Local divisibility and model completeness of a theory of real closed rings.

Jorge I. Guier.

Centro de Investigación en Matemática Pura y Aplicada, Escuela de Matemática, Universidad de Costa Rica, 11501 San Pedro, COSTA RICA.

e-mail: jorge.guier@ucr.ac.cr

January 7, 2021

Abstract

Let T^* be the theory of lattice-ordered rings convex in von Neumann regular real closed f-rings, without minimal idempotents (non zero) that are divisible-projectable and sc-regular. I introduce a binary relation describing local divisibility. If this relation is added to the language of lattice ordered rings with the radical relation associated to the minimal prime spectrum (cf. [12]), it can be shown the model completeness of T^* .

1 Introduction.

The theory T^* can also be described as the theory of real closed, reduced, projectable f-rings that are divisible-projectable, sc-regular, satisfying the first convexity property, and without minimal idempotents (non zero), cf. [8, Theorem 10].

By [7], T^* admits elimination of quantifiers in $\mathcal{L}^* = \{0, 1, +, -, \cdot, \wedge, \text{div}\}$, the language of lattice-ordered rings where $\text{div}(\cdot, \cdot)$ is a binary function symbol defined by:

$$T^* \vdash \operatorname{div}(x,y) = c \iff c \in y^{\perp \perp} \land \exists z \exists w \big(x = z + w \land z \perp w \land cy = z \land \forall w' (w' \neq 0 \land w' \perp (w - w') \rightarrow y \nmid w') \big).$$

If A is a reduced f-ring, it is known by [3] that $\forall x \forall y (x \perp y \leftrightarrow xy = 0)$ is a valid formula in A. For $a \in A$, the polar of a is defined by $a^{\perp} = \{b \in A : b \perp a\}$ and the bipolar by $a^{\perp \perp} = \{b \in A : b \perp c \ \forall c \perp a\}$. It is also known by [3] that:

$$b \in a^{\perp \perp} \iff a^{\perp} \subseteq b^{\perp} \iff \operatorname{Ann}(a) \subseteq \operatorname{Ann}(b).$$

If A is a projectable reduced f-ring, then [9] says that:

$$A \in \Gamma_{\mathcal{L}}^{a}(\pi A, (A/p)_{p \in \pi A}),$$

where \mathcal{L} is the language of ordered rings (see notations in [4]) and,

$$\pi A = \{ p \in \operatorname{Spec}(A) : p \text{ is a minimal prime ideal} \} = \operatorname{Specmin}(A).$$

In this case:

$$b \in a^{\perp \perp} \iff \llbracket b \neq 0 \rrbracket \subseteq \llbracket a \neq 0 \rrbracket$$
$$\iff \sup b \leq \sup b \leq \sup a$$
$$\iff \llbracket a = 0 \rrbracket \subseteq \llbracket b = 0 \rrbracket$$
$$\iff \forall p \in \pi A \ (a \in p \Rightarrow b \in p).$$

In [12], the authors used radical relations, introduced in [11], in order to study the model theory of von Neumann regular real closed f-rings without minimal idempotents (non zero). Radical relations are given, cf [11], by a subset $X \subseteq \text{Spec}(A)$ through:

$$b \leq Xa \iff \forall p \in X (b \notin p \Rightarrow a \notin p).$$

The case $X = \pi A$ is relevant and studied in [12] and we then have:

$$b \preceq_{\pi A} a \iff \forall p \in \pi A \ (b \notin p \Rightarrow a \notin p)$$

$$\iff \forall p \in \pi A \ (a \in p \Rightarrow b \in p)$$

$$\iff b \in a^{\perp \perp}$$

$$\iff a^{\perp} \subseteq b^{\perp}$$

$$\iff \operatorname{Ann}(a) \subset \operatorname{Ann}(b).$$

Following [12], let us extend the language of lattice-ordered rings $\mathcal{L} = \{0, 1, +, \cdot, \wedge\}$ introducing a binary relation symbol \leq defined by:

$$b \leq a \iff b \in a^{\perp \perp} \iff \operatorname{Ann}(a) \subseteq \operatorname{Ann}(b).$$

In fact, a radical relation \leq is a binary relation defined in [12] by:

- (1) $a \prec a$, for all $a \in A$;
- (2) if $a \leq b$ and $b \leq c$ then $a \leq c$, for all $a, b, c \in A$;
- (3) if $a \leq c$ and $b \leq c$ then $a + b \leq c$, for all $a, b, c \in A$;
- (4) if $a \leq b$ then $ac \leq bc$, for all $a, b, c \in A$;
- (5) $a \leq 1$, for all $a \in A$ and $1 \nleq 0$;
- (6) $b \leq b^2$, for all $b \in A$.

In the theory of real closed valuation rings the divisibility plays a key role (see [5]), it is therefore interesting to ask if the divisibility relation can be given by a radical relation. Looking the defining properties (1) to (6) of a radical relation, let us set:

$$a \leq b \iff b \mid a$$
.

Let us see if in this case \leq is in fact a radical relation. The first five conditions are easily seen to be satisfied. But for the sixth condition, it is seen that:

$$b \leq b^2 \iff b^2 \mid b \iff \exists x(b^2x = b) \iff \exists x(bxb = b),$$

that is precisely the definition of a von Neumann regular ring. Then $a \leq b \iff b \mid a$ is a radical relation if and only if the ring is von Neumann regular.

In fact, if A is a von Neumann regular f-ring, then the relation given by:

$$a \leq_{\pi A} b \iff b^{\perp} \subseteq a^{\perp} \iff \llbracket b = 0 \rrbracket \subseteq \llbracket a = 0 \rrbracket,$$

is the divisibility. For $a, b \in A$:

- If $b \mid a$ then there exists $x \in A$ with bx = a. Then $[b = 0] \subseteq [a = 0]$.
- If $[b = 0] \subseteq [a = 0]$, consider $x \in A$ defined by:

$$x = 0_{\lceil b = 0 \rceil} \cup \left(\frac{a}{b}\right)_{\lceil b \neq 0 \rceil} \in A,$$

and it is such that bx = a. Then $b \mid a$.

This is an indication that the divisibility relation can not be consider in the context of models of T^* as a radical relation. For this reason and by the definition of the binary function symbol $\operatorname{div}(\cdot,\cdot)$ is that I will introduce a binary relation symbol of local divisibility. First of all, observe that the definition of the $\operatorname{div}(\cdot,\cdot)$ symbol can be written using the radical relation \preceq associated to the minimal prime spectrum:

$$T^* \vdash \operatorname{div}(x,y) = c \iff c \leq y \land \exists z \exists w \big(x = z + w \land z \perp w \land cy = z \land \forall w'(w' \neq 0 \land w' \perp (w - w') \rightarrow y \nmid w') \big).$$

In order to study the theory T^* from an existential formula or model completeness point of view, I introduce a binary relation given by:

$$R(y, w) \longleftrightarrow \forall w'(w' \neq 0 \land w' \perp (w - w') \rightarrow y \nmid w'),$$

that express the fact that y does not divide locally w. It will more pleasant to have in a positive form:

$$y \mid_{\text{loc}} w \longleftrightarrow \neg R(y, w) \longleftrightarrow \exists w'(w' \neq 0 \land w' \perp (w - w') \land y \mid w').$$

Observe that this two last expressions in the language of lattice-ordered rings can be reformulated in the language of rings by:

$$R(y, w) \longleftrightarrow \forall w'(w' \neq 0 \land w'(w - w') = 0 \rightarrow y \nmid w'),$$

and

$$y \mid_{\text{loc}} w \longleftrightarrow \neg R(y, w) \longleftrightarrow \exists w'(w' \neq 0 \land w'(w - w') = 0 \land y \mid w').$$

For the "global" divisibility relation $y \mid w$ it is obvious that $y \mid 0$. But observe that if $y \mid_{\text{loc}} 0$ in a reduced ring A then there exists $w' \in A$ with $w' \neq 0$ and w'(-w') = 0 such that $y \mid w'$. Therefore $w' \neq 0$ and $w'^2 = 0$, that gives a contradiction in the reduced ring A. That is why I redefined:

$$y \mid_{\text{loc}} w \longleftrightarrow \exists w'(w' \neq 0 \land w'(w - w') = 0 \land y \mid w') \lor w = 0.$$

2 Local divisibility relation.

This section is related to the study of this "local divisibility" relation in the general theory of rings. A list of properties is given, they will be stated as general as possible. Some of them will be stated in the theory of reduced (f)-rings.

Proposition 2.1 Let A be any ring and $y, w \in A$. If $y \mid w$ then $y \mid_{loc} w$.

Proof: If w = 0 then clearly $y \mid_{\text{loc}} w$. If $w \neq 0$, then take w' = w. Clearly $w' \neq 0$ and $w'(w-w') = w \cdot 0 = 0$ with $y \mid w$. Then the formula $\exists w'(w' \neq 0 \land w'(w'-w) = 0 \land y \mid w')$ is valid in A. In both cases: $y \mid_{\text{loc}} w$.

Proposition 2.2 Let A be any ring and $y, w \in A$. For $n \in \mathbb{N}^* = \mathbb{N} \setminus \{0\}$, if $y^n \mid_{\text{loc}} w$ then $y \mid_{\text{loc}} w$.

Proof: Let us suppose that $y^n \mid_{\text{loc}} w$ for $n \in \mathbb{N}^*$. If w = 0 then clearly $y \mid_{\text{loc}} w$. If $w \neq 0$, then exists $w' \in A$ with $w' \neq 0$, w'(w - w') = 0 and $y^n \mid w'$. Since $y \mid y^n$ then $\exists w'(w' \neq 0 \land w'(w' - w) = 0 \land y \mid w')$ is a valid formula in A. In this case we also have $y \mid_{\text{loc}} w$.

Proposition 2.3 Let A be any ring and $w \in A$. Then $1 \mid_{loc} w$.

Proof: If w = 0 then clearly $1 \mid_{\text{loc}} w$. If $w \neq 0$, declaring w' = w we obtain $1 \mid w'$ and then $\exists w'(w' \neq 0 \land w'(w' - w) = 0 \land 1 \mid w')$ is valid in A. In this case one also have $1 \mid_{\text{loc}} w$.

Proposition 2.4 Let A be any ring and $y \in A$. Then $y \mid_{loc} 0$.

Proof: By definition.

Proposition 2.5 Let A any ring and $c, y, w \in A$. If $cy \mid_{loc} w$ then $y \mid_{loc} w$.

Proof: If w = 0 then by definition $y \mid_{\text{loc}} w$. If $w \neq 0$, as we have $cy \mid_{\text{loc}} w$ then exists $w' \in A \setminus \{0\}$ such that w'(w' - w) = 0 and $cy \mid w'$. Since $y \mid cy$ then by transitivity $y \mid w'$. Then the formula $\exists w'(w' \neq 0 \land w'(w' - w) = 0 \land y \mid w')$ is valid in A. In this case we also have $y \mid_{\text{loc}} w$.

Proposition 2.6 Let A be any ring and $w \in A$. If $0 \mid_{loc} w$ then w = 0.

Proof: Let us suppose that $w \neq 0$. Since $0 \mid_{\text{loc}} w$ there exists $w' \in A$ with $w' \neq 0$, w'(w'-w)=0 and $0 \mid w'$. But $0 \mid w'$ gives us w'=0, a contradiction. Then w=0.

Proposition 2.7 Let A be any ring and $y, w \in A$. Then $y \mid_{loc} w$ if and only if $-y \mid_{loc} w$.

Proof: (\Leftarrow) Let us suppose that $-y\mid_{\mathrm{loc}} w$. If w=0 then by definition we have that $y\mid_{\mathrm{loc}} w$. If $w\neq 0$, then there exists $w'\in A$ con $w'\neq 0$, w'(w'-w)=0 and $-y\mid w'$. Evidently $y\mid w'$. The formula $\exists w'(w'\neq 0 \land w'(w'-w)=0 \land y\mid w')$ is valid in A and therefore in this case $y\mid_{\mathrm{loc}} w$. We have proved that if $-y\mid_{\mathrm{loc}} w$ then $y\mid_{\mathrm{loc}} w$, for all $y,w\in A$.

 (\Rightarrow) This implication can be deduced by the previous one interchanging y by -y.

Fact 2.8 Observe that if the ring A is unitary, then the previous property can be proved using the proposition 2.5 with c = -1.

Proposition 2.9 Let A be any ring and $y, w \in A$. Then $y \mid_{loc} w$ if and only if $y \mid_{loc} -w$.

Proof: (\Rightarrow) Let us suppose that $y \mid_{\text{loc}} w$. We want to show that $y \mid_{\text{loc}} -w$. If w = 0 then -w = 0 and $y \mid_{\text{loc}} -w$ by definition. If $w \neq 0$, since $y \mid_{\text{loc}} w$ there exists $w' \in A$, $w' \neq 0$ with w'(w' - w) = 0 and $y \mid w'$. Declaring $w'' = -w' \in A$ one has clearly that $w'' \neq 0$. Since w'(w' - w) = 0 then (-w')(-w' + w) = 0. Observe that since $y \mid w'$ then $y \mid_{\text{loc}} -w' = w''$. Then the formula $\exists w''(w'' \neq 0 \land w''(w'' - (-w)) = 0 \land y \mid w'')$ is valid in A. This says that $y \mid_{\text{loc}} -w$. It is been shown that if $y \mid_{\text{loc}} w$ then $y \mid_{\text{loc}} -w$, for $y, w \in A$.

 (\Leftarrow) This implication is deduced from the previous one replacing w by -w.

Proposition 2.10 Let A be any ring and $y, w \in A$. Then $y \mid_{loc} -w$ if and only if $-y \mid_{loc} w$.

Proof: This property is deduced immediately from previous propositions 2.7 and 2.9.

Proposition 2.11 Let A be any ring, $y \in A$ and $n \in \mathbb{N}^*$. Then $y \mid_{\text{loc}} y^n$.

Proof: • If $y^n = 0$ then by proposition 2.4 one has $y|_{loc} 0$.

• If $y^n \neq 0$. Declaring $w' = y^n$ one obtains $w' \neq 0$, $y^n(w' - y^n) = 0$ and clearly $y \mid y^n = w'$ for $n \geq 1$. Then the formula $\exists w'(w' \neq 0 \land y^n(w' - y^n) = 0 \land y \mid w')$ is valid in A; one then has in this case $y \mid_{\text{loc}} y^n$.

One needs to prove a previous lemma in order to prove one more property on "local divisibility".

Lema 2.12 Let A be any lattice-ordered ring and let $w, w' \in A$ such that $w' \perp w - w'$. Then $|w'| \leq |w|$.

Proof: By the definition of \wedge one has that $|w'| \wedge |w| \leq |w'|$ and $|w'| \wedge |w| \leq |w|$. Observe that one has the following inequality:

$$|w'| = |w'| \wedge |w'| = |w'| \wedge |w' - w + w| \leq |w'| \wedge (|w' - w| + |w|)$$

= $(|w'| \wedge |w' - w|) + (|w'| \wedge |w|).$

Since $w' \perp w - w'$, then $|w'| \wedge |w - w'| = 0$ and therefore one obtains:

$$|w'| \le 0 + (|w'| \land |w|) = |w'| \land |w| \le |w'|.$$

Then $|w'| \wedge |w| = |w'|$, and this shows us that $|w'| \leq |w|$.

The previous lemma help us to prove the following proposition:

Proposition 2.13 Let A be any lattice-ordered ring and let $y, w_1, w_2 \in A$. If $y \mid_{loc} w_1$ and $y \mid_{loc} w_2$ with $w_1 \perp w_2$ then $y \mid_{loc} w_1 + w_2$.

Proof: Let us suppose that $y \mid_{\text{loc}} w_1$ and $y \mid_{\text{loc}} w_2$ with $w_1 \perp w_2$. There are various cases:

- If $w_1 = 0$, since $y |_{loc} w_2$ then $y |_{loc} w_1 + w_2$.
- If $w_2 = 0$, since $y \mid_{loc} w_1$ then $y \mid_{loc} w_1 + w_2$.
- if $w_1 \neq 0$ and $w_2 \neq 0$. If $w_1 + w_2 = 0$ then by definition one has that $y \mid_{\text{loc}} w_1 + w_2$.

Let us suppose that $w_1 + w_2 \neq 0$. Since $y \mid_{\text{loc}} w_1$ and $w_1 \neq 0$ then there exists $w_1' \in A$, $w_1' \neq 0$ such that $w_1' \perp w_1 - w_1'$ with $y \mid w_1'$. Since $y \mid_{\text{loc}} w_2$ and $w_2 \neq 0$ then there exists $w_2' \in A$, $w_2' \neq 0$ such that $w_2' \perp w_2 - w_2'$ and $y \mid w_2'$. Let us see that $w_1' + w_2' \neq 0$. If $w_1' + w_2' = 0$ then $w_2' = -w_1'$ and therefore:

$$|w_1'| \wedge |w_2'| = |w_1'| \wedge |-w_1'| = |w_1'| \wedge |w_1'| = |w_1'|.$$

By the lemma 2.12 one has that $|w_1'| \leq |w_1|$ and $|w_2'| \leq |w_2|$. Then:

$$|w_1'| \wedge |w_2'| \leq |w_1| \wedge |w_2|.$$

Since $w_1 \perp w_2$ then $|w_1| \wedge |w_2| = 0$ and by the previous inequality one has $|w_1'| \wedge |w_2'| = 0$. By the assumption one should have that $|w_1'| = 0$, meaning that $w_1' = 0$; which is impossible since $w_1' \neq 0$.

Once we stated that $w'_1 + w'_2 \neq 0$, we want to see that:

$$w_1' + w_2' \perp (w_1 + w_2) - (w_1' + w_2').$$

We have the following inequalities:

$$\begin{array}{lll} 0 & \leqslant & \left|w_1' + w_2'\right| \wedge \left|(w_1 + w_2) - (w_1' + w_2')\right| \\ & = & \left|w_1' + w_2'\right| \wedge \left|(w_1 - w_1') + (w_2 - w_2')\right| \\ & \leqslant & \left|w_1' + w_2'\right| \wedge \left(\left|w_1 - w_1'\right| + \left|w_2 - w_2'\right|\right) \\ & \leqslant & \left(\left|w_1'\right| + \left|w_2'\right|\right) \wedge \left(\left|w_1 - w_1'\right| + \left|w_2 - w_2'\right|\right) \\ & = & \left(\left|w_1'\right| \wedge \left|w_1 - w_1'\right|\right) + \left(\left|w_1'\right| \wedge \left|w_2 - w_2'\right|\right) + \left(\left|w_2'\right| \wedge \left|w_1 - w_1'\right|\right) + \left(\left|w_2'\right| \wedge \left|w_2 - w_2'\right|\right) \\ & = & 0 + \left(\left|w_1'\right| \wedge \left|w_2 - w_2'\right|\right) + \left(\left|w_2'\right| \wedge \left|w_1 - w_1'\right|\right) + 0 \\ & = & \left(\left|w_1'\right| \wedge \left|w_2 - w_2'\right|\right) + \left(\left|w_2'\right| \wedge \left|w_1 - w_1'\right|\right) \\ & \leqslant & \left(\left|w_1'\right| \wedge \left|\left|w_2\right| + \left|w_2'\right|\right)\right) + \left(\left|w_2'\right| \wedge \left|\left|w_1\right| + \left|w_1'\right|\right)\right) \\ & = & \left(\left|w_1'\right| \wedge \left|w_2\right|\right) + \left(\left|w_1'\right| \wedge \left|w_2'\right|\right) + \left(\left|w_2'\right| \wedge \left|w_1\right|\right) + \left(\left|w_2'\right| \wedge \left|w_1'\right|\right) \\ & = & \left(\left|w_1'\right| \wedge \left|w_2\right|\right) + 2\left(\left|w_1'\right| \wedge \left|w_2'\right|\right) + \left(\left|w_2'\right| \wedge \left|w_1\right|\right). \end{array}$$

Using one more time the lemma 2.12, since $w_1' \perp (w_1 - w_1')$ and $w_2' \perp (w_2 - w_2')$; one has that $|w_1'| \leq |w_1|$ and $|w_2'| \leq |w_2|$. Coming back to the inequalities one obtains:

$$0 \leqslant |w'_1 + w'_2| \wedge |(w_1 + w_2) - (w'_1 + w'_2)|$$

$$\leqslant (|w'_1| \wedge |w_2|) + 2(|w'_1| \wedge |w'_2|) + (|w'_2| \wedge |w_1|)$$

$$\leqslant (|w_1| \wedge |w_2|) + 2(|w_1| \wedge |w_2|) + (|w_2| \wedge |w_1|)$$

$$= 4(|w_1| \wedge |w_2|)$$

$$= 4 \cdot 0$$

$$= 0.$$

for $w_1 \perp w_2$. This shows that $|w_1' + w_2'| \wedge |(w_1 + w_2) - (w_1' + w_2')| = 0$. One then has that $(w_1' + w_2') \perp (w_1 + w_2) - (w_1' + w_2')$. Since $y \mid w_1'$ and $y \mid w_2'$ then clearly $y \mid w_1' + w_2'$. Declaring $w' = w_1' + w_2'$, we had achieved that $w' \neq 0$, $w' \perp (w_1 + w_2) - w'$ and that $y \mid w'$. This means that $\exists w' (w' \neq 0 \wedge w' (w' - (w_1 + w_2)) \wedge y \mid w')$ is a valid formula in A. Precisely one has that $y \mid_{\text{loc}} w_1 + w_2$.

Proposition 2.14 Let A be any domain and $y, w \in A$. Then $y \mid w$ if and only if $y \mid_{loc} w$.

Proof: (\Rightarrow) This implication is proposition 2.1.

(\Leftarrow) Let us suppose that $y \mid_{\text{loc}} w$. If w = 0 then clearly $y \mid w$. If $w \neq 0$, there exists $w' \in A$, $w' \neq 0$ with w'(w' - w) = 0 and $y \mid w'$. Since A is a domain then w' - w = 0. Therefore w' = w and then $y \mid w$.

Let A be any reduced f-ring. In [7], the ring A is sc-regular if there exist an element $u \in A$ such that $u^{\perp} = \{0\}$ and satisfying that $\forall e (e \neq 0 \land e^2 = e \rightarrow u \nmid e)$. The condition $u^{\perp} = \{0\}$ can be rewritten as $\operatorname{Ann}(u) = \{0\}$. Since $1 \neq 0$ then observe that:

$$u \mid_{\text{loc}} 1 \iff \exists w'(w' \neq 0 \land w'(w' - 1) = 0 \land u \mid w')$$

$$\iff \exists w'(w' \neq 0 \land w'^2 - w' = 0 \land u \mid w')$$

$$\iff \exists w'(w' \neq 0 \land w'^2 = w' \land u \mid w')$$

$$\iff \exists e(e \neq 0 \land e^2 = e \land u \mid e)$$

Therefore:

$$u \nmid_{\text{loc}} 1 \longleftrightarrow \forall e (e \neq 0 \land e^2 = e \to u \nmid e).$$

So the condition of sc-regularity can be rewritten as there exists $u \in A$ with $Ann(u) = \{0\}$ and $u \nmid_{loc} 1$. That is to say: A is sc-regular if and only if,

$$\exists u (\mathrm{Ann}(u) = \{0\} \, \wedge \, u \nmid_{\mathrm{loc}} 1)$$

is valid in A.

3 Model completeness.

Let A and B two reduced f-rings satisfying the first convexity property and

$$\mathcal{L} = \{0, 1, +, \cdot, <, \land, \leq, |_{loc}\},\$$

be the language of lattice-ordered rings with the radical relation given by the minimal prime spectrum and the relation of local divisibility.

Let us recall that $a \leq b$ if and only if $\operatorname{Ann}(b) \subseteq \operatorname{Ann}(a)$. Let us suppose that $A \subseteq_{\mathcal{L}} B$, that is to say: A is a substructure of B in the language \mathcal{L} ; in particular A is a lattice-ordered subring of B.

Let us denote $i: A \hookrightarrow B$ the inclusion and the functorial (continuous) map:

$$\operatorname{Spec}(i) \colon \operatorname{Spec}(B) \to \operatorname{Spec}(A), q \mapsto i^{-1}(q) = q \cap A.$$

Since $A \subseteq_{\mathcal{L}} B$ and the radical relation \leq belongs to the language then:

$$a \leq_A a' \iff i(a) \leq_B i(a'),$$

for all $a, a' \in A$. Let us denote $\pi B = \operatorname{Specmin}(B) = \{q \in \operatorname{Spec}(B) : q \text{ is a minimal prime ideal }\} \subseteq \operatorname{Spec}(B)$ and similarly $\pi A = \operatorname{Specmin}(A) = \{p \in \operatorname{Spec}(A) : p \text{ is a minimal prime ideal}\} \subseteq \operatorname{Spec}(A)$. Using [12, Theorem, p. 23] and [12, Proposition (a) y (b), p. 22] one has:

$$i^* = \operatorname{Spec}(i)_{\upharpoonright_{\pi B}} \colon \pi B \to \pi A$$

and i^* is surjective. This means that if q is a minimal prime ideal of B then $q \cap A$ is a minimal prime ideal of A and that if p is a minimal prime ideal of A, then there exists at least one minimal prime ideal q of B such that $q \cap A = p$.

For $q_1, q_2 \in \pi B$, let us declare $q_1 \sim q_2$ if and only if $q_1 \cap A = q_2 \cap A$, if and only if $i^*(q_1) = i^*(q_2)$. Clearly \sim is an equivalence relation on πB . Since the function $i^* \colon \pi B \to \pi A$ is surjective, then πA can be consider with the quotient topology πB induced by i^* or by the equivalence relation \sim . By [15, Theorem 9.2, p. 60] one has that the original topology of πA and the induced topology by i^* (or by the equivalence relation \sim) coincide if i^* is an open or closed function. If one consider that the f-rings A and B are projectable, then by [3] and [9], one should have that the spaces πA and πB are compact (and Hausdorff). Since $i^* \colon \pi B \to \pi A$ is a continuous function with πB compact and Hausdorff, then, by [15, p. 120], one has that i^* is a closed function. Therefore the original topology on πA and the quotient topology on πB induced by the equivalence relation \sim are the same. Therefore:

$$j \colon \pi B/\sim \to \pi A, q/\sim \mapsto i^*(q),$$

is a homeomorphism of topological spaces and Boolean spaces.

Now let $p \in \pi A$ and $q \in (i^*)^{-1}(\{p\})$. That is to say that $i^*(q) = q \cap A = p$. Let us consider:

$$h_{pq}: A/p \to B/q, a+p \mapsto a+q.$$

Since $p \subseteq q \cap A$, then h_{pq} is well defined for if a+p=a'+p with $a, a' \in A$ then $a-a' \in p$ and $a-a' \in q \cap A$, that carries to a+q=a'+q. Since $q \cap A \subseteq p$ then h_{pq} is injective for if $a, a' \in A$ are such that $h_{pq}(a) = h_{pq}(a')$, then a+q=a'+q and $a-a' \in q$, so $a-a' \in q \cap A$; that is to say that $a-a' \in p$. Then a+p=a'+p. This proves the injectivity of h_{pq} . It is clear that h_{pq} is a ring homomorphism. Therefore:

$$h_{pq}: A/p \to B/q, a+p \mapsto a+q,$$

is a well defined injective ring homomorphism.

Let us see now that h_{pq} respects the order. Let $a, a' \in A$ such that $a + p \leqslant a' + p$ in A/p. Then there exists $c \in p$ such that c > 0 and $a + c \leqslant a'$ en A. Since A is an \mathcal{L} -sub-structure of B and the order is in the language \mathcal{L} then $a + c \leqslant a'$ in B. Since $p \subseteq q \cap A$ then $c \in q$ with c > 0 and $a + c \leqslant a'$ in B. That is to say that $a + q \leqslant a' + q$ in B/q. Then $h_{pq}(a) \leqslant h_{pq}(a')$ in B/q. One should prove the other implication, that is: if $h_{pq}(a) \leqslant h_{pq}(a')$ in B/q then $a + p \leqslant a' + p$ in A/p. But since the orders on A/p and B/q are total then the implication needed to be proved can be immediately deduced from the one we just proved. Therefore $h_{pq} \colon A/p \to B/q$ is an injective homomorphism of ordered rings. In this context, one has the following proposition:

Proposition 3.1 Let A and B be two reduced projectable f-rings satisfying the first convexity property such that $A \subseteq_{\mathcal{L}} B$ where $\mathcal{L} = \{0, 1, +, \cdot, <, \land, \preceq, |_{loc}\}$ is the language of lattice-ordered rings with the radical relation \preceq given by the minimal prime spectrum and the local divisibility relation $|_{loc}$. If in addition one suppose that A and B are divisible-projectable then for $p \in \pi A$ and $q \in (i^*)^{-1}(\{p\})$, the homomorphism of ordered rings $h_{pq}: A/p \to B/q, a + p \mapsto a + q$ respects divisibility.

Proof: Let us see that for $p \in \pi A$ and $q \in (i^*)^{-1}(\{p\})$, the injective homomorphism of ordered rings $h_{pq}: A/p \to B/q$, $a+p \mapsto a+q$ respects divisibility. That is to say that for $a, a' \in A$ one has that:

$$a + p \mid a' + p$$
 in A/p if and only if $a + q \mid a' + q$ in B/q .

- (\Rightarrow) Let us suppose that $a+p \mid a'+p$ en A/p. Then there exists $c+p \in A/p$ such that (a+p)(c+p)=a'+p. So ac+p=a'+p and therefore $ac-a' \in p$. Since $p \subseteq q \cap A$ then $ac-a' \in q$, what this means is that (a+q)(c+q)=a'+q. In fact $a+q \mid a'+q$ en B/q.
- (\Leftarrow) Let us suppose that $a+q\mid a'+q$ in B/q. One has to show that $a+p\mid a'+p$ in A/p.
- If a' + q = 0 then $a' \in q$. Since $a' \in A$ then $a' \in q \cap A = p$. So a' + p = 0 and therefore $a + p \mid a' + p$ en A/p.
- If $a'+q\neq 0$ then $a'\neq 0$ and $a'\notin q$. Then $a'\notin p$ and so $a'+p\neq 0$. Let us suppose in this case that $a+p\nmid a'+p$ en A/p. Consider $N=\left[\!\left[a\nmid a'\right]\!\right]_{\pi A}\cap\left[\!\left[a'\neq 0\right]\!\right]_{\pi A}$ which is a clopen set of πA . (Here we using the fact that A is divisible projectable, see [7]). See that $p\in N$ and therefore $N\neq \phi$. Let us define $\alpha'=a'_{\mid N}\cup 0_{\mid \pi A\smallsetminus N}\in A$. Since $N\neq \phi$ then $\alpha'\neq 0$.

Now suppose that $A \models a \mid_{loc} \alpha'$. Since $\alpha' \neq 0$ then:

$$A \models \exists w'(w' \neq 0 \land w'(w' - \alpha') = 0 \land a \mid w').$$

Let then be $w' \in A$, $w' \neq 0$ with $w'(w' - \alpha') = 0$ and $a \mid w'$. Since $w' \neq 0$ then there exists $\bar{p} \in \pi A$ such that $w'(\bar{p}) \neq 0$. Since $w'(w' - \alpha') = 0$ then $w'(\bar{p}) = \alpha'(\bar{p})$. By the definition of α' and the fact that $w'(\bar{p}) \neq 0$, one has that $\bar{p} \in N$ and that $\alpha'(\bar{p}) = a'(\bar{p})$. Since $a \mid w'$, there exists $c \in A$ such that ac = w'. That is to say that $a(\bar{p})c(\bar{p}) = w'(\bar{p}) = \alpha'(\bar{p}) = a'(\bar{p})$, so $a(\bar{p}) \mid a'(\bar{p})$ in A/\bar{p} ; but this contradicts the fact that $\bar{p} \in [a \nmid a']_{\pi A}$. Therefore one has:

$$A \models a \nmid_{loc} \alpha'$$
.

Since A is an \mathcal{L} -substructure of B and \mid_{loc} belongs to the language,, then $B \models a \nmid_{\text{loc}} \alpha'$. Since $\alpha' \neq 0$ then:

$$B \models \forall w'(w' \neq 0 \land w'(w' - \alpha') = 0 \rightarrow a \nmid w').$$

Our initial assumption was that $a+q\mid a'+q$ in B/q. Therefore $q\in \llbracket a\mid a'\rrbracket_{\pi B}$. We are also in the case that $a'+q\neq 0$, that is to say that $q\in \llbracket a'\neq 0\rrbracket_{\pi B}$. Since $p\in N$ then $\alpha'(p)=a'(p)$, that is to say that $\alpha'+p=a'+p$. Since $p=q\cap A$ then $\alpha'+q=a'+q$ in B/q and therefore $q\in \llbracket \alpha'=a'\rrbracket_{\pi B}$. Putting $M=\llbracket a\mid a'\rrbracket_{\pi B}\cap \llbracket a'\neq 0\rrbracket_{\pi B}\cap \llbracket \alpha'=a'\rrbracket_{\pi B}$,

one has that M is a clopen set of πB with $q \in M$ and $M \neq \phi$ (here we also used that B is divisible-projectable).

Now let us consider $w'' = \alpha'_{\uparrow_M} \cup 0_{\uparrow_{\pi B \smallsetminus M}} \in B$. Since $M \neq \phi$, for $\bar{q} \in M$ one has that $w''(\bar{q}) = \alpha'(\bar{q}) \neq 0$. Then $w'' \neq 0$. Let us see that $w''(w'' - \alpha') = 0$. Let $\bar{q} \in \pi B$. If $\bar{q} \in \pi B \smallsetminus M$ then $w''(\bar{q} = 0$ and so $\left[w''(w'' - \alpha')\right](\bar{q}) = w''(\bar{q})(w'' - \alpha')(\bar{q}) = 0$. If $\bar{q} \in M$ then $w''(\bar{q}) = \alpha'(\bar{q})$ by the definition of w'', and so $(w'' - \alpha')(\bar{q}) = 0$; that is to say that $\left[w''(w'' - \alpha')\right](\bar{q}) = 0$. In any case we obtain that $\left[w''(w'' - \alpha')\right](\bar{q}) = 0$ (for all $\bar{q} \in \pi B$). Then $w''(w'' - \alpha') = 0$. Since $w'' \in B$ is such that $w'' \neq 0$ and $w''(w'' - \alpha') = 0$, then $a \nmid w''$ en B.

On the other hand, for $\bar{q} \in \pi B$ one has the following:

- if $\bar{q} \in \pi B \setminus M$ then $w''(\bar{q}) = 0$ and therefore $a(\bar{q}) \mid w''(\bar{q})$ in B/\bar{q} .
- if $\bar{q} \in M$ then $\bar{q} \in [\![a \mid a']\!]_{\pi B} \cap [\![\alpha' = a']\!]_{\pi B}$ and consequently one has $a(\bar{q}) \mid a'(\bar{q}) = \alpha'(\bar{q})$ en B/\bar{q} . Therefore $a(\bar{q}) \mid w''(\bar{q})$ in B/\bar{q} .

Therefore $a(\bar{q}) \mid w''(\bar{q})$ in B/\bar{q} for all $\bar{q} \in \pi B$. For each $\bar{q} \in \pi B$, there exists $c_{\bar{q}} \in B$ such that $a(\bar{q})c_{\bar{q}}(\bar{q}) = w''(\bar{q})$. Then:

$$\pi B = \bigcup_{\bar{q} \in \pi B} \llbracket ac_{\bar{q}} = w'' \rrbracket_{\pi B}.$$

By the compactness of πB , one can distinguish a finite number of $c_{\bar{q}}$'s and by the patchwork property of B, it is easy to construct an element $c \in B$ such that ac = w''. Then it has been proved that $a \mid w''$ en B. But we had from below that $a \nmid w''$ en B, giving a contradiction. Therefore we can not suppose that $a + p \nmid a' + p$ in A/p and then we have in this case that $a + q \mid a' + q$ in B/q implies that $a + p \mid a' + p$ in A/p.

Let A and B be two models of T^* such that $A \subseteq_{\mathcal{L}} B$ where $\mathcal{L} = \{0, 1, +\cdot, \wedge, \leq, |_{loc}\}$ is the language of lattice-ordered rings with the radical relation \leq given by the minimal prime spectrum and $|_{loc}$ is our local divisibility relation.

It is known that $i^*: \pi B \to \pi A$, $q \mapsto q \cap A$ is a continuous surjective map such that $\pi A \cong \pi B / \sim$ where \sim is the equivalence relation given by $q \sim q'$ if and only if $i^*(q) = q \cap A = q' \cap A = i^*(q')$. Furthermore, for all $p \in \pi A$ and $q \in (i^*)^{-1}(\{p\})$, there exists $h_{pq}: A/p \to B/q$, $a+p \mapsto a+q$ an injective homomorphism of ordered rings respecting the divisibility.

Let us denote $\mathcal{B}(\pi A)$ and $\mathcal{B}(\pi B)$ the Boolean algebras of clopen sets of πA and πB respectively. Therefore:

$$j = (i^*)^{-1} \colon \mathcal{B}(\pi A) \to \mathcal{B}(\pi B),$$

is an injective homomorphism of Boolean algebras.

We want to show that $A \prec_{\mathcal{L}} B$. Let $\phi(x_1, \ldots, x_n)$ be an \mathcal{L} -formula and $a_1, \ldots, a_n \in A$. By [6, Theorem 1.1], there exists an acceptable sequence $\zeta = \langle \Phi, \theta_1, \ldots, \theta_m \rangle$ of formulas where $\theta_1, \ldots, \theta_m$ are \mathcal{L} -formulas with the same free variables of $\phi(x_1, \ldots, x_n)$ and Φ is a formula in the Boolean algebra's language with m free variables such that:

$$A \models \phi(a_1, \dots, a_n) \iff \mathcal{B}(\pi A) \models \Phi\Big(\llbracket \theta_1(a_1, \dots, a_n) \rrbracket_A, \dots, \llbracket \theta_m(a_1, \dots, a_n) \rrbracket_A \Big),$$

where
$$[\![\theta_j(a_1,\ldots,a_n)]\!]_A = \{p \in \pi A : A/p \models \theta_j(a_1+p,\ldots,a_n+p)\}, \text{ for all } j=1,\ldots,m.$$

Since A and B are models of T^* then A/p and B/q are real closed valuation rings, for all $p \in \pi A$ and $q \in \pi B$. Therefore, for $p \in \pi A$ and $q \in (i^*)^{-1}(\{p\})$, one has that $h_{pq} \colon A/p \to B/q$, $a+p \mapsto a+q$ is an elementary monomorphism in view of 3.1 and [5]. Therefore:

$$h_{pq}: A/p \prec B/q$$
.

Then:

$$j(\llbracket \theta_l(a_1,\ldots,a_n) \rrbracket A) = \{q \in \pi B : B/q \models \theta_l(h_{pq}(a_1),\ldots,h_{pq}(a_n)) \text{ con } p = q \cap A\}$$
$$= \llbracket \theta_l(a_1,\ldots,a_n) \rrbracket_B.$$

Since $\mathcal{B}(\pi A)$ are $\mathcal{B}(\pi B)$ are atomless Boolean algebras (A and B are models of T^*) then:

$$j: \mathcal{B}(\pi A) \prec \mathcal{B}(\pi B),$$

is an elementary monomorphism. Then one has:

$$\mathcal{B}(\pi A) \models \Phi\left(\llbracket \theta_1(a_1, \dots, a_n) \rrbracket_A, \dots, \llbracket \theta_m(a_1, \dots, a_n) \rrbracket_A\right)$$

$$\iff \mathcal{B}(\pi B) \models \Phi\left(j\left(\llbracket \theta_1(a_1, \dots, a_n) \rrbracket_A\right), \dots, j\left(\llbracket \theta_m(a_1, \dots, a_n) \rrbracket_A\right)\right)$$

$$\iff \mathcal{B}(\pi B) \models \Phi\left(\llbracket \theta_1(a_1, \dots, a_n) \rrbracket_B, \dots, \llbracket \theta_m(a_1, \dots, a_n) \rrbracket_B\right).$$

By [6, Theorem 1.1] one also has:

$$B \models \phi(a_1, \dots, a_n) \iff \mathcal{B}(\pi B) \models \Phi(\llbracket \theta_1(a_1, \dots, a_n) \rrbracket_B, \dots, \llbracket \theta_m(a_1, \dots, a_n) \rrbracket_B).$$

Therefore we just have seen that:

$$A \models \phi(a_1, \ldots, a_n)$$
 if and only if $B \models \phi(a_1, \ldots, a_n)$.

This proves that:

$$A \prec_{\mathcal{L}} B$$
.

We can therefore state:

Theorem 3.2 The theory T^* is model complete in $\mathcal{L} = \{0, 1, +\cdot, \wedge, \leq, |_{loc}\}$.

References

- [1] M.F. Atiyah, I.G. Macdonald, *Introducción al Álgebra Conmutativa*, Editorial Reverté, Barcelona, 1975.
- [2] T. Becker, Real Closed rings and ordered valuation rings, Zeitsch. f. math. Logik und Grundlagen d. Math, Bd. 29 (1983), 417-425.
- [3] A. BIGARD, K. KEIMEL, S. WOLFENSTEIN, Groupes et Anneaux réticulés, Lecture Notes in Mathematics 608, Springer-Verlag, Berlin, 1977.

- [4] S. Burris, H. Werner, Sheaf Constructions and their elementary properties, Transactions of the American Mathematical Society, Volume 248, Number 2 (1979), 269-309.
- [5] G. CHERLIN, M.A. DICKMANN, Real closed rings II. Model Theory. Annals of Pure and Applied Logic 25 (1983), 213-231.
- [6] S.D. Comer, Elementary properties of structures of sections, Boletín de la Sociedad Matemática Mexicana 19 (1974), 78-85.
- [7] J. I. Guier, Boolean products of real closed valuations rings and fields, Annals of Pure and Applied Logic 112 (2001), 119-150.
- [8] J. I. Guier, Convex Lattice-Ordered Subrings of von Neumann Regular f-Rings, Revista Colombiana de Matemáticas, volumen 49, número 1 (2015), 161-170.
- [9] K. Keimel, The representation of lattice-ordered groups and rings by sections of sheaves. Lectures Notes in Mathematics 248, Springer-Verlag, Berlin Heidelberg, 1971, 1-98.
- [10] A. Macintyre, Model Completeness for sheaves of structures, Fund. Math. LXXXI (1973), 73-89.
- [11] A. Prestel, J. Schmid, Existencially closed domains with radical relations, J. reine angew. Math. 407 (1990), 178-201.
- [12] A. PRESTEL, N. SCHWARZ, Model Theory of real closed rings, In Valuation theory and its applications, vol. I (Saskatoon, SK, 1999), volume 32 of Fields Institute Communications, pp. 261-290, American Mathematical Society, Providence, RI, 2002.
- [13] N. Schwartz, *Real closed rings*, in Algebra and Order (S. Wolfenstein, ed.), Research and Exposition in Mathematics, vol. 14, Heldermann, Berlin, 1986.
- [14] N. Schwartz, Real closed rings. Examples and applications, in Séminaire de Structures Algébriques Ordonnées 1995-96 (Delon, Dickmann, Gondard, eds), Paris VII-CNRS Logique, Prépublications, No. 61, Paris, 1997.
- [15] S. WILLARD, General Topology, Addison-Wesley, Reading Massachusetts, 1970.