right|\right)+\left(\left|w_{2}^{\prime}\right| \wedge\left|w_{1}^{\prime}\right|\right) \\
& =\left(\left|w_{1}^{\prime}\right| \wedge\left|w_{2}\right|\right)+2\left(\left|w_{1}^{\prime}\right| \wedge\left|w_{2}^{\prime}\right|\right)+\left(\left|w_{2}^{\prime}\right| \wedge\left|w_{1}\right|\right) .
\end{aligned}
$$

Using one more time the lemma 2.12, since $w_{1}^{\prime} \perp\left(w_{1}-w_{1}^{\prime}\right)$ and $w_{2}^{\prime} \perp\left(w_{2}-w_{2}^{\prime}\right)$; one has that $\left|w_{1}^{\prime}\right| \leqslant\left|w_{1}\right|$ and $\left|w_{2}^{\prime}\right| \leqslant\left|w_{2}\right|$. Coming back to the inequalities one obtains:

$$
\begin{aligned}
0 & \leqslant\left|w_{1}^{\prime}+w_{2}^{\prime}\right| \wedge\left|\left(w_{1}+w_{2}\right)-\left(w_{1}^{\prime}+w_{2}^{\prime}\right)\right| \\
& \leqslant\left(\left|w_{1}^{\prime}\right| \wedge\left|w_{2}\right|\right)+2\left(\left|w_{1}^{\prime}\right| \wedge\left|w_{2}^{\prime}\right|\right)+\left(\left|w_{2}^{\prime}\right| \wedge\left|w_{1}\right|\right) \\
& \leqslant\left(\left|w_{1}\right| \wedge\left|w_{2}\right|\right)+2\left(\left|w_{1}\right| \wedge\left|w_{2}\right|\right)+\left(\left|w_{2}\right| \wedge\left|w_{1}\right|\right) \\
& =4\left(\left|w_{1}\right| \wedge\left|w_{2}\right|\right) \\
& =4 \cdot 0 \\
& =0
\end{aligned}
$$

for $w_{1} \perp w_{2}$. This shows that $\left|w_{1}^{\prime}+w_{2}^{\prime}\right| \wedge\left|\left(w_{1}+w_{2}\right)-\left(w_{1}^{\prime}+w_{2}^{\prime}\right)\right|=0$. One then has that $\left(w_{1}^{\prime}+w_{2}^{\prime}\right) \perp\left(w_{1}+w_{2}\right)-\left(w_{1}^{\prime}+w_{2}^{\prime}\right)$. Since $y \mid w_{1}^{\prime}$ and $y \mid w_{2}^{\prime}$ then clearly $y \mid w_{1}^{\prime}+w_{2}^{\prime}$. Declaring $w^{\prime}=w_{1}^{\prime}+w_{2}^{\prime}$, we had achieved that $w^{\prime} \neq 0, w^{\prime} \perp\left(w_{1}+w_{2}\right)-w^{\prime}$ and that $y \mid w^{\prime}$. This means that $\exists w^{\prime}\left(w^{\prime} \neq 0 \wedge w^{\prime}\left(w^{\prime}-\left(w_{1}+w_{2}\right)\right) \wedge y \mid w^{\prime}\right)$ is a valid formula in A. Precisely one has that $\left.y\right|_{\text {loc }} w_{1}+w_{2}$.

Proposition 2.14 Let A be any domain and $y, w \in A$. Then $y \mid w$ if and only if $\left.y\right|_{\text {loc }} w$.
Proof: (\Rightarrow) This implication is proposition 2.1.
(\Leftarrow) Let us suppose that $\left.y\right|_{\text {loc }} w$. If $w=0$ then clearly $y \mid w$. If $w \neq 0$, there exists $w^{\prime} \in A, w^{\prime} \neq 0$ with $w^{\prime}\left(w^{\prime}-w\right)=0$ and $y \mid w^{\prime}$. Since A is a domain then $w^{\prime}-w=0$. Therefore $w^{\prime}=w$ and then $y \mid w$.

Let A be any reduced f-ring. In [7], the ring A is sc-regular if there exist an element $u \in A$ such that $u^{\perp}=\{0\}$ and satisfying that $\forall e\left(e \neq 0 \wedge e^{2}=e \rightarrow u \nmid e\right)$. The condition $u^{\perp}=\{0\}$ can be rewritten as $\operatorname{Ann}(u)=\{0\}$. Since $1 \neq 0$ then observe that:

$$
\begin{aligned}
\left.u\right|_{\text {loc }} 1 & \longleftrightarrow \exists w^{\prime}\left(w^{\prime} \neq 0 \wedge w^{\prime}\left(w^{\prime}-1\right)=0 \wedge u \mid w^{\prime}\right) \\
& \longleftrightarrow \exists w^{\prime}\left(w^{\prime} \neq 0 \wedge w^{\prime 2}-w^{\prime}=0 \wedge u \mid w^{\prime}\right) \\
& \longleftrightarrow \exists w^{\prime}\left(w^{\prime} \neq 0 \wedge w^{\prime 2}=w^{\prime} \wedge u \mid w^{\prime}\right) \\
& \longleftrightarrow \exists e\left(e \neq 0 \wedge e^{2}=e \wedge u \mid e\right)
\end{aligned}
$$

Therefore:

$$
u \dagger_{\text {loc }} 1 \longleftrightarrow \forall e\left(e \neq 0 \wedge e^{2}=e \rightarrow u \nmid e\right) .
$$

So the condition of sc-regularity can be rewritten as there exists $u \in A$ with $\operatorname{Ann}(u)=\{0\}$ and $u \psi_{\text {loc }} 1$. That is to say: A is sc-regular if and only if,

$$
\exists u\left(\operatorname{Ann}(u)=\{0\} \wedge u \not \varliminf_{\text {loc }} 1\right)
$$

is valid in A.

3 Model completeness.

Let A and B two reduced f-rings satisfying the first convexity property and

$$
\mathcal{L}=\left\{0,1,+, \cdot,<, \wedge, \preceq,\left.\right|_{\text {loc }}\right\},
$$

be the language of lattice-ordered rings with the radical relation given by the minimal prime spectrum and the relation of local divisibility.

Let us recall that $a \preceq b$ if and only if $\operatorname{Ann}(b) \subseteq \operatorname{Ann}(a)$. Let us suppose that $A \subseteq_{\mathcal{L}} B$, that is to say: A is a substructure of B in the language \mathcal{L}; in particular A is a latticeordered subring of B.

Let us denote $i: A \hookrightarrow B$ the inclusion and the functorial (continuous) map:

$$
\operatorname{Spec}(i): \operatorname{Spec}(B) \rightarrow \operatorname{Spec}(A), q \mapsto i^{-1}(q)=q \cap A .
$$

Since $A \subseteq_{\mathcal{L}} B$ and the radical relation \preceq belongs to the language then:

$$
a \preceq_{A} a^{\prime} \Longleftrightarrow i(a) \preceq_{B} i\left(a^{\prime}\right),
$$

for all $a, a^{\prime} \in A$. Let us denote $\pi B=\operatorname{Specmin}(B)=\{q \in \operatorname{Spec}(B): q$ is a minimal prime ideal $\} \subseteq \operatorname{Spec}(B)$ and similarly $\pi A=\operatorname{Specmin}(A)=\{p \in \operatorname{Spec}(A): p$ is a minimal prime ideal $\} \subseteq \operatorname{Spec}(A)$. Using [12, Theorem, p. 23] and [12, Proposition (a) y (b), p. 22] one has:

$$
i^{*}=\operatorname{Spec}(i)_{\left.\right|_{\pi B}}: \pi B \rightarrow \pi A
$$

and i^{*} is surjective. This means that if q is a minimal prime ideal of B then $q \cap A$ is a minimal prime ideal of A and that if p is a minimal prime ideal of A, then there exists at least one minimal prime ideal q of B such that $q \cap A=p$.

For $q_{1}, q_{2} \in \pi B$, let us declare $q_{1} \sim q_{2}$ if and only if $q_{1} \cap A=q_{2} \cap A$, if and only if $i^{*}\left(q_{1}\right)=$ $i^{*}\left(q_{2}\right)$. Clearly \sim is an equivalence relation on πB. Since the function $i^{*}: \pi B \rightarrow \pi A$ is surjective, then πA can be consider with the quotient topology πB induced by i^{*} or by the equivalence relation \sim. By [15, Theorem 9.2, p. 60] one has that the original topology of πA and the induced topology by i^{*} (or by the equivalence relation \sim) coincide if i^{*} is an open or closed function. If one consider that the f-rings A and B are projectable, then by [3] and [9], one should have that the spaces πA and πB are compact (and Hausdorff). Since $i^{*}: \pi B \rightarrow \pi A$ is a continuous function with πB compact and Hausdorff, then, by [15, p. 120], one has that i^{*} is a closed function. Therefore the original topology on πA and the quotient topology on πB induced by the equivalence relation \sim are the same. Therefore:

$$
j: \pi B / \sim \rightarrow \pi A, q / \sim \mapsto i^{*}(q),
$$

is a homeomorphism of topological spaces and Boolean spaces.
Now let $p \in \pi A$ and $q \in\left(i^{*}\right)^{-1}(\{p\})$. That is to say that $i^{*}(q)=q \cap A=p$. Let us consider:

$$
h_{p q}: A / p \rightarrow B / q, a+p \mapsto a+q .
$$

Since $p \subseteq q \cap A$, then $h_{p q}$ is well defined for if $a+p=a^{\prime}+p$ with $a, a^{\prime} \in A$ then $a-a^{\prime} \in p$ and $a-a^{\prime} \in q \cap A$, that carries to $a+q=a^{\prime}+q$. Since $q \cap A \subseteq p$ then $h_{p q}$ is injective for if $a, a^{\prime} \in A$ are such that $h_{p q}(a)=h_{p q}\left(a^{\prime}\right)$, then $a+q=a^{\prime}+q$ and $a-a^{\prime} \in q$, so $a-a^{\prime} \in q \cap A$; that is to say that $a-a^{\prime} \in p$. Then $a+p=a^{\prime}+p$. This proves the injectivity of $h_{p q}$. It is clear that $h_{p q}$ is a ring homomorphism. Therefore:

$$
h_{p q}: A / p \rightarrow B / q, a+p \mapsto a+q,
$$

is a well defined injective ring homomorphism.
Let us see now that $h_{p q}$ respects the order. Let $a, a^{\prime} \in A$ such that $a+p \leqslant a^{\prime}+p$ in A / p. Then there exists $c \in p$ such that $c>0$ and $a+c \leqslant a^{\prime}$ en A. Since A is an \mathcal{L}-sub-structure of B and the order is in the language \mathcal{L} then $a+c \leqslant a^{\prime}$ in B. Since $p \subseteq q \cap A$ then $c \in q$ with $c>0$ and $a+c \leqslant a^{\prime}$ in B. That is to say that $a+q \leqslant a^{\prime}+q$ in B / q. Then $h_{p q}(a) \leqslant h_{p q}\left(a^{\prime}\right)$ in B / q. One should prove the other implication, that is: if $h_{p q}(a) \leqslant h_{p q}\left(a^{\prime}\right)$ in B / q then $a+p \leqslant a^{\prime}+p$ in A / p. But since the orders on A / p and B / q are total then the implication needed to be proved can be immediately deduced from the one we just proved. Therefore $h_{p q}: A / p \rightarrow B / q$ is an injective homomorphism of ordered rings. In this context, one has the following proposition:

Proposition 3.1 Let A and B be two reduced projectable f-rings satisfying the first convexity property such that $A \subseteq_{\mathcal{L}} B$ where $\mathcal{L}=\left\{0,1,+, \cdot,<, \wedge, \preceq,\left.\right|_{\text {loc }}\right\}$ is the language of lattice-ordered rings with the radical relation \preceq given by the minimal prime spectrum and the local divisibility relation $\left.\right|_{\text {loc }}$. If in addition one suppose that A and B are divisibleprojectable then for $p \in \pi A$ and $q \in\left(i^{*}\right)^{-1}(\{p\})$, the homomorphism of ordered rings $h_{p q}: A / p \rightarrow B / q, a+p \mapsto a+q$ respects divisibility.

Proof: Let us see that for $p \in \pi A$ and $q \in\left(i^{*}\right)^{-1}(\{p\})$, the injective homomorphism of ordered rings $h_{p q}: A / p \rightarrow B / q, a+p \mapsto a+q$ respects divisibility. That is to say that for $a, a^{\prime} \in A$ one has that:

$$
a+p \mid a^{\prime}+p \text { in } A / p \text { if and only if } a+q \mid a^{\prime}+q \text { in } B / q .
$$

(\Rightarrow) Let us suppose that $a+p \mid a^{\prime}+p$ en A / p. Then there exists $c+p \in A / p$ such that $(a+p)(c+p)=a^{\prime}+p$. So $a c+p=a^{\prime}+p$ and therefore $a c-a^{\prime} \in p$. Since $p \subseteq q \cap A$ then $a c-a^{\prime} \in q$, what this means is that $(a+q)(c+q)=a^{\prime}+q$. In fact $a+q \mid a^{\prime}+q$ en B / q.
(\Leftarrow) Let us suppose that $a+q \mid a^{\prime}+q$ in B / q. One has to show that $a+p \mid a^{\prime}+p$ in A / p.

- If $a^{\prime}+q=0$ then $a^{\prime} \in q$. Since $a^{\prime} \in A$ then $a^{\prime} \in q \cap A=p$. So $a^{\prime}+p=0$ and therefore $a+p \mid a^{\prime}+p$ en A / p.
- If $a^{\prime}+q \neq 0$ then $a^{\prime} \neq 0$ and $a^{\prime} \notin q$. Then $a^{\prime} \notin p$ and so $a^{\prime}+p \neq 0$. Let us suppose in this case that $a+p \nmid a^{\prime}+p$ en A / p. Consider $N=\llbracket a \nmid a^{\prime} \rrbracket_{\pi A} \cap \llbracket a^{\prime} \neq 0 \rrbracket_{\pi A}$ which is a clopen set of πA. (Here we using the fact that A is divisible projectable, see [7]). See that $p \in N$ and therefore $N \neq \phi$. Let us define $\alpha^{\prime}=a_{\Gamma_{N}}^{\prime} \cup 0_{\left.\right|_{\pi A \backslash N}} \in A$. Since $N \neq \phi$ then $\alpha^{\prime} \neq 0$.

Now suppose that $\left.A \models a\right|_{\text {loc }} \alpha^{\prime}$. Since $\alpha^{\prime} \neq 0$ then:

$$
A \models \exists w^{\prime}\left(w^{\prime} \neq 0 \wedge w^{\prime}\left(w^{\prime}-\alpha^{\prime}\right)=0 \wedge a \mid w^{\prime}\right) .
$$

Let then be $w^{\prime} \in A, w^{\prime} \neq 0$ with $w^{\prime}\left(w^{\prime}-\alpha^{\prime}\right)=0$ and $a \mid w^{\prime}$. Since $w^{\prime} \neq 0$ then there exists $\bar{p} \in \pi A$ such that $w^{\prime}(\bar{p}) \neq 0$. Since $w^{\prime}\left(w^{\prime}-\alpha^{\prime}\right)=0$ then $w^{\prime}(\bar{p})=\alpha^{\prime}(\bar{p})$. By the definition of α^{\prime} and the fact that $w^{\prime}(\bar{p}) \neq 0$, one has that $\bar{p} \in N$ and that $\alpha^{\prime}(\bar{p})=a^{\prime}(\bar{p})$. Since $a \mid w^{\prime}$, there exists $c \in A$ such that $a c=w^{\prime}$. That is to say that $a(\bar{p}) c(\bar{p})=w^{\prime}(\bar{p})=\alpha^{\prime}(\bar{p})=a^{\prime}(\bar{p})$, so $a(\bar{p}) \mid a^{\prime}(\bar{p})$ in A / \bar{p}; but this contradicts the fact that $\bar{p} \in \llbracket a \nmid a^{\prime} \rrbracket \rrbracket_{A A}$. Therefore one has:

$$
A \models a \not_{\text {loc }} \alpha^{\prime} .
$$

Since A is an \mathcal{L}-substructure of B and $\left.\right|_{\text {loc }}$ belongs to the language,, then $\left.B \models a\right\}_{\text {loc }} \alpha^{\prime}$. Since $\alpha^{\prime} \neq 0$ then:

$$
B \models \forall w^{\prime}\left(w^{\prime} \neq 0 \wedge w^{\prime}\left(w^{\prime}-\alpha^{\prime}\right)=0 \rightarrow a \nmid w^{\prime}\right) .
$$

Our initial assumption was that $a+q \mid a^{\prime}+q$ in B / q. Therefore $q \in \llbracket a \mid a^{\prime} \rrbracket \pi B$. We are also in the case that $a^{\prime}+q \neq 0$, that is to say that $q \in \llbracket a^{\prime} \neq 0 \rrbracket_{\pi B}$. Since $p \in N$ then $\alpha^{\prime}(p)=a^{\prime}(p)$, that is to say that $\alpha^{\prime}+p=a^{\prime}+p$. Since $p=q \cap A$ then $\alpha^{\prime}+q=a^{\prime}+q$ in B / q and therefore $q \in \llbracket \alpha^{\prime}=a^{\prime} \rrbracket_{\pi B}$. Putting $M=\llbracket a \mid a^{\prime} \rrbracket_{\pi B} \cap \llbracket a^{\prime} \neq 0 \rrbracket_{\pi B} \cap \llbracket \alpha^{\prime}=a^{\prime} \rrbracket_{\pi B}$,
one has that M is a clopen set of πB with $q \in M$ and $M \neq \phi$ (here we also used that B is divisible-projectable).
 $w^{\prime \prime}(\bar{q})=\alpha^{\prime}(\bar{q})=a^{\prime}(\bar{q}) \neq 0$. Then $w^{\prime \prime} \neq 0$. Let us see that $w^{\prime \prime}\left(w^{\prime \prime}-\alpha^{\prime}\right)=0$. Let $\bar{q} \in \pi B$. If $\bar{q} \in \pi B \backslash M$ then $w^{\prime \prime}\left(\bar{q}=0\right.$ and so $\left[w^{\prime \prime}\left(w^{\prime \prime}-\alpha^{\prime}\right)\right](\bar{q})=w^{\prime \prime}(\bar{q})\left(w^{\prime \prime}-\alpha^{\prime}\right)(\bar{q})=0$. If $\bar{q} \in M$ then $w^{\prime \prime}(\bar{q})=\alpha^{\prime}(\bar{q})$ by the definition of $w^{\prime \prime}$, and so $\left(w^{\prime \prime}-\alpha^{\prime}\right)(\bar{q})=0$; that is to say that $\left[w^{\prime \prime}\left(w^{\prime \prime}-\alpha^{\prime}\right)\right](\bar{q})=0$. In any case we obtain that $\left[w^{\prime \prime}\left(w^{\prime \prime}-\alpha^{\prime}\right)\right](\bar{q})=0$ (for all $\bar{q} \in \pi B$). Then $w^{\prime \prime}\left(w^{\prime \prime}-\alpha^{\prime}\right)=0$. Since $w^{\prime \prime} \in B$ is such that $w^{\prime \prime} \neq 0$ and $w^{\prime \prime}\left(w^{\prime \prime}-\alpha^{\prime}\right)=0$, then $a \nmid w^{\prime \prime}$ en B.

On the other hand, for $\bar{q} \in \pi B$ one has the following:

- if $\bar{q} \in \pi B \backslash M$ then $w^{\prime \prime}(\bar{q})=0$ and therefore $a(\bar{q}) \mid w^{\prime \prime}(\bar{q})$ in B / \bar{q}.
- if $\bar{q} \in M$ then $\bar{q} \in \llbracket a \mid a^{\prime} \rrbracket_{\pi B} \cap \llbracket \alpha^{\prime}=a^{\prime} \rrbracket_{\pi B}$ and consequently one has $a(\bar{q}) \mid a^{\prime}(\bar{q})=$ $\alpha^{\prime}(\bar{q})$ en B / \bar{q}. Therefore $a(\bar{q}) \mid w^{\prime \prime}(\bar{q})$ in B / \bar{q}.

Therefore $a(\bar{q}) \mid w^{\prime \prime}(\bar{q})$ in B / \bar{q} for all $\bar{q} \in \pi B$. For each $\bar{q} \in \pi B$, there exists $c_{\bar{q}} \in B$ such that $a(\bar{q}) c_{\bar{q}}(\bar{q})=w^{\prime \prime}(\bar{q})$. Then:

$$
\pi B=\bigcup_{\bar{q} \in \pi B} \llbracket a c_{\bar{q}}=w^{\prime \prime} \rrbracket_{\pi B} .
$$

By the compactness of πB, one can distinguish a finite number of $c_{\bar{q}}$'s and by the patchwork property of B, it is easy to construct an element $c \in B$ such that $a c=w^{\prime \prime}$. Then it has been proved that $a \mid w^{\prime \prime}$ en B. But we had from below that $a \nmid w^{\prime \prime}$ en B, giving a contradiction. Therefore we can not suppose that $a+p \nmid a^{\prime}+p$ in A / p and then we have in this case that $a+q \mid a^{\prime}+q$ in B / q implies that $a+p \mid a^{\prime}+p$ in A / p.

Let A and B be two models of T^{*} such that $A \subseteq_{\mathcal{L}} B$ where $\mathcal{L}=\left\{0,1,+\cdot, \wedge, \preceq,\left.\right|_{\text {loc }}\right\}$ is the language of lattice-ordered rings with the radical relation \preceq given by the minimal prime spectrum and $\left.\right|_{\text {loc }}$ is our local divisibility relation.

It is known that $i^{*}: \pi B \rightarrow \pi A, q \mapsto q \cap A$ is a continuous surjective map such that $\pi A \cong \pi B / \sim$ where \sim is the equivalence relation given by $q \sim q^{\prime}$ if and only if $i^{*}(q)=$ $q \cap A=q^{\prime} \cap A=i^{*}\left(q^{\prime}\right)$. Furthermore, for all $p \in \pi A$ and $q \in\left(i^{*}\right)^{-1}(\{p\})$, there exists $h_{p q}: A / p \rightarrow B / q, a+p \mapsto a+q$ an injective homomorphism of ordered rings respecting the divisibility .

Let us denote $\mathcal{B}(\pi A)$ and $\mathcal{B}(\pi B)$ the Boolean algebras of clopen sets of πA and πB respectively. Therefore:

$$
j=\left(i^{*}\right)^{-1}: \mathcal{B}(\pi A) \rightarrow \mathcal{B}(\pi B),
$$

is an injective homomorphism of Boolean algebras.
We want to show that $A \prec{ }_{\mathcal{L}} B$. Let $\phi\left(x_{1}, \ldots, x_{n}\right)$ be an \mathcal{L}-formula and $a_{1}, \ldots, a_{n} \in A$. By [6, Theorem 1.1], there exists an acceptable sequence $\zeta=\left\langle\Phi, \theta_{1}, \ldots, \theta_{m}\right\rangle$ of formulas where $\theta_{1}, \ldots, \theta_{m}$ are \mathcal{L}-formulas with the same free variables of $\phi\left(x_{1}, \ldots, x_{n}\right)$ and Φ is a formula in the Boolean algebra's language with m free variables such that:

$$
A \models \phi\left(a_{1}, \ldots, a_{n}\right) \Longleftrightarrow \mathcal{B}(\pi A) \models \Phi\left(\llbracket \theta_{1}\left(a_{1}, \ldots, a_{n}\right) \rrbracket_{A}, \ldots, \llbracket \theta_{m}\left(a_{1}, \ldots, a_{n}\right) \rrbracket_{A}\right),
$$

where $\llbracket \theta_{j}\left(a_{1}, \ldots, a_{n}\right) \rrbracket_{A}=\left\{p \in \pi A: A / p \models \theta_{j}\left(a_{1}+p, \ldots, a_{n}+p\right)\right\}$, for all $j=1, \ldots, m$.
Since A and B are models of T^{*} then A / p and B / q are real closed valuation rings, for all $p \in \pi A$ and $q \in \pi B$. Therefore, for $p \in \pi A$ and $q \in\left(i^{*}\right)^{-1}(\{p\})$, one has that $h_{p q}: A / p \rightarrow B / q, a+p \mapsto a+q$ is an elementary monomorphism in view of 3.1 and [5]. Therefore:

$$
h_{p q}: A / p \prec B / q .
$$

Then:

$$
\begin{aligned}
j\left(\llbracket \theta_{l}\left(a_{1}, \ldots, a_{n}\right) \rrbracket_{A}\right) & =\left\{q \in \pi B: B / q \models \theta_{l}\left(h_{p q}\left(a_{1}\right), \ldots, h_{p q}\left(a_{n}\right)\right) \text { con } p=q \cap A\right\} \\
& =\llbracket \theta_{l}\left(a_{1}, \ldots, a_{n}\right) \rrbracket_{B} .
\end{aligned}
$$

Since $\mathcal{B}(\pi A)$ are $\mathcal{B}(\pi B)$ are atomless Boolean algebras (A and B are models of T^{*}) then:

$$
j: \mathcal{B}(\pi A) \prec \mathcal{B}(\pi B),
$$

is an elementary monomorphism. Then one has:

$$
\begin{aligned}
\mathcal{B}(\pi A) & \models \Phi\left(\llbracket \theta_{1}\left(a_{1}, \ldots, a_{n}\right) \rrbracket_{A}, \ldots, \llbracket \theta_{m}\left(a_{1}, \ldots, a_{n}\right) \rrbracket_{A}\right) \\
\Longleftrightarrow \mathcal{B}(\pi B) & \models \Phi\left(j\left(\llbracket \theta_{1}\left(a_{1}, \ldots, a_{n}\right) \rrbracket_{A}\right), \ldots, j\left(\llbracket \theta_{m}\left(a_{1}, \ldots, a_{n}\right) \rrbracket_{A}\right)\right) \\
\Longleftrightarrow \mathcal{B}(\pi B) & \models \Phi\left(\llbracket \theta_{1}\left(a_{1}, \ldots, a_{n}\right) \rrbracket_{B}, \ldots, \llbracket \theta_{m}\left(a_{1}, \ldots, a_{n}\right) \rrbracket_{B}\right) .
\end{aligned}
$$

By [6, Theorem 1.1] one also has:

$$
B \models \phi\left(a_{1}, \ldots, a_{n}\right) \Longleftrightarrow \mathcal{B}(\pi B) \models \Phi\left(\llbracket \theta_{1}\left(a_{1}, \ldots, a_{n}\right) \rrbracket_{B}, \ldots, \llbracket \theta_{m}\left(a_{1}, \ldots, a_{n}\right) \rrbracket_{B}\right) .
$$

Therefore we just have seen that:

$$
A \models \phi\left(a_{1}, \ldots, a_{n}\right) \text { if and only if } B \models \phi\left(a_{1}, \ldots, a_{n}\right) .
$$

This proves that:

$$
A \prec{ }_{\mathcal{L}} B .
$$

We can therefore state:
Theorem 3.2 The theory T^{*} is model complete in $\mathcal{L}=\{0,1,+\cdot, \wedge, \preceq, \mid$ loc $\}$.

References

[1] M.F. Atiyah, I.G. Macdonald, Introducción al Álgebra Conmutativa, Editorial Reverté, Barcelona, 1975.
[2] T. Becker, Real Closed rings and ordered valuation rings, Zeitsch. f. math. Logik und Grundlagen d. Math, Bd. 29 (1983), 417-425.
[3] A. Bigard, K. Keimel, S. Wolfenstein, Groupes et Anneaux réticulés, Lecture Notes in Mathematics 608, Springer-Verlag, Berlin, 1977.
[4] S. Burris, H. Werner, Sheaf Constructions and their elementary properties, Transactions of the American Mathematical Society, Volume 248, Number 2 (1979), 269309.
[5] G. Cherlin, M.A. Dickmann, Real closed rings II. Model Theory. Annals of Pure and Applied Logic 25 (1983), 213-231.
[6] S.D. Comer, Elementary properties of structures of sections, Boletín de la Sociedad Matemática Mexicana 19 (1974), 78-85.
[7] J. I. GUIER, Boolean products of real closed valuations rings and fields, Annals of Pure and Applied Logic 112 (2001), 119-150.
[8] J. I. Guier, Convex Lattice-Ordered Subrings of von Neumann Regular f-Rings, Revista Colombiana de Matemáticas, volumen 49, número 1 (2015), 161-170.
[9] K. Keimel, The representation of lattice-ordered groups and rings by sections of sheaves. Lectures Notes in Mathematics 248, Springer-Verlag, Berlin Heidelberg, 1971, 1-98.
[10] A. Macintyre, Model Completeness for sheaves of structures, Fund. Math. LXXXI (1973), 73-89.
[11] A. Prestel, J. Schmid, Existencially closed domains with radical relations, J. reine angew. Math. 407 (1990), 178-201.
[12] A. Prestel, N. Schwarz, Model Theory of real closed rings, In Valuation theory and its applications, vol. I (Saskatoon, SK, 1999), volume 32 of Fields Institute Communications, pp. 261-290, American Mathematical Society, Providence, RI, 2002.
[13] N. Schwartz, Real closed rings, in Algebra and Order (S. Wolfenstein, ed.), Research and Exposition in Mathematics, vol. 14, Heldermann, Berlin, 1986.
[14] N. Schwartz, Real closed rings. Examples and applications, in Séminaire de Structures Algébriques Ordonnées 1995-96 (Delon, Dickmann, Gondard, eds), Paris VIICNRS Logique, Prépublications, No. 61, Paris, 1997.
[15] S. Willard, General Topology, Addison-Wesley, Reading Massachusetts, 1970.

