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Abstract

Let T* be the theory of lattice-ordered rings convex in von Neumann regular real
closed f-rings, without minimal idempotents (non zero) that are divisible-projectable
and sc-regular. Iintroduce a binary relation describing local divisibility. If this relation
is added to the language of lattice ordered rings with the radical relation associated
to the minimal prime spectrum (cf. [12]), it can be shown the model completeness of
T*.

1 Introduction.

The theory T™ can also be described as the theory of real closed, reduced, projectable
f-rings that are divisible-projectable, sc-regular, satisfying the first convexity property,
and without minimal idempotents (non zero), cf. [8, Theorem 10].

By [7], T* admits elimination of quantifiers in £* = {0,1,+, —, -, A, div}, the language
of lattice-ordered rings where div(-,-) is a binary function symbol defined by:

Tk div(z,y) =c +— CGyLL/\Elelw(x:z—{—w/\zJ_w/\cy:z/\
V' (w #0 A w L (w—w')—ytw)).

If Ais a reduced f-ring, it is known by [3] that VaVy(z L y <> xzy = 0) is a valid
formula in A. For a € A, the polar of a is defined by a* = {b € A : b L a} and the bipolar
by att ={bc A:b L cVe L a}. Tt is also known by [3] that:

beatt < at Cbt < Ann(a) C Ann(b).
If A is a projectable reduced f-ring, then [9] says that:

AeTE(mA, (A/p)pera),



where £ is the language of ordered rings (see notations in [4]) and,
mA = {p € Spec(A) : p is a minimal prime ideal} = Specmin(A).
In this case:
beat — [[b;é()]] - [a#()]]
<= supp(b) € supp(a)
— [a=0] C[b=0]
— VpenmA(aep=">becp).
In [12], the authors used radical relations, introduced in [11], in order to study the

model theory of von Neumann regular real closed f-rings without minimal idempotents
(non zero). Radical relations are given, cf [11], by a subset X C Spec(A) through:

bxa<=Vpe X (b¢p=a¢p).
The case X = 7A is relevant and studied in [12] and we then have:

b=<,a0a < VpermAb¢p=a¢p)
< Vperd(acep=bep)
<~ becatt
— gt CHt
<= Ann(a) C Ann(b).

Following [12], let us extend the language of lattice-ordered rings £ = {0,1, +,-, A} intro-
ducing a binary relation symbol =< defined by:

b=<a<=becatt < Ann(a) C Ann(b).

In fact, a radical relation =< is a binary relation defined in [12] by:
(1) a=<a, for all a € A4;
(2) if a =b and b=<c then a<¢, for all a,b,c € A;
(3)if a=cand b=<c then a +b=¢, for all a,b,c € A;
(4) if a <2 b then ac<bc, for all a,b,c € A;
(5) a=<1, for all a € A and 140;
(6) b=b% for all b € A.
In the theory of real closed valuation rings the divisibility plays a key role (see [5]), it

is therefore interesting to ask if the divisibility relation can be given by a radical relation.
Looking the defining properties (1) to (6) of a radical relation, let us set:

a<b<=b|a.

Let us see if in this case = is in fact a radical relation. The first five conditions are easily
seen to be satisfied. But for the sixth condition, it is seen that:

b=b? < b? | b <= Jz(b*x = b) <= Jx(bxb = b),



that is precisely the definition of a von Neumann regular ring. Then a <b <= b | a is a
radical relation if and only if the ring is von Neumann regular.

In fact, if A is a von Neumann regular f-ring, then the relation given by:
a=pab<= b Cat < [b=0] C[a=0],

is the divisibility. For a,b € A:
e If b | a then there exists x € A with bz =a. Then [b=0] C[a=0].
eIf [b=0] CJa=0], consider x € A defined by:
.%':0([17:0] U <g> € A,
b l[b£0]
and it is such that bz = a. Then b | a.

This is an indication that the divisibility relation can not be consider in the context
of models of T as a radical relation. For this reason and by the definition of the binary
function symbol div(-, -) is that I will introduce a binary relation symbol of local divisibility.
First of all, observe that the definition of the div(-,-) symbol can be written using the
radical relation < associated to the minimal prime spectrum:

T*Fdiv(z,y) =c¢ «— c=xyAFIw(@r=z2+wAzLlwAcy=2zA
V' (w' #0 A w L (w—w')—ytw)).

In order to study the theory T™ from an existential formula or model completeness
point of view, I introduce a binary relation given by:

Ry, w) «+— V' (w' #0 A w L (w—w") = ytw'),

that express the fact that y does not divide locally w. It will more pleasant to have in a
positive form:

Y Joc w +— = R(y,w) «— Juw' (v #0 A w L (w—w')Ay]|w).

Observe that this two last expressions in the language of lattice-ordered rings can be
reformulated in the language of rings by:

R(y,w) +— Yu'(w' # 0 A w'(w—w') =0 = yfw'),
and
Y 1o w +— " R(y,w) +— Fw' (W 0 A w(w—-w)=0Ay|uw).

For the “global” divisibility relation y | w it is obvious that y | 0. But observe that if
Y lloc 0 in a reduced ring A then there exists w’ € A with w’ # 0 and w'(—w’) = 0 such
that y | w’. Therefore w’ # 0 and w'? = 0, that gives a contradiction in the reduced ring
A. That is why I redefined:

Y Jloc w +— F' (W A0 AN W(w—w)=0Ay|w)Vw=0.



2 Local divisibility relation.

This section is related to the study of this “local divisibility” relation in the general theory
of rings. A list of properties is given, they will be stated as general as possible. Some of
them will be stated in the theory of reduced (f)-rings.

Proposition 2.1 Let A be any ring and y,w € A. If y | w then y |joc w.
Proof: If w = 0 then clearly y |joc w. If w # 0, then take w’ = w. Clearly w’ # 0 and

w'(w—w") =w-0 =0 with y | w. Then the formula Juw' (v # 0 A w' (W' —w) =0 A y | w')
is valid in A. In both cases: ¥ |joc w. -

Proposition 2.2 Let A be any ring and y,w € A. For n € N* = N~ {0}, if y" |joc w
then y |1oc w.

Proof: Let us suppose that y" |,c w for n € N*. If w = 0 then clearly y |0 w. If
w # 0, then exists w’ € A with v’ # 0, w'(w — w’) = 0 and y" | w’. Since y | y™ then
Jw'(w #0 A w(w —w)=0Ay|w)is a valid formula in A. In this case we also have
Yy ‘loc w. ]

Proposition 2.3 Let A be any ring and w € A. Then 1 |joc w.

Proof: If w = 0 then clearly 1 |joc w. If w # 0, declaring w’ = w we obtain 1 | w" and then
Jw'(w #0 AN w(w —w)=0A1|w)is valid in A. In this case one also have 1 |jpc w. -

Proposition 2.4 Let A be any ring and y € A. Then y |joc 0.

Proof: By definition.

Proposition 2.5 Let A any ring and ¢,y,w € A. If cy |1oc w then y |1oc w.
Proof: If w = 0 then by definition y |joc w. If w # 0, as we have cy |, w then exists
w' € A~ {0}such that w'(w' —w) =0 and cy | w'. Since y | cy then by transitivity y | w'.

Then the formula Jw'(w # 0 A w'(w' —w) =0 Ay | w') is valid in A. In this case we
also have y |jpc w. -

Proposition 2.6 Let A be any ring and w € A. If 0 |joc w then w = 0.

Proof: Let us suppose that w # 0. Since 0 [joc w there exists w’ € A with v’ # 0,
w'(w' —w) =0and 0 | w'. But 0] w' gives us w’ = 0, a contradiction. Then w = 0. -

Proposition 2.7 Let A be any ring and y,w € A. Then y |ioc w if and only if —y |1oc w.



Proof: (<) Let us suppose that —y |ioc w. If w = 0 then by definition we have that
Y lloe w. If w # 0, then there exists w’ € A con v’ # 0, w'(w' —w) = 0 and —y | w'.
Evidently y | w’. The formula Juw’(w’ # 0 A w'(w' —w) = 0 Ay | w') is valid in A and
therefore in this case y |joc w. We have proved that if —y |joc w then y |} w, for all
y,w € A.

(=) This implication can be deduced by the previous one interchanging y by —y. -

Fact 2.8 Observe that if the ring A is unitary, then the previous property can be proved
using the proposition 2.5 with ¢ = —1.

Proposition 2.9 Let A be any ring and y,w € A. Then y |ioc w if and only if y |joc —w

Proof: (=) Let us suppose that y |joc w. We want to show that y |joc —w. If w =0
then —w = 0 and y |joc —w by definition. If w # 0, since y |joc w there exists w’ € A,
w' # 0 with w'(w' —w) = 0 and y | w’. Declaring w” = —w’ € A one has clearly that
w” # 0. Since w'(w — w) = 0 then (—w')(—w’ +w) = 0. Observe that since y | v’ then
Y lloc —w" = w”. Then the formula Jw” (w” # 0 A " (w"” — (—w)) =0 A y | w") is valid in
A. This says that y |joc —w. It is been shown that if y |joc w then y |0 —w, for y,w € A.

(<) This implication is deduced from the previous one replacing w by —w. -

Proposition 2.10 Let A be any ring and y,w € A. Then y |ioc —w if and only if
-y |loc w

Proof: This property is deduced immediately from previous propositions 2.7 and 2.9. -

Proposition 2.11 Let A be any ring, y € A and n € N*. Then y |1oc y"-

Proof: e If 4" = 0 then by proposition 2.4 one has y |joc 0

™) = 0 and clearly

0Ay|w)is valid
|

One needs to prove a previous lemma in order to prove one more property on “local
divisibility”.

e If y # 0. Declaring w’ = y™ one obtains w’ # 0, y ( —
y | y* = w' for n > 1. Then the formula Jw'(w’" # 0 A y™(w' — y")
in A; one then has in this case y [joc Y™

Y

Lema 2.12 Let A be any lattice-ordered ring and let w,w' € A such that w' L w — w'.
Then |w'| < |w|.

Proof: By the definition of A one has that |w'| A |w| < |w'| and |w'| A |w| < |w|. Observe
that one has the following inequality:

W' = [w| A '] = ' [ A ' —w+w] < WA (jw" —w] + |w])
= (Jw'|Aw —wl|) + (Jw'| A w]).
Since w’ L w — w’, then |w'| A |[w — w’| = 0 and therefore one obtains:
W' <O+ (Jw'| Afw])= Jw| A fw] < |-
Then |w'| A |w| = |w'|, and this shows us that |w'| < |w].

The previous lemma help us to prove the following proposition:



Proposition 2.13 Let A be any lattice-ordered ring and let y,wi,we € A. If Y |10c w1
and y |1oc wo with wy L we then y |joc w1 + wa.

Proof: Let us suppose that y |joc w1 and y |joc wo with wy L we. There are various cases:
o If wy; =0, since Y |1oc wo then y |joc w1 + wa.
o If wy =0, since Y |joc w1 then y |joc w1 + wa.
e if w; # 0 and we # 0. If wy + wy = 0 then by definition one has that y |joc w1 + wo.

Let us suppose that wy +wse # 0. Since y |joc w1 and wy # 0 then there exists w] € A,
w) # 0 such that w] L wy —w} with y | w]. Since y |1oc w2 and wg # 0 then there exists
wh € A, wh # 0 such that w) L wy — wh and y | wh. Let us see that w) + wh # 0. If
w] + wh = 0 then why = —w) and therefore:

wh| A fwp| = Jwi| A= wi] = [wh] A fwy] = |wy].
By the lemma 2.12 one has that |w}| < |wi| and |w)| < |we|. Then:
Wi A Jws] < wr| Afwsl.

Since wy L wy then |wi| A|we| = 0 and by the previous inequality one has |w]| A |wh| = 0.
By the asumption one should have that |w]| = 0, meaning that w] = 0; which is impossible
since w} # 0.
Once we stated that w} + w), # 0, we want to see that:
wi +why L (wy +we) — (w] + wh).

We have the following inequalities :

0 < |wh 4+ wh|Al(wr +ws) — (w] + wh)|
= |w] 4+ wh| A [(w1 — w)) + (w2 — wh)|
< Juf -+ ug| A (o — ] + s — )
< (lwi] + [w]) A (Jwr — wh| + fwz — wh))
(lwh] A fwr = wh]) + ([w)| A |we = wh|) + (Jws] A Jwr —wh]) + (Jwh] A fws — wh])
= 0+ (Jwi| A wz — whl) + (Jwh| A Jwr —wi]) +0
= ([wh] Afws —wh]) + (Jws| A Jwi — wil)
< (lwil A (lwal + [whl)) + (fwh] A (Jwr] + wi))

= (Jwnl Afwa]) + (fwi] Afws]) + (Jws| Afwil) + (Jwa] A fwi])
= ([wh] A fwa]) + 2([wi| Afwp]) + (Jwp] Afwsl).

Using one more time the lemma 2.12, since w] L (w; —w}) and wh L (wy — wh); one has
that |w]| < |wi| and |wj| < |wz|. Coming back to the inequalities one obtains:

0 < ‘w'1+w’2‘/\‘(wl—i—wQ)—(w’l—i-wé)‘
< (Wil A Jwal) + 2(Jwi | A [wsl) + (Jwh| Afwi])
< (lwi] A Jwal) + 2(Jwi | A Jwal) + (Jwa| Afwi])
= 4(Jwi| A |wa)
= 4-0
-0,



for wy L wo. This shows that |w] + wh| A [(w1 4+ wa) — (w] + wh)| = 0. One then has
that (w] + wh) L (w1 +w2) — (w] +wj). Since y | w] and y | w) then clearly y | w} + w).
Declaring w’ = w) + w), we had achieved that v’ # 0, w' L (w1 + wy) — w' and that
y | w’. This means that Juw' (v’ # 0 A w'(w' — (w1 + ws)) Ay | w') is a valid formula in
A. Precisely one has that y |joc w1 + wa. -

Proposition 2.14 Let A be any domain and y,w € A. Then y | w if and only if y |1oc w.

Proof: (=) This implication is proposition 2.1.

(<) Let us suppose that y |joc w. If w = 0 then clearly y | w. If w # 0, there exists
w' e A, w # 0 with w' (v —w) =0 and y | w’. Since A is a domain then w' — w = 0.
Therefore w' = w and then y | w. -

Let A be any reduced f-ring. In [7], the ring A is sc-regular if there exist an element
u € A such that u = {0} and satisfying that Ve(e # 0 A €2 = e — u { ). The condition
ut = {0} can be rewritten as Ann(u) = {0}. Since 1 # 0 then observe that:

Ulpe 1 +— Fw'(w £Z0Aw(w —1)=0Au|w)
e (W AOANW?—w =0Au|w)
— (W AO0AW?=w Aulw)
— Jele£A0ANet=eAnule)

Therefore:
Ufoe 1 < Vele 20 A e =e —ute).

So the condition of sc-regularity can be rewritten as there exists u € A with Ann(u) = {0}
and u fioc 1. That is to say: A is sc-regular if and only if,

Ju(Ann(u) = {0} A utoc 1)

is valid in A.

3 Model completeness.
Let A and B two reduced f-rings satisfying the first convexity property and
L= {07 L+, <A =, ‘loc}a

be the language of lattice-ordered rings with the radical relation given by the minimal
prime spectrum and the relation of local divisibility.

Let us recall that a <b if and only if Ann(b) C Ann(a). Let us suppose that A C, B,
that is to say: A is a substructure of B in the language L£; in particular A is a lattice-
ordered subring of B.

Let us denote i: A — B the inclusion and the functorial (continuous) map:

Spec(i): Spec(B) — Spec(A),q — i 1(q) = ¢ N A.



Since A C, B and the radical relation < belongs to the language then:
a= 4a <= i(a) < gi(d),

for all a,a’ € A. Let us denote 7B = Specmin(B) = {¢q € Spec(B) : ¢ is a minimal prime
ideal } C Spec(B) and similarly mA = Specmin(A) = {p € Spec(A) : p is a minimal prime
ideal} C Spec(A). Using [12, Theorem, p. 23] and [12, Proposition (a) y (b), p. 22] one
has:

i* = Spec(i)}, ,: B - TA

and 7* is surjective. This means that if ¢ is a minimal prime ideal of B then ¢ N A is a
minimal prime ideal of A and that if p is a minimal prime ideal of A, then there exists at
least one minimal prime ideal ¢ of B such that ¢N A = p.

For q1,q2 € mB, let us declare ¢; ~ ¢ if and only if g;NA = ¢g2NA, if and only if i*(q;) =
i*(g2). Clearly ~ is an equivalence relation on wB. Since the function i*: 7B — wA is
surjective, then wA can be consider with the quotient topology B induced by ¢* or by
the equivalence relation ~. By [15, Theorem 9.2, p. 60] one has that the original topology
of 1A and the induced topology by i* (or by the equivalence relation ~) coincide if i* is
an open or closed function. If one consider that the f-rings A and B are projectable, then
by [3] and [9], one should have that the spaces 7A and 7B are compact (and Hausdorff).
Since i*: 7B — wA is a continuous function with 7B compact and Hausdorff, then, by
[15, p. 120], one has that i* is a closed function. Therefore the original topology on wA
and the quotient topology on mB induced by the equivalence relation ~ are the same.
Therefore:

jr B/~ = mA, q/~ — i(q),

is a homeomorphism of topological spaces and Boolean spaces.

Now let p € 74 and ¢ € (i*)~!({p}). That is to say that i*(q) = ¢N A = p. Let us
consider:
hpg: A/p — B/q,a+p— a+q.

Since p C ¢ N A, then hy,, is well defined for if a+p = o’ +p with a,a’ € Athena—d' € p
and a —a’ € gN A, that carries to a+¢ = a’ 4+ ¢. Since gN A C p then hy, is injective for if
a,a’ € A are such that hpq(a) = hpg(a'), then a+¢ = a’+gand a—d' € ¢, so a—d’ € gNA;
that is to say that a —a’ € p. Then a + p = @’ + p. This proves the injectivity of hyg. It
is clear that h,, is a ring homomorphism. Therefore:

hpgt A/p = B/q,a+p— a+q,
is a well defined injective ring homomorphism.

Let us see now that hp, respects the order. Let a,a’ € A such that a +p < d’ +p
in A/p. Then there exists ¢ € p such that ¢ > 0 and a + ¢ < @’ en A. Since A is an
L-sub-structure of B and the order is in the language £ then a + ¢ < @/ in B. Since
pC gNAthen c € gwithe>0and a+c<d in B. That is to say that a + ¢ < d’ + ¢
in B/q. Then hpy(a) < hpy(a’) in B/q. One should prove the other implication, that is: if
hpqg(a) < hpg(a') in B/q then a +p < o’ +p in A/p. But since the orders on A/p and B/q
are total then the implication needed to be proved can be immediately deduced from the
one we just proved. Therefore h,q: A/p — B/q is an injective homomorphism of ordered
rings. In this context, one has the following proposition:



Proposition 3.1 Let A and B be two reduced projectable f-rings satisfying the first con-
vexity property such that A Cp B where £ = {0,1,+,-, <,A, =, |ioc} s the language of
lattice-ordered rings with the radical relation = given by the minimal prime spectrum and
the local divisibility relation |ioe. If in addition one suppose that A and B are divisible-
projectable then for p € A and q € (i*)*l({p}), the homomorphism of ordered rings
hpg: A/p — B/q,a + p — a+ q respects divisibility.

Proof: Let us see that for p € 74 and ¢ € (i*)*l({p}), the injective homomorphism of
ordered rings hy,q: A/p — B/q,a+ p — a + q respects divisibility. That is to say that for
a,a’ € A one has that:

a+p|d+pin A/pif and only if a+q | a’ + ¢ in B/q.

(=) Let us suppose that a+p | ' +p en A/p. Then there exists c+p € A/p such that
(a+p)(c+p)=d +p. Soac+p=d +p and therefore ac — a’ € p. Since p C ¢N A then
ac — a' € ¢, what this means is that (a + ¢q)(c+¢) =d +q. Infact a+¢q| a’ + g en B/q.

(<) Let us suppose that a 4+ ¢ | a’ + ¢ in B/q. One has to show that a4+ p | ' + p in
A/p.

elfa +q=0thena €q. Sincea € Athenad € ¢gNA=p. Sod +p =0 and
therefore a +p | a’ +pen A/p.

eIfa +q+#0then a #0and a ¢ q. Then a’ ¢ p and so @’ + p # 0. Let us suppose
in this case that a + p{a’ +pen A/p. Consider N = [ata'] ran[a' #0] za which is
a clopen set of TA. (Here we using the fact that A is divisible projectable, see [7]). See
that p € N and therefore N # ¢. Let us define o/ =a} U0 _, y € A. Since N # ¢ then
o #0.

Now suppose that A = a [joc /. Since o # 0 then:
AT #0Aw' (W —a')=0Aa|w).

Let then be w’ € A, w' # 0 with w'(w'—a’) =0 and a | w'. Since w’ # 0 then there exists
p € mA such that w'(p) # 0. Since w'(w' — ) = 0 then w'(p) = ¢/ (p). By the definition
of o/ and the fact that w'(p) # 0, one has that p € N and that o/ (p) = a/(p). Since a | v/,
there exists ¢ € A such that ac = w’. That is to say that a(p)c(p) = w'(p) = o/ (p) = ' (p),
so a(p) | &' (p) in A/p; but this contradicts the fact that p € [[a " a'] 4. Therefore one
has:

A ): a ﬁoc Oé/.

Since A is an L-substructure of B and [, belongs to the language,, then B = a fioc .
Since o/ # 0 then:

BEVW (W #0Aw (W —ad)=0—=atw).

Our initial assumption was that a + ¢ | o’ 4+ ¢ in B/q. Therefore g € [a | '] rp. We are
also in the case that o’ + ¢ # 0, that is to say that ¢ € [a’ # 0] zp. Since p € N then
o/ (p) = d'(p), that is to say that o/ +p = a’+p. Since p = ¢N A then o/ +¢ = a’+¢ in B/q
and therefore ¢ € [[o/ = a’]] ~B. Putting M = |[a | a’]] BN |[a’ + O]] BN [[o/ = a’]] B>



one has that M is a clopen set of 7B with ¢ € M and M # ¢ (here we also used that B
is divisible-projectable).

Now let us consider w” = o} U0, ,, € B. Since M # ¢, for ¢ € M one has that
w”(q) = /(@) = d’(q) # 0. Then w” # 0. Let us see that w”( ') =0. Let g € wB.
If ¢ € 7B~ M then w”(g =0 and so [w”(w” —a)](q) = w"(q)(w” —a)(cj) =0.IfgeM
then w”(q) = o/(q) by the definition of w”, and so (w” — ’)(q) = 0; that is to say that
[w”"(w” — /)] (q) = 0. In any case we obtain that [w”(w” — a')](g) = 0 (for all ¢ € 7B).
Then w”(w” — ') = 0. Since w” € B is such that w” # 0 and w”(w” — ') = 0, then
atw’” en B.

On the other hand, for ¢ € 7B one has the following:

e if § € 7B~ M then w”(gq) = 0 and therefore a(q) | w”(q) in B/q.

oif g€ M then g € [[a|a]]ﬂ3ﬁ|[a = a' ] »p and consequently one has a(q) | a/(q) =
o/(q) en B/q. Therefore a(q) | w"(q) in B/q.

Therefore a(q) | w ( g) in B/q for all ¢ € mB. For each ¢ € wB, there exists c; € B
such that a(q)cg(q) = w”(g). Then:

B = U |[a0q = w”]] xB-
genB

By the compactness of m B, one can distinguish a finite number of ¢;’s and by the patchwork
property of B, it is easy to construct an element ¢ € B such that ac = w”. Then it has been
proved that a | w” en B. But we had from below that a f w” en B, giving a contradiction.
Therefore we can not suppose that a+p+ta’+pin A/p and then we have in this case that
a+q|ad +qin B/q implies that a+p | d' + p in A/p. n

Let A and B be two models of T* such that A Cy B where £ = {0,1,4+, A, <, |loc}
is the language of lattice-ordered rings with the radical relation < given by the minimal
prime spectrum and [}, is our local divisibility relation.

It is known that i*: 7B — wA, ¢ — ¢ N A is a continuous surjective map such that
mA = 7B/ ~ where ~ is the equivalence relation given by ¢ ~ ¢’ if and only if i*(q) =
gqNA=¢nNA=i*q). Furthermore, for all p € 74 and ¢ € (i*)~*({p}), there exists
hpg: A/p — B/q, a + p — a+ ¢ an injective homomorphism of ordered rings respecting
the divisibility .

Let us denote B(wA) and B(wB) the Boolean algebras of clopen sets of A and 7B

respectively. Therefore:
j=(i*)"': B(rA) = B(xB),

is an injective homomorphism of Boolean algebras.

We want to show that A< B. Let ¢(z1,...,2,) be an L-formula and a4, ...,a, € A.
By [6, Theorem 1.1], there exists an acceptable sequence ( = (®,0y,...,60,,) of formulas
where 61, ...,0,, are L-formulas with the same free variables of ¢(x1,...,z,) and ® is a
formula in the Boolean algebra’s language with m free variables such that:

AE ¢(ar, ..., an) = B(rA) ):@([el(al,...,an)]] dree [Omlar, ... an)] A),
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where |[9j(a1,...,an)]A:{pEWA:A/p):Qj(al—Fp,...,an—i-p)},for allj=1,...,m.

Since A and B are models of T* then A/p and B/q are real closed valuation rings,
for all p € mA and ¢ € wB. Therefore, for p € mA and ¢ € (i*)*l({p}), one has that
hpg: A/p = B/q, a+p — a+ q is an elementary monomorphism in view of 3.1 and [5].
Therefore:

hpq: A/p=<B/q.
Then:

j([[@l(al,...,an)]] A) - {q € 7B : B/q = 0(hpg(ar), ..., hpg(an)) con p = qu}
= [buar,...an)] 5.
Since B(wA) are B(rB) are atomless Boolean algebras (A and B are models of T*) then:
j: B(nA)<B(rB),
is an elementary monomorphism. Then one has:
B(rA) ):@([[91(@1,...,@”)]] dreens [Omlar, . an) ] A)
= BrB) ko (j([0(ar,san) ] a) i ([Omlar, . an)] 0) )
— BB)ko([0iar,.can)] By [Omlars. o 00)] 5)-

By [6, Theorem 1.1] one also has:

BE o, an) <= BrB) £ &([01(ar, . a0) ] 5, [On(ar, - an) ] )
Therefore we just have seen that:
AE ¢(ar,...,ay) if and only if B = ¢(aq,. .., an).

This proves that:
A<,B.

We can therefore state:

Theorem 3.2 The theory T* is model complete in L = {0,1,+-, A, =, |ioc}-
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