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Resumen: Este artículo ofrece una visión general de una arquitectura robótica destinada a la 

manipulación hábil. Este diseño está destinado a cerrar la brecha entre la capa de alto nivel (capa de 

razonamiento y planificación) y el sistema de modelo de objetos (capa de control físico). Esta 

arquitectura propone una capa de interfaz que permite, de manera significativa, conectar tareas básicas 

con el controlador. En este artículo, discutimos cómo este sistema puede resolver tareas complejas 

específicas; analizamos el diseño de la unidad de accesibilidad y presentamos una visión general de 

los desafíos futuros en la implementación de todo el sistema. 
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Abstract: This paper gives an overview of a robotic architecture meant for skillful manipulation. This 

design is meant to close the gap between the high level layer (reasoning and planing layer) and the 

object model system (physical control layer). This architecture proposes an interface layer that allows, 

in a meaningful way, to connect atomic tasks with controller inputs. In this paper, we discuss how 

specific complex tasks can be resolved by this system; we analyze the affordance unit design and, we 

overview the future challenges in the implemenation of the whole system. 
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1. INTRODUCTION 

The future incorporation of robots in human activities will require them to comprehend commands expressed in natural 

language, recognize the environment and execute the required manipulation movements to acomplish the respective 

tasks [1]. In order to achieve this goal, we need robots capable of understanding high level tasks, so they can split them 

in compact and minimum tasks that can be somehow understood by the control layer in the robotic software 

arquitecture [2] [3]. 

Any complex task involves object physical manipulation [4] [5]. For example, if a human tells a robot to prepare a 

sandwhich by saying “Robot, make me a sandwich”, the robot should be able to split this complex task in many 

minimum tasks (also called atomic tasks); which are meant to manipulate the ingredients, the appliances, the utensils 

and the cookware. The software and the hardware must be prepared to accomplish these tasks. 

In this paper, we start from a robotic architecture with three layers: a high level layer meant to process complex tasks, 

the interface layer meant to translate atomic tasks into inputs to physical object controllers and a low level layer meant 

to perform physical object control. The low level layer contains an object model system which consists in mathematical 

models of the objects so we can predict and control their behavior. This is a special case of the classical three tier (3T) 

architecture. 



 

 

 

The object model must be able to perform a variety of actions, which are specified by the atomic tasks coming out from 

the high level layer. One action that has been implemented as an object model is slide, where a rigid planar body slides 

on a horizontal planar surface. This single action requires to find a solution for three double-integral equations over the 

surface of the object for every possible center of rotation [8]. The construction of object models is not a trivial problem. 

The idea of having an object model that contains specific mathematical models for the actions is inspired in the 

analysis of the ventral premotor cortex in humans and monkeys. These studies showed that most of the F5 neurons in 

the monkey brain perform specific actions, rather than single movements that form them. F5 neurons are even divided 

into several actions classes like "grasping", "holding" or "tearing" neurons, in total parallelism with an object model 

system [9]. 

This research is meant to present a robotic architecture meant to close the gap between the high-level layer, that 

processes complex and long-term tasks; and the low-level layer. The translation between both layers is performed by 

the interface layer. We think that mapping an action description language to the input of object controllers can address 

this problem. 

Some of the specific contributions from this research are:  

 A cognitive architecture design that can allow the robots to integrate a high level task to a low level control 

commands. 

 A system to obtain an affordance model from a training corpus of atomic tasks, which is used as part of the 

interface layer. 

 An affordance matrix which indicates the conditional probability, but we think it can also be used to model, 

represent and compare different environments. 

2. ROBOTIC ARCHITECTURE 

The robotic architecture has been divided in three layers: a high level layer, an interface layer, and a low level layer 

(See figure 1). The high level layer processes “complex tasks” and splits it into more simple tasks which can be 

executed by the low level layer, these simple tasks are called “atomic tasks”. The low level layer contains the 

controllers which are in charge of controlling the objects [8] [10] [11] [12]. 

 

Figure 1. Robotic architecture which consist in three layers: a high level layer meant to process complex tasks, the interface layer 

meant to translate atomic tasks into inputs to physical object controllers and a low level layer meant to perform physical object 

control. [7]. 



 

 

 

The high level layer performs planning and reasoning; and the low level layer is in charge of prediction, perception and 

physical object control. We can find very different challenges in both layers; the high level layer is more related to: 

artificial intelligence, machine learning, natural processing language and knowledge representation. In the other hand, 

the low level layer is more related to: mechanics, automatic control, mathematical modeling and kinematics. 

The interface layer in the middle maps the “atomic task” with the respective controller inputs in the low level layer. For 

example, taking the atomic task: “Push the glass of milk away”; the verb “push” would translate to an input domain 

region that uses a push controller, “glass of milk” specifies the object to be controlled, and “away” gives the desired 

outcome of the object [13] [14]. 

The high level layer performs the segmentation of “complex tasks” into more simple actions (atomic tasks). This layer 

has been addressed by Ruiken, Muller, Gorges and Ternorth [15] [16] [17] [18]. The implementations of this high level 

layer starts with observations of human activities and performs optimizations to find the atomic tasks which minimize 

energy and effort [12]. 

4. RELATED WORK 

This paper presents a three-layer architecture to translate higher layer natural language commands into lower layer 

control parameters. The translation is quintessentially performed by five components of the interface layer. To this 

effect, the intermediate layer translates single sentences in structured Spanish to lower level parameters. As such, it is 

an extension of [8] with a dedicated interface layer. The structure of the interface layer system is fairly complex, taking 

into account its capabilities, so in this paper we will mostly focus on the design and the experiments performed over the 

affordance unit. 

The notion of affordance has been discussed in many settings and different formalizations have been proposed. The 

concept was firstly defined as “what an object offers” by Gibson [38]. In robotics, affordances have been used with 

different purposes: tool learning usage [39], object manipulation [40], inferring surroundings [41], and grasping 

learning [42]. In this research we aimed to use affordances to calculate the feasibility to execute an instruction, with the 

final purpose of traslating an action language to low-level representation. 

5. INTERFACE LAYER DESIGN 

The interface layer design is shown in figure 2. It contains five modules: Affordance Unit (AU), Mapping Unit (MU), 

Determination of Reference (DR), Object Properties (OP) and Feasibility Analysis (FA).  

 

Figure 2. Interface layer design which contains five modules: Affordance Unit (AU), Mapping Unit (MU), Determination of 

Reference (DR), Object Properties (OP) and Feasibility Analysis (FA). 



 

 

 

The AU takes the object and the verb to determine if it complies with the affordability. The MU, based on the object 

and the verb, determines the list of controllers that can used to execute the action. The DR module, based on the final 

state and the adverb, determines the reference value for the object controller. The OP is meant to provide the object 

properties that are needed to execute the low level control. The FA module, based on a list of contraints and weights, 

will determine which controllers are more suitable to execute the action. 

5.1 Affordance Unit 

The AU checks the verb and the object, and declares if both entities satisfy the affordability. For example, if the verb is 

“turn on” and the object is “oven”, there is affordability, because the oven can be turned on. On the other hand, if the 

verb is “turn on” and the object is “glass”, there is no affordability because the object “glass” cannot be “turned on”. 

To implement this module, we can use hardcoded tables that includes valid combinations of verbs and objects. The 

output of this module is “true” or “false”. The output “true” means that the object and the verb comply with the 

affordability; and the output “false” means that both elements do not comply with affordability. This unit can be also 

addresed by calculating the conditional probability of having a given object after a manipulation action, based on a 

maximum likelihood estimation for the bigram Verb + Object: 

                   (1) 

To do this, it is required to generate a probability affordance model based on a training dataset. This model can be 

obtained from a corpus of instructions, apply post tagging to obtain the verb and the object, lemmatize both elements, 

and then register the frecuencies in a file or database. In this research, we followed this approach instead of hardcoded 

tables. 

5.2 Mapping Unit 

The MU processes the object and verb contained in the atomic task to generate a list of controllers able to perform the 

actions with the specified object. The implementation of this module faces some challenges, such as the fact that very 

few object models have been developed as for now. To conduct the experiments, we will suppose that there is complete 

library of object models that can be used. 

5.3 Determination of Reference 

The DR module determines the reference value to be used by the physical object controllers. The value is calculated 

based on two elements: the adverb and the final state. For example: in the atomic task “move the glass near the oven”, 

the adverb is “near” and the final state is “oven”. Both elements are used to calculate where to place the object. 

There are different types of adverbs expressing different meanings, such as: adverbs of time, adverbs of place and 

adverbs of manner. Translating the adverbs into values is a difficult problem because adverbs can be very subjective 

and very tied to the context. 

5.4 Object Properties 

The OP module constains the object properties required by the object models to perform the prediction and control. For 

example, a “glass” can have a lot of properties such as: weight, coefficient of friction, shape and hardness. These 

values are required by the low level layer to perform the physical object control. 

5.5 Feasibility Analysis 

This module calculate the best controller, based on: the affordability value, the list of controllers and the constraints. 

These limitation can be related to the context, the robot body and the objects. We consider this unit should be able 

compute a cost function for every single controller, given for the following equation: 

        (2) 



 

 

 

where the  is affordance value given by equation (1) or any estimation of this value, and  are numerical values 

which might refer to three types of constraints: context, object, and robot body. 

The cost function propossed in equation (2) will be used as a start point in the analysis of the interaction between the 

MU, the AU, and the FA. For now this function is mostly exploratory, but it is considered a decent start. The idea of 

having the affordance value in the equation is a key item, since the affordability determines the actual feasibility of the 

manipulation action. 

All these units have challenges by themselves. For example, calculating the reference value for placing adverbs 

requires to know the context in which the actions are performed. Every single block in this layer requires a lot of 

research, so we can succesfully implement it. 

6. EXPERIMENT SETUP 

In this section, we explore the AU which is in charge of calculating a value meant to be used by the FA. The rest of 

blocks in the interface layer will be considered for future research. 

6.1 Training of affordance unit 

Instead of manually creating harcoded tables with the affordance information, we decided to create a training dataset of 

atomic tasks, for a specific scenario, and based on that, generate an affordance model. This method allows to 

automatically generate an affordance model for any scenario or environment. This approach is quicker a more flexible. 

         

Figure 3. Training and testing of affordance unit. Training consists in three stages: preprocessing, lexical analysis, and 

lemmatization. Testing consists in four stages: preprocessing, lexical analysis, lemmatization, and probability calculation. 



 

 

 

The training system consist in three stages: preprocessing, lexical analysis and lemmatization. The preprocessing stage 

removes comments and puntuation marks, it also converts the atomic commands to lowercase. The lexical analysis 

recognizes the object and the verb, it performs name entity recognition. Finally, the lemmatization stage identifies the 

verb’s lemma (See figure 4). 

The affordance model implementation consists in two text files: one to register the number of ocurrences of each verb 

(unigram), and another to register the number of ocurrences of Verb + Object (bigram). This information will be used 

to calculate the probability indicated by equation (1) for any posible combination of verbs and objects. 

Once, the affordance model is generated, the conditional probability can be calculated. The affordability calculation 

process has four stages: preprocessing, lexical analysis, lemmatization, and probability calculation. The first three 

stages are identical to ones being used to generate the affordance model. The last stage is the new one, and it is meant 

to calculate the probability given by equation (1). 

A zero probability means that the bigram did not have any ocurrency in the training corpus which leads to a no-

affordability result. The zero probability result might also mean that the training corpus was not big enough to contain 

the ocurrency. To avoid this issue we must use a sufficient training corpus. 

7. RESULTS 

The conditional probability of the five most used verbs and the five most frequent actions, in a kitchen environment, is 

shown in table I. This table is called “affordance matrix”, and it turns out to be very compact and simple way to 

describe and characterize an environment. 

TABLE I.  AFFORDANCE MATRIX 

  Objects 

  Dish Knife Tomato Bread Egg 

V
er

b
 

Move 0.12 0.14 0.10 0.07 0.03 

Look for 0.17 0.09 0.05 0.00 0.09 

Place 0.12 0.03 0.12 0.15 0.06 

Enter 0.00 0.00 0.10 0.00 0.00 

Pour 0.00 0.00 0.16 0.00 0.08 

 

The affordance matrix shows the conditional probability of manipulating an object once the action has been specified. 

For example, the conditional probability given by P(Dish/Move) is 0.12, which is the probability of manipulating a 

“dish” once we have already selected “move” as the manipulation action. 

If the probability is zero, the obvious conclussion is that there is no affordability between the action and the object, 

however this could also be due to the size of the training corpus. Unlike many other areas of engineering, a corpus of 

atomic tasks for specific scenarios was not found, so a small training corpus of 236 atomic task had to be created. 

The affordance matrix has some interesting properties that make us able to calculate the object and the action ocurreny 

based on the affordance matrix. If A is the affordance matrix, the object ocurrency c(oi) and the action ocurreny can be 

calculated as below: 

       (3) 

     (4) 
 

The affordance matrix has the potential to be used as a more effective and generic way to model and compare dynamic 

environments. It might also provide a better and more compact description of the scene in comparison to a physical 

level description. 



 

 

 

The affordance matrix enable us to reason with high-level knowledge about the environment, instead of the traditional 

physical level description, which have been mostly developed for static environments, such as: grid maps, line maps, 

elevation maps, and meshes. 

8. CONCLUSSIONS 

A robotic architecture design, meant to close the gap between the high-level layer and the low-level layer was 

presented. The key element is this architecture is the interface level layer design that consists in five modules: 

affordance unit, mapping unit, determination of reference, object properties, and feasibility analysis (See figure 2). The 

architecture was studied by showing how we can resolve a natural language command “make me a breakfast”, through 

the different layers of the robotic architecture, from the higher level to the lower level. 

Every module in the interface layer is a challenge by itself and its implementation is not yet completely resolved. But 

one specific element was analyzed in this research: the affordance unit. This unit was addressed by creating a model of 

conditional probabilities and it was tested based on a kitchen environment. The conditional probability of the five most 

used verbs and the five most frequent actions, in a kitchen environment, is shown in table I, which is called “affordance 

matrix”. 

In the affordance matrix, if the conditional probability for a given object and a given action is zero, the conclussion 

migh be that there is no affordability between the action and the object. A zero value could also be due to the size of 

the training corpus. In the future, a bigger dataset will be built and analyzed for different environments. We also 

consider that this matrix has the potential to be used as a more effective way to model and compare dynamic 

environments. It might also provide a better and more compact description of the scene in comparison to a physical 

level description. 

Future work should be focused on how to design, study and implement remaining subsystems and all interactions 

between them. In regards to the affordance unit, a bigger corpus and the inclussion of more scenarios is needed. 
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