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Abstract

Let T ∗ be the theory of lattice-ordered rings convex in von Neumann regular real
closed f -rings, without minimal idempotents (non zero) that are divisible-projectable
and sc-regular. I introduce a binary relation describing local divisibility. If this relation
is added to the language of lattice ordered rings with the radical relation associated
to the minimal prime spectrum (cf. [12]), it can be shown the model completeness of
T ∗.

1 Introduction.

The theory T ∗ can also be described as the theory of real closed, reduced, projectable
f -rings that are divisible-projectable, sc-regular, satisfying the first convexity property,
and without minimal idempotents (non zero), cf. [8, Theorem 10].

By [7], T ∗ admits elimination of quantifiers in L∗ = {0, 1,+,−, ·,∧, div}, the language
of lattice-ordered rings where div(·, ·) is a binary function symbol defined by:

T ∗ ` div(x, y) = c ←→ c ∈ y⊥⊥ ∧ ∃z∃w
(
x = z + w ∧ z ⊥ w ∧ cy = z ∧

∀w′(w′ 6= 0 ∧ w′ ⊥ (w − w′)→ y - w′)
)
.

If A is a reduced f -ring, it is known by [3] that ∀x∀y(x ⊥ y ↔ xy = 0) is a valid
formula in A. For a ∈ A, the polar of a is defined by a⊥ = {b ∈ A : b ⊥ a} and the bipolar
by a⊥⊥ = {b ∈ A : b ⊥ c ∀c ⊥ a}. It is also known by [3] that:

b ∈ a⊥⊥ ⇐⇒ a⊥ ⊆ b⊥ ⇐⇒ Ann(a) ⊆ Ann(b).

If A is a projectable reduced f -ring, then [9] says that:

A ∈ Γa
L
(
πA, (A/p)p∈πA

)
,
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where L is the language of ordered rings (see notations in [4]) and,

πA = {p ∈ Spec(A) : p is a minimal prime ideal} = Specmin(A).

In this case:
b ∈ a⊥⊥ ⇐⇒

[[
b 6= 0

]]
⊆
[[
a 6= 0

]]
⇐⇒ supp(b) ⊆ supp(a)

⇐⇒
[[
a = 0

]]
⊆
[[
b = 0

]]
⇐⇒ ∀p ∈ πA (a ∈ p⇒ b ∈ p).

In [12], the authors used radical relations, introduced in [11], in order to study the
model theory of von Neumann regular real closed f -rings without minimal idempotents
(non zero). Radical relations are given, cf [11], by a subset X ⊆ Spec(A) through:

b�Xa⇐⇒ ∀p ∈ X (b /∈ p⇒ a /∈ p).

The case X = πA is relevant and studied in [12] and we then have:

b� πAa ⇐⇒ ∀p ∈ πA (b /∈ p⇒ a /∈ p)
⇐⇒ ∀p ∈ πA (a ∈ p⇒ b ∈ p)
⇐⇒ b ∈ a⊥⊥

⇐⇒ a⊥ ⊆ b⊥

⇐⇒ Ann(a) ⊆ Ann(b).

Following [12], let us extend the language of lattice-ordered rings L = {0, 1,+, ·,∧} intro-
ducing a binary relation symbol � defined by:

b� a⇐⇒ b ∈ a⊥⊥ ⇐⇒ Ann(a) ⊆ Ann(b).

In fact, a radical relation � is a binary relation defined in [12] by:

(1) a� a, for all a ∈ A;

(2) if a� b and b� c then a� c, for all a, b, c ∈ A;

(3) if a� c and b� c then a+ b� c, for all a, b, c ∈ A;

(4) if a� b then ac� bc, for all a, b, c ∈ A;

(5) a� 1, for all a ∈ A and 1 6� 0;

(6) b� b2, for all b ∈ A.

In the theory of real closed valuation rings the divisibility plays a key role (see [5]), it
is therefore interesting to ask if the divisibility relation can be given by a radical relation.
Looking the defining properties (1) to (6) of a radical relation, let us set:

a� b⇐⇒ b | a.

Let us see if in this case � is in fact a radical relation. The first five conditions are easily
seen to be satisfied. But for the sixth condition, it is seen that:

b� b2 ⇐⇒ b2 | b⇐⇒ ∃x(b2x = b)⇐⇒ ∃x(bxb = b),
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that is precisely the definition of a von Neumann regular ring. Then a� b ⇐⇒ b | a is a
radical relation if and only if the ring is von Neumann regular.

In fact, if A is a von Neumann regular f -ring, then the relation given by:

a� πAb⇐⇒ b⊥ ⊆ a⊥ ⇐⇒ [[ b = 0 ]] ⊆ [[ a = 0 ]] ,

is the divisibility. For a, b ∈ A:

• If b | a then there exists x ∈ A with bx = a. Then [[ b = 0 ]] ⊆ [[ a = 0 ]] .

• If [[ b = 0 ]] ⊆ [[ a = 0 ]] , consider x ∈ A defined by:

x = 0�[[ b=0 ]]
∪
(a
b

)
�[[ b 6=0 ]]

∈ A,

and it is such that bx = a. Then b | a.

This is an indication that the divisibility relation can not be consider in the context
of models of T ∗ as a radical relation. For this reason and by the definition of the binary
function symbol div(·, ·) is that I will introduce a binary relation symbol of local divisibility.
First of all, observe that the definition of the div(·, ·) symbol can be written using the
radical relation � associated to the minimal prime spectrum:

T ∗ ` div(x, y) = c ←→ c� y ∧ ∃z∃w
(
x = z + w ∧ z ⊥ w ∧ cy = z ∧

∀w′(w′ 6= 0 ∧ w′ ⊥ (w − w′)→ y - w′)
)
.

In order to study the theory T ∗ from an existential formula or model completeness
point of view, I introduce a binary relation given by:

R(y, w)←→ ∀w′(w′ 6= 0 ∧ w′ ⊥ (w − w′)→ y - w′),

that express the fact that y does not divide locally w. It will more pleasant to have in a
positive form:

y |loc w ←→ ¬R(y, w)←→ ∃w′(w′ 6= 0 ∧ w′ ⊥ (w − w′) ∧ y | w′).

Observe that this two last expressions in the language of lattice-ordered rings can be
reformulated in the language of rings by:

R(y, w)←→ ∀w′(w′ 6= 0 ∧ w′(w − w′) = 0→ y - w′),

and
y |loc w ←→ ¬R(y, w)←→ ∃w′(w′ 6= 0 ∧ w′(w − w′) = 0 ∧ y | w′).

For the “global” divisibility relation y | w it is obvious that y | 0. But observe that if
y |loc 0 in a reduced ring A then there exists w′ ∈ A with w′ 6= 0 and w′(−w′) = 0 such
that y | w′. Therefore w′ 6= 0 and w′2 = 0, that gives a contradiction in the reduced ring
A. That is why I redefined:

y |loc w ←→ ∃w′(w′ 6= 0 ∧ w′(w − w′) = 0 ∧ y | w′) ∨ w = 0.
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2 Local divisibility relation.

This section is related to the study of this “local divisibility” relation in the general theory
of rings. A list of properties is given, they will be stated as general as possible. Some of
them will be stated in the theory of reduced (f)-rings.

Proposition 2.1 Let A be any ring and y, w ∈ A. If y | w then y |loc w.

Proof: If w = 0 then clearly y |loc w. If w 6= 0, then take w′ = w. Clearly w′ 6= 0 and
w′(w−w′) = w ·0 = 0 with y | w. Then the formula ∃w′(w′ 6= 0 ∧ w′(w′−w) = 0 ∧ y | w′)
is valid in A. In both cases: y |loc w.

�

Proposition 2.2 Let A be any ring and y, w ∈ A. For n ∈ N∗ = N r {0}, if yn |loc w
then y |loc w.

Proof: Let us suppose that yn |loc w for n ∈ N∗. If w = 0 then clearly y |loc w. If
w 6= 0, then exists w′ ∈ A with w′ 6= 0, w′(w − w′) = 0 and yn | w′. Since y | yn then
∃w′(w′ 6= 0 ∧ w′(w′ − w) = 0 ∧ y | w′) is a valid formula in A. In this case we also have
y |loc w.

�

Proposition 2.3 Let A be any ring and w ∈ A. Then 1 |loc w.

Proof: If w = 0 then clearly 1 |loc w. If w 6= 0, declaring w′ = w we obtain 1 | w′ and then
∃w′(w′ 6= 0 ∧ w′(w′ −w) = 0 ∧ 1 | w′) is valid in A. In this case one also have 1 |loc w.

�

Proposition 2.4 Let A be any ring and y ∈ A. Then y |loc 0.

Proof: By definition.
�

Proposition 2.5 Let A any ring and c, y, w ∈ A. If cy |loc w then y |loc w.

Proof: If w = 0 then by definition y |loc w. If w 6= 0, as we have cy |loc w then exists
w′ ∈ Ar {0}such that w′(w′ −w) = 0 and cy | w′. Since y | cy then by transitivity y | w′.
Then the formula ∃w′(w′ 6= 0 ∧ w′(w′ − w) = 0 ∧ y | w′) is valid in A. In this case we
also have y |loc w.

�

Proposition 2.6 Let A be any ring and w ∈ A. If 0 |loc w then w = 0.

Proof: Let us suppose that w 6= 0. Since 0 |loc w there exists w′ ∈ A with w′ 6= 0,
w′(w′ − w) = 0 and 0 | w′. But 0 | w′ gives us w′ = 0, a contradiction. Then w = 0.

�

Proposition 2.7 Let A be any ring and y, w ∈ A. Then y |loc w if and only if −y |loc w.
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Proof: (⇐) Let us suppose that −y |loc w. If w = 0 then by definition we have that
y |loc w. If w 6= 0, then there exists w′ ∈ A con w′ 6= 0, w′(w′ − w) = 0 and −y | w′.
Evidently y | w′. The formula ∃w′(w′ 6= 0 ∧ w′(w′ − w) = 0 ∧ y | w′) is valid in A and
therefore in this case y |loc w. We have proved that if −y |loc w then y |loc w, for all
y, w ∈ A.

(⇒) This implication can be deduced by the previous one interchanging y by −y.
�

Fact 2.8 Observe that if the ring A is unitary, then the previous property can be proved
using the proposition 2.5 with c = −1.

Proposition 2.9 Let A be any ring and y, w ∈ A. Then y |loc w if and only if y |loc −w.

Proof: (⇒) Let us suppose that y |loc w. We want to show that y |loc −w. If w = 0
then −w = 0 and y |loc −w by definition. If w 6= 0, since y |loc w there exists w′ ∈ A,
w′ 6= 0 with w′(w′ − w) = 0 and y | w′. Declaring w′′ = −w′ ∈ A one has clearly that
w′′ 6= 0. Since w′(w′ − w) = 0 then (−w′)(−w′ + w) = 0. Observe that since y | w′ then
y |loc −w′ = w′′. Then the formula ∃w′′(w′′ 6= 0 ∧ w′′(w′′− (−w)) = 0 ∧ y | w′′) is valid in
A. This says that y |loc −w. It is been shown that if y |loc w then y |loc −w, for y, w ∈ A.

(⇐) This implication is deduced from the previous one replacing w by −w.
�

Proposition 2.10 Let A be any ring and y, w ∈ A. Then y |loc −w if and only if
−y |loc w.

Proof: This property is deduced immediately from previous propositions 2.7 and 2.9.
�

Proposition 2.11 Let A be any ring, y ∈ A and n ∈ N∗. Then y |loc y
n.

Proof: • If yn = 0 then by proposition 2.4 one has y |loc 0.

• If yn 6= 0. Declaring w′ = yn one obtains w′ 6= 0, yn(w′ − yn) = 0 and clearly
y | yn = w′ for n > 1. Then the formula ∃w′(w′ 6= 0 ∧ yn(w′ − yn) = 0 ∧ y | w′) is valid
in A; one then has in this case y |loc y

n.
�

One needs to prove a previous lemma in order to prove one more property on “local
divisibility”.

Lema 2.12 Let A be any lattice-ordered ring and let w,w′ ∈ A such that w′ ⊥ w − w′.
Then |w′| 6 |w|.

Proof: By the definition of ∧ one has that |w′| ∧ |w| 6 |w′| and |w′| ∧ |w| 6 |w|. Observe
that one has the following inequality:

|w′| = |w′| ∧ |w′| = |w′| ∧ |w′ − w + w| 6 |w′| ∧
(
|w′ − w|+ |w|

)
=

(
|w′| ∧ |w′ − w|

)
+
(
|w′| ∧ |w|

)
.

Since w′ ⊥ w − w′, then |w′| ∧ |w − w′| = 0 and therefore one obtains:

|w′| 6 0 +
(
|w′| ∧ |w|

)
= |w′| ∧ |w| 6 |w′|.

Then |w′| ∧ |w| = |w′|, and this shows us that |w′| 6 |w|.
�

The previous lemma help us to prove the following proposition:
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Proposition 2.13 Let A be any lattice-ordered ring and let y, w1, w2 ∈ A. If y |loc w1

and y |loc w2 with w1 ⊥ w2 then y |loc w1 + w2.

Proof: Let us suppose that y |loc w1 and y |loc w2 with w1 ⊥ w2. There are various cases:

• If w1 = 0, since y |loc w2 then y |loc w1 + w2.

• If w2 = 0, since y |loc w1 then y |loc w1 + w2.

• if w1 6= 0 and w2 6= 0. If w1 + w2 = 0 then by definition one has that y |loc w1 + w2.

Let us suppose that w1 +w2 6= 0. Since y |loc w1 and w1 6= 0 then there exists w′1 ∈ A,
w′1 6= 0 such that w′1 ⊥ w1 − w′1 with y | w′1. Since y |loc w2 and w2 6= 0 then there exists
w′2 ∈ A, w′2 6= 0 such that w′2 ⊥ w2 − w′2 and y | w′2. Let us see that w′1 + w′2 6= 0. If
w′1 + w′2 = 0 then w′2 = −w′1 and therefore:

|w′1| ∧ |w′2| = |w′1| ∧ | − w′1| = |w′1| ∧ |w′1| = |w′1|.

By the lemma 2.12 one has that |w′1| 6 |w1| and |w′2| 6 |w2|. Then:

|w′1| ∧ |w′2| 6 |w1| ∧ |w2|.

Since w1 ⊥ w2 then |w1| ∧ |w2| = 0 and by the previous inequality one has |w′1| ∧ |w′2| = 0.
By the asumption one should have that |w′1| = 0, meaning that w′1 = 0; which is impossible
since w′1 6= 0.

Once we stated that w′1 + w′2 6= 0, we want to see that:

w′1 + w′2 ⊥ (w1 + w2)− (w′1 + w′2).

We have the following inequalities :

0 6
∣∣w′1 + w′2

∣∣ ∧ ∣∣(w1 + w2)− (w′1 + w′2)
∣∣

=
∣∣w′1 + w′2

∣∣ ∧ ∣∣(w1 − w′1) + (w2 − w′2)
∣∣

6
∣∣w′1 + w′2

∣∣ ∧ (|w1 − w′1|+ |w2 − w′2|
)

6
(
|w′1|+ |w′2|

)
∧
(
|w1 − w′1|+ |w2 − w′2|

)
=

(
|w′1| ∧ |w1 − w′1|

)
+
(
|w′1| ∧ |w2 − w′2|

)
+
(
|w′2| ∧ |w1 − w′1|

)
+
(
|w′2| ∧ |w2 − w′2|

)
= 0 +

(
|w′1| ∧ |w2 − w′2|

)
+
(
|w′2| ∧ |w1 − w′1|

)
+ 0

=
(
|w′1| ∧ |w2 − w′2|

)
+
(
|w′2| ∧ |w1 − w′1|

)
6

(
|w′1| ∧

(
|w2|+ |w′2|

))
+
(
|w′2| ∧

(
|w1|+ |w′1|

))
=

(
|w′1| ∧ |w2|

)
+
(
|w′1| ∧ |w′2|

)
+
(
|w′2| ∧ |w1|

)
+
(
|w′2| ∧ |w′1|

)
=

(
|w′1| ∧ |w2|

)
+ 2
(
|w′1| ∧ |w′2|

)
+
(
|w′2| ∧ |w1|

)
.

Using one more time the lemma 2.12, since w′1 ⊥ (w1 − w′1) and w′2 ⊥ (w2 − w′2); one has
that |w′1| 6 |w1| and |w′2| 6 |w2|. Coming back to the inequalities one obtains:

0 6
∣∣w′1 + w′2

∣∣ ∧ ∣∣(w1 + w2)− (w′1 + w′2)
∣∣

6
(
|w′1| ∧ |w2|

)
+ 2
(
|w′1| ∧ |w′2|

)
+
(
|w′2| ∧ |w1|

)
6

(
|w1| ∧ |w2|

)
+ 2
(
|w1| ∧ |w2|

)
+
(
|w2| ∧ |w1|

)
= 4

(
|w1| ∧ |w2|

)
= 4 · 0
= 0,
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for w1 ⊥ w2. This shows that
∣∣w′1 + w′2

∣∣ ∧ ∣∣(w1 + w2) − (w′1 + w′2)
∣∣ = 0. One then has

that (w′1 +w′2) ⊥ (w1 +w2)− (w′1 +w′2). Since y | w′1 and y | w′2 then clearly y | w′1 +w′2.
Declaring w′ = w′1 + w′2, we had achieved that w′ 6= 0, w′ ⊥ (w1 + w2) − w′ and that
y | w′. This means that ∃w′

(
w′ 6= 0 ∧ w′

(
w′ − (w1 + w2)

)
∧ y | w′

)
is a valid formula in

A. Precisely one has that y |loc w1 + w2.
�

Proposition 2.14 Let A be any domain and y, w ∈ A. Then y | w if and only if y |loc w.

Proof: (⇒) This implication is proposition 2.1.

(⇐) Let us suppose that y |loc w. If w = 0 then clearly y | w. If w 6= 0, there exists
w′ ∈ A, w′ 6= 0 with w′(w′ − w) = 0 and y | w′. Since A is a domain then w′ − w = 0.
Therefore w′ = w and then y | w.

�

Let A be any reduced f -ring. In [7], the ring A is sc-regular if there exist an element
u ∈ A such that u⊥ = {0} and satisfying that ∀e(e 6= 0 ∧ e2 = e→ u - e). The condition
u⊥ = {0} can be rewritten as Ann(u) = {0}. Since 1 6= 0 then observe that:

u |loc 1 ←→ ∃w′(w′ 6= 0 ∧ w′(w′ − 1) = 0 ∧ u | w′)
←→ ∃w′(w′ 6= 0 ∧ w′2 − w′ = 0 ∧ u | w′)
←→ ∃w′(w′ 6= 0 ∧ w′2 = w′ ∧ u | w′)
←→ ∃e(e 6= 0 ∧ e2 = e ∧ u | e)

.

Therefore:
u -loc 1←→ ∀e(e 6= 0 ∧ e2 = e→ u - e).

So the condition of sc-regularity can be rewritten as there exists u ∈ A with Ann(u) = {0}
and u -loc 1. That is to say: A is sc-regular if and only if,

∃u(Ann(u) = {0} ∧ u -loc 1)

is valid in A.

3 Model completeness.

Let A and B two reduced f -rings satisfying the first convexity property and

L = {0, 1,+, ·, <,∧, � , |loc},

be the language of lattice-ordered rings with the radical relation given by the minimal
prime spectrum and the relation of local divisibility.

Let us recall that a� b if and only if Ann(b) ⊆ Ann(a). Let us suppose that A ⊆L B,
that is to say: A is a substructure of B in the language L; in particular A is a lattice-
ordered subring of B.

Let us denote i : A ↪→ B the inclusion and the functorial (continuous) map:

Spec(i) : Spec(B)→ Spec(A), q 7→ i−1(q) = q ∩A.
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Since A ⊆L B and the radical relation � belongs to the language then:

a�Aa
′ ⇐⇒ i(a)�Bi(a

′),

for all a, a′ ∈ A. Let us denote πB = Specmin(B) = {q ∈ Spec(B) : q is a minimal prime
ideal } ⊆ Spec(B) and similarly πA = Specmin(A) = {p ∈ Spec(A) : p is a minimal prime
ideal} ⊆ Spec(A). Using [12, Theorem, p. 23] and [12, Proposition (a) y (b), p. 22] one
has:

i∗ = Spec(i)�πB : πB → πA

and i∗ is surjective. This means that if q is a minimal prime ideal of B then q ∩ A is a
minimal prime ideal of A and that if p is a minimal prime ideal of A, then there exists at
least one minimal prime ideal q of B such that q ∩A = p.

For q1, q2 ∈ πB, let us declare q1 ∼ q2 if and only if q1∩A = q2∩A, if and only if i∗(q1) =
i∗(q2). Clearly ∼ is an equivalence relation on πB. Since the function i∗ : πB → πA is
surjective, then πA can be consider with the quotient topology πB induced by i∗ or by
the equivalence relation ∼. By [15, Theorem 9.2, p. 60] one has that the original topology
of πA and the induced topology by i∗ (or by the equivalence relation ∼) coincide if i∗ is
an open or closed function. If one consider that the f -rings A and B are projectable, then
by [3] and [9], one should have that the spaces πA and πB are compact (and Hausdorff).
Since i∗ : πB → πA is a continuous function with πB compact and Hausdorff, then, by
[15, p. 120], one has that i∗ is a closed function. Therefore the original topology on πA
and the quotient topology on πB induced by the equivalence relation ∼ are the same.
Therefore:

j : πB/∼ → πA, q/∼ 7→ i∗(q),

is a homeomorphism of topological spaces and Boolean spaces.

Now let p ∈ πA and q ∈ (i∗)−1
(
{p}
)
. That is to say that i∗(q) = q ∩ A = p. Let us

consider:
hpq : A/p→ B/q, a+ p 7→ a+ q.

Since p ⊆ q ∩A, then hpq is well defined for if a+ p = a′+ p with a, a′ ∈ A then a− a′ ∈ p
and a−a′ ∈ q∩A, that carries to a+ q = a′+ q. Since q∩A ⊆ p then hpq is injective for if
a, a′ ∈ A are such that hpq(a) = hpq(a

′), then a+q = a′+q and a−a′ ∈ q, so a−a′ ∈ q∩A;
that is to say that a− a′ ∈ p. Then a+ p = a′ + p. This proves the injectivity of hpq. It
is clear that hpq is a ring homomorphism. Therefore:

hpq : A/p→ B/q, a+ p 7→ a+ q,

is a well defined injective ring homomorphism.

Let us see now that hpq respects the order. Let a, a′ ∈ A such that a + p 6 a′ + p
in A/p. Then there exists c ∈ p such that c > 0 and a + c 6 a′ en A. Since A is an
L-sub-structure of B and the order is in the language L then a + c 6 a′ in B. Since
p ⊆ q ∩ A then c ∈ q with c > 0 and a + c 6 a′ in B. That is to say that a + q 6 a′ + q
in B/q. Then hpq(a) 6 hpq(a′) in B/q. One should prove the other implication, that is: if
hpq(a) 6 hpq(a′) in B/q then a+ p 6 a′ + p in A/p. But since the orders on A/p and B/q
are total then the implication needed to be proved can be immediately deduced from the
one we just proved. Therefore hpq : A/p→ B/q is an injective homomorphism of ordered
rings. In this context, one has the following proposition:
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Proposition 3.1 Let A and B be two reduced projectable f -rings satisfying the first con-
vexity property such that A ⊆L B where L = {0, 1,+, ·, <,∧, � , |loc} is the language of
lattice-ordered rings with the radical relation � given by the minimal prime spectrum and
the local divisibility relation |loc. If in addition one suppose that A and B are divisible-
projectable then for p ∈ πA and q ∈ (i∗)−1

(
{p}
)
, the homomorphism of ordered rings

hpq : A/p→ B/q, a+ p 7→ a+ q respects divisibility.

Proof: Let us see that for p ∈ πA and q ∈ (i∗)−1
(
{p}
)
, the injective homomorphism of

ordered rings hpq : A/p→ B/q, a+ p 7→ a+ q respects divisibility. That is to say that for
a, a′ ∈ A one has that:

a+ p | a′ + p in A/p if and only if a+ q | a′ + q in B/q.

(⇒) Let us suppose that a+p | a′+p en A/p. Then there exists c+p ∈ A/p such that
(a+ p)(c+ p) = a′ + p. So ac+ p = a′ + p and therefore ac− a′ ∈ p. Since p ⊆ q ∩A then
ac− a′ ∈ q, what this means is that (a+ q)(c+ q) = a′ + q. In fact a+ q | a′ + q en B/q.

(⇐) Let us suppose that a+ q | a′ + q in B/q. One has to show that a+ p | a′ + p in
A/p.

• If a′ + q = 0 then a′ ∈ q. Since a′ ∈ A then a′ ∈ q ∩ A = p. So a′ + p = 0 and
therefore a+ p | a′ + p en A/p.

• If a′ + q 6= 0 then a′ 6= 0 and a′ /∈ q. Then a′ /∈ p and so a′ + p 6= 0. Let us suppose
in this case that a+ p - a′ + p en A/p. Consider N =

[[
a - a′

]]
πA ∩

[[
a′ 6= 0

]]
πA which is

a clopen set of πA. (Here we using the fact that A is divisible projectable, see [7]). See
that p ∈ N and therefore N 6= φ. Let us define α′ = a′�N ∪ 0�πArN ∈ A. Since N 6= φ then
α′ 6= 0.

Now suppose that A |= a |loc α
′. Since α′ 6= 0 then:

A |= ∃w′(w′ 6= 0 ∧ w′(w′ − α′) = 0 ∧ a | w′).

Let then be w′ ∈ A, w′ 6= 0 with w′(w′−α′) = 0 and a | w′. Since w′ 6= 0 then there exists
p̄ ∈ πA such that w′(p̄) 6= 0. Since w′(w′ − α′) = 0 then w′(p̄) = α′(p̄). By the definition
of α′ and the fact that w′(p̄) 6= 0, one has that p̄ ∈ N and that α′(p̄) = a′(p̄). Since a | w′,
there exists c ∈ A such that ac = w′. That is to say that a(p̄)c(p̄) = w′(p̄) = α′(p̄) = a′(p̄),
so a(p̄) | a′(p̄) in A/p̄; but this contradicts the fact that p̄ ∈

[[
a - a′

]]
πA. Therefore one

has:
A |= a -loc α

′.

Since A is an L-substructure of B and |loc belongs to the language,, then B |= a -loc α
′.

Since α′ 6= 0 then:

B |= ∀w′(w′ 6= 0 ∧ w′(w′ − α′) = 0→ a - w′).

Our initial assumption was that a+ q | a′ + q in B/q. Therefore q ∈
[[
a | a′

]]
πB. We are

also in the case that a′ + q 6= 0, that is to say that q ∈
[[
a′ 6= 0

]]
πB. Since p ∈ N then

α′(p) = a′(p), that is to say that α′+p = a′+p. Since p = q∩A then α′+q = a′+q in B/q
and therefore q ∈

[[
α′ = a′

]]
πB. Putting M =

[[
a | a′

]]
πB ∩

[[
a′ 6= 0

]]
πB ∩

[[
α′ = a′

]]
πB,
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one has that M is a clopen set of πB with q ∈ M and M 6= φ (here we also used that B
is divisible-projectable).

Now let us consider w′′ = α′�M ∪ 0�πBrM ∈ B. Since M 6= φ, for q̄ ∈ M one has that
w′′(q̄) = α′(q̄) = a′(q̄) 6= 0. Then w′′ 6= 0. Let us see that w′′(w′′ − α′) = 0. Let q̄ ∈ πB.
If q̄ ∈ πBrM then w′′(q̄ = 0 and so

[
w′′(w′′−α′)

]
(q̄) = w′′(q̄)(w′′−α′)(q̄) = 0. If q̄ ∈M

then w′′(q̄) = α′(q̄) by the definition of w′′, and so (w′′ − α′)(q̄) = 0; that is to say that[
w′′(w′′ − α′)

]
(q̄) = 0. In any case we obtain that

[
w′′(w′′ − α′)

]
(q̄) = 0 (for all q̄ ∈ πB).

Then w′′(w′′ − α′) = 0. Since w′′ ∈ B is such that w′′ 6= 0 and w′′(w′′ − α′) = 0, then
a - w′′ en B.

On the other hand, for q̄ ∈ πB one has the following:

• if q̄ ∈ πB rM then w′′(q̄) = 0 and therefore a(q̄) | w′′(q̄) in B/q̄.

• if q̄ ∈M then q̄ ∈
[[
a | a′

]]
πB ∩

[[
α′ = a′

]]
πB and consequently one has a(q̄) | a′(q̄) =

α′(q̄) en B/q̄. Therefore a(q̄) | w′′(q̄) in B/q̄.

Therefore a(q̄) | w′′(q̄) in B/q̄ for all q̄ ∈ πB. For each q̄ ∈ πB, there exists cq̄ ∈ B
such that a(q̄)cq̄(q̄) = w′′(q̄). Then:

πB =
⋃
q̄∈πB

[[
acq̄ = w′′

]]
πB.

By the compactness of πB, one can distinguish a finite number of cq̄’s and by the patchwork
property of B, it is easy to construct an element c ∈ B such that ac = w′′. Then it has been
proved that a | w′′ en B. But we had from below that a - w′′ en B, giving a contradiction.
Therefore we can not suppose that a+ p - a′+ p in A/p and then we have in this case that
a+ q | a′ + q in B/q implies that a+ p | a′ + p in A/p.

�

Let A and B be two models of T ∗ such that A ⊆L B where L = {0, 1,+·,∧, � , |loc}
is the language of lattice-ordered rings with the radical relation � given by the minimal
prime spectrum and |loc is our local divisibility relation.

It is known that i∗ : πB → πA, q 7→ q ∩ A is a continuous surjective map such that
πA ∼= πB/ ∼ where ∼ is the equivalence relation given by q ∼ q′ if and only if i∗(q) =
q ∩ A = q′ ∩ A = i∗(q′). Furthermore, for all p ∈ πA and q ∈ (i∗)−1({p}), there exists
hpq : A/p → B/q, a + p 7→ a + q an injective homomorphism of ordered rings respecting
the divisibility .

Let us denote B(πA) and B(πB) the Boolean algebras of clopen sets of πA and πB
respectively. Therefore:

j = (i∗)−1 : B(πA)→ B(πB),

is an injective homomorphism of Boolean algebras.

We want to show that A≺LB. Let φ(x1, . . . , xn) be an L-formula and a1, . . . , an ∈ A.
By [6, Theorem 1.1], there exists an acceptable sequence ζ = 〈Φ, θ1, . . . , θm〉 of formulas
where θ1, . . . , θm are L-formulas with the same free variables of φ(x1, . . . , xn) and Φ is a
formula in the Boolean algebra’s language with m free variables such that:

A |= φ(a1, . . . , an)⇐⇒ B(πA) |= Φ
([[
θ1(a1, . . . , an)

]]
A, . . . ,

[[
θm(a1, . . . , an)

]]
A

)
,
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where
[[
θj(a1, . . . , an)

]]
A =

{
p ∈ πA : A/p |= θj(a1 + p, . . . , an + p)

}
, for all j = 1, . . . ,m.

Since A and B are models of T ∗ then A/p and B/q are real closed valuation rings,
for all p ∈ πA and q ∈ πB. Therefore, for p ∈ πA and q ∈ (i∗)−1

(
{p}
)
, one has that

hpq : A/p → B/q, a + p 7→ a + q is an elementary monomorphism in view of 3.1 and [5].
Therefore:

hpq : A/p≺B/q.

Then:

j
([[
θl(a1, . . . , an)

]]
A

)
=

{
q ∈ πB : B/q |= θl

(
hpq(a1), . . . , hpq(an)

)
con p = q ∩A

}
=

[[
θl(a1, . . . , an)

]]
B.

Since B(πA) are B(πB) are atomless Boolean algebras (A and B are models of T ∗) then:

j : B(πA)≺B(πB),

is an elementary monomorphism. Then one has:

B(πA) |= Φ
([[
θ1(a1, . . . , an)

]]
A, . . . ,

[[
θm(a1, . . . , an)

]]
A

)
⇐⇒ B(πB) |= Φ

(
j
([[
θ1(a1, . . . , an)

]]
A

)
, . . . , j

([[
θm(a1, . . . , an)

]]
A

))
⇐⇒ B(πB) |= Φ

([[
θ1(a1, . . . , an)

]]
B, . . . ,

[[
θm(a1, . . . , an)

]]
B

)
.

By [6, Theorem 1.1] one also has:

B |= φ(a1, . . . , an)⇐⇒ B(πB) |= Φ
([[
θ1(a1, . . . , an)

]]
B, . . . ,

[[
θm(a1, . . . , an)

]]
B

)
.

Therefore we just have seen that:

A |= φ(a1, . . . , an) if and only if B |= φ(a1, . . . , an).

This proves that:
A≺LB.

We can therefore state:

Theorem 3.2 The theory T ∗ is model complete in L = {0, 1,+·,∧, � , |loc}. �
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tures Algébriques Ordonnées 1995-96 (Delon, Dickmann, Gondard, eds), Paris VII-
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