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23 ABSTRACT

24 The Costa Rican Paramo is a unique ecosystem with high levels of endemism that is 

25 geographically isolated from the Andean Paramos. Paramo ecosystems occur above Montane 

26 Forests, below the permanent snow level, and  their vegetation differs notably from that of 

27 adjacent Montane Forests. We compared the composition and beta diversity of blooming plant 

28 species using phenological data from functional plant groups (i.e., insect-visited, bird-visited and 

29 insect+bird-visited plants) between a Paramo and a Montane Forest site in Costa Rica and  

30 analyzed seasonal changes in blooming plant diversity between the rainy and dry seasons. 

31 Species richness was higher in the Montane Forest for all plant categories, except for insect-

32 visited plants, which was higher in the Paramo. Beta diversity and blooming plant composition 

33 differed between both ecosystems and seasons. Differences in species richness and beta diversity 

34 between Paramo and the adjacent Montane Forest are likely the result of dispersal events that 

35 occurred during the last glacial period and subsequent isolation, as climate turned to tropical 

36 conditions after the Pleistocene, and to stressful abiotic conditions in the Paramo ecosystem that 

37 limit species establishment. Differences in blooming plant composition between both ecosystems 

38 and seasons are likely attributed to differential effects of climatic cues triggering the flowering 

39 events in each ecosystem, but phylogenetic conservatism cannot be discarded. Analyses of 

40 species composition and richness based on flowering phenology data are useful to evaluate 

41 potential floral resources for floral visitors (insects and birds) and how these resources change 

42 spatially and temporarily in endangered ecosystems such as the Paramo.

43

44
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45 KEYWORDS: beta diversity, endemism, floral syndromes, Paramo, plant species composition, 

46 Montane Forest. 

47

48 1. INTRODUCTION         

49 A notable characteristic of tropical highland landscapes is the presence of well defined 

50 ecotones between adjacent ecosystems at high elevations  (Vuilleumier & Simberloff, 1980; 

51 Sarmiento, 2021). This sudden change in the vegetation physiognomy is attributed mainly to 

52 differences in climatic and edaphic conditions (Luteyn, 2005). The highest mountain 

53 environments above the treeline are unsuitable habitats for most organisms that inhabit adjacent 

54 tropical forests at lower elevations (Luteyn, 2005; Kˆrner, 2021). It has been suggested that 

55 changes in the composition of plant communities along altitudinal gradients may be determined 

56 by environmental filtering, since increasing altitudes are often associated with harsh conditions 

57 for life (Laiolo & Obeso, 2017). Hence, only a relatively low number of species have been 

58 capable of adapting to the prevailing abiotic conditions at high altitudes, resulting in a general 

59 decline in species richness but an increase in endemism (Billings, 1974; Rada et al., 2019; 

60 MadriÒ·n et al., 2013). In the Neotropics, the Paramo exemplifies a high elevation ecosystem; 

61 this habitat is typically composed of low herbaceous and shrubby vegetation whose 

62 physiognomy drastically contrasts with the arboreal vegetation that dominates the adjacent 

63 Montane Forests (Smith & Young, 1987; Luteyn, 2005). 

64 Most of the neotropical Paramos (including the Puna) are found in South America and 

65 cover a large proportion of the highlands of the Andes mountain range (MadriÒ·n et al., 2013). 

66 In Central America, the Paramo vegetation is restricted to highly isolated and small natural 

67 fragments on the highlands of the Talamanca mountain range that extends from Costa Rica to 
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68 western Panama (Kappelle & Horn, 2016). As a result, South American Paramos have been the 

69 focus of research on a variety of topics, including plant physiology (Rada et al., 2019), avian 

70 evolution (Vuilleumier,  1969), vegetation (Valencia et al., 2018) and butterfly distribution 

71 (Pyrcz et al., 2016); whereas research in Central American Paramo ecosystem is still limited 

72 (Kˆrner, 2021). A book published by Kappelle and Horn (2005) included information on the 

73 natural history of many taxa from the Costa Rican Paramo, but information on the ecology and 

74 evolution of most taxonomic groups was anecdotal or based on non-systematic samplings.

75 The species diversity turnover of plants and other taxonomic groups along altitudinal 

76 gradients has been studied worldwide and, in general, richness in all groups decreases with 

77 elevation, but endemism increases (Wolda, 1987; Navarro, 1992; Lieberman et al., 1996; Vetaas 

78 & Grytnes 2002; Khuroo et al., 2011; Steinbauer et al., 2016; Monro et al., 2017). There are also 

79 changes in abiotic conditions such as a reduction in availability of surface area, atmospheric 

80 pressure, air temperature, and increasing UV radiation at higher elevations (Kˆrner, 2007). For 

81 sessile organisms such as plants, these environmental gradients impose severe constraints on 

82 growth, survival, flowering and fruiting phenology, which may influence the feeding behavior 

83 and reproduction of associated organisms such as insects and birds. Tropical highland 

84 ecosystems are also characterized by a marked seasonal variation in rainfall and daily 

85 temperatures between the dry and rainy seasons (Sarmiento, 1986). Seasonality is a proximal 

86 factor that can regulate plant phenology (Borchert 1983; Reich & Borchert, 1982, 1984; Cavelier 

87 et al., 1992; Smith & Young, 1987), and therefore may constrain floral resource availability for 

88 floral visitors. 

89 In the Costa Rican highland ecosystems, plant richness also declines rapidly with 

90 elevation, particularly at mountain summits (Lieberman et al., 1996; Estrada & Zamora 2004; 
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91 Barrantes et al., 2019; Monro et al., 2017). However, information on the dynamics of floral 

92 resources availability (i.e., flowering phenology patterns) at the community level remains 

93 undocumented. Patterns of plant reproductive phenology may be related to the variation in floral 

94 resource availability and changes in the community composition of floral visitors throughout the 

95 year.  

96 Flowering plants may be classified into different pollination syndromes based on a set of 

97 floral traits (e.g., morphology, color, odor, size, rewards, and anthesis time)  (Faegri & Van der 

98 Pijl, 1979; Rosas-Guerrero et al., 2014). Most plant species inhabiting highland tropical 

99 ecosystems can be classified into insect-pollinated (bees and flies), bird-pollinated and 

100 insect+bird-pollinated pollination syndromes. Evidence suggests that as elevation 

101 increases, flower-visitor diversity, population abundance, and foraging activity decreases 

102 (Arroyo et al., 1981; GÛmez-Murillo & Cuartas-Hern·ndez, 2016). However, there is no 

103 information on the availability of floral resources in relation to the type of floral visitors in 

104 Central American highland ecosystems.

105  

106 This study has a twofold objective: to determine differences in floral resources 

107 availability in terms of blooming plant composition and diversity between the two high-elevation 

108 ecosystems in Costa Rica (Paramo and  Montane Forest), and to describe their variation in 

109 resource availability for insects and birds between the dry and rainy seasons. We predict 

110 significant differences in community composition between the Paramo and the adjacent Montane 

111 Forest, with higher species richness and beta-diversity of blooming plants in Montane Forests, 

112 due to the large number of endemic species present in the Paramo and the reduction in species 

113 richness as elevation increases. We also predict a higher diversity of the blooming plant 
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114 community in the rainy season, in both ecosystems, due to milder temperatures and higher water 

115 availability compared to more severe conditions prevalent during the dry season. 

116

117 2. MATERIALS AND METHODS

118 2.1 Study area 

119 We selected two study sites in the highlands of the Costa Rican Talamanca mountain 

120 range: the Cerro de la Muerte Biological Station (CMBS) and the Quetzales National Park 

121 (QNP) (Fig. 1). The CMBS is a Montane Forest at an elevation of 3100 m asl (09p 33í N; 83p 

122 44í W) and the QNP is a Paramo habitat at 3400 m asl (Fig. 1). The two sites are separated by 2 

123 km. The regionís average annual precipitation is 2500 mm, with a relatively dry period from 

124 mid-November to April, and a mean annual temperature of 11pC for the CMBS and 7.6pC in the 

125 QNP (Herrera, 2005).  During the day, temperatures fluctuate dramatically, particularly in the 

126 Paramo (-5 pC to 35 pC) (Herrera, 2005). Montane Forests are dominated by oaks with abundant 

127 epiphytes and shrubs (e.g., Ericaceae, Asteraceae, Onagraceae) (CalderÛn-Sanou et al., 2019). 

128 Meanwhile, the Paramo is dominated by a herbaceous stratum, with a large diversity of 

129 Asteraceae and Poaceae, and scattered patches of shrubs with species mainly in the Ericaceae, 

130 Asteraceae, and Hypericaceae (Vargas & Sanchez 2005). 

131

132 2.2 Sampling

133 In each study site, we established a 2 km by 10 m transect and counted the number of individual 

134 blooming plants per species per month, during a 30 month period (February 2019 to August 

135 2021). We classified each plant species into insect-pollinated (bee-pollinated and fly-pollinated), 

136 bird-pollinated (hummingbirds) and insect+bird-pollinated types, based on their morphology and 
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137 floral reward following Barrantes (2005) and Rosas-Guerrero et al., (2014). We did not include 

138 wind-pollinated species, such as oaks (Fagaceae), grasses and sedges (Poaceae and Cyperaceae, 

139 respectively). We defined the flowering peak for the whole community at each site and for each 

140 plant category (insect-pollinated plants, insect+bird-pollinated plants, bird-pollinated plants) as 

141 the month(s) fitting into the third quartile; if a sequence of months all met this requirement, we 

142 chose the month with the highest number of flowering individuals.

143

144 2.3 Statistical Analyses

145 We compared species richness between the Montane Forest and the Paramo by means of 

146 rarefaction curves with 95% confidence intervals, using the function specaccum in the R package 

147 vegan (Oksanen et al., 2020). This method controls for differences in sample size by estimating 

148 the expected species richness of a random subsample of individuals (Gotelli & Graves, 1996). 

149 To compare the plant community composition between sites, we used a non-metric 

150 multidimensional scaling (NMSD) based on a Bray-Curtis dissimilarity matrix with 1000 

151 permutations. We then conducted a distance-based Permutational Multivariate Analyses of 

152 Variance (PERMANOVA) as implemented in the adonis function in the R package vegan 

153 (Oksanen et al., 2020). For this analysis, we included site (Montane Forest and Paramo), season 

154 (Dry and rainy seasons), and their interaction as independent factors and the distance matrix as 

155 the response variable.

156 Subsequently, we compared beta diversity between the two sites, measured as the mean 

157 dissimilarity non-Euclidean distance of each individual observation to the mean of all 

158 observations (centroid) calculated in multidimensional space, as implemented by the betadisper 

159 function (Anderson et al., 2006; Oksanen et al., 2020). This function is used to test the 
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160 homogeneity of variances between sites or treatments. However, PERMANOVA is unaffected 

161 by the heterogeneity of variances for balanced designs (Anderson and Walsh, 2013), as is the 

162 case in this study (equal sampling at both sites). Therefore, we used the betadisper function to 

163 test for differences in beta-diversity between sites, as has been used in other studies (Oksanen et 

164 al., 2020). We used the vegan package (Oksanen et al., 2020) in the R statistical language for all 

165 analyses (R Development Core Team, 2021).

166

167 3. RESULTS

168 We recorded the flowering phenology of 91 species in 41 families: 72 species in the 

169 Montane Forest and 65 in the Paramo; 46 of these species were present at both sites. Based on 

170 our rarefaction analysis, the species richness of blooming plants was higher in the Montane 

171 Forest (Fig. 2). Similarly, the richness of plants pollinated by insects+birds and by birds only 

172 was higher in the Montane Forest; however, richness of insect-visited plants was higher in the 

173 Paramo site (Fig. S1a-c). This indicates that both ecosystems offer a great diversity of food 

174 resources for different pollinator guilds. More resources were available for hummingbirds in the 

175 Montane Forest, while insects seem to benefit more from plants in the Paramo ecosystem.

176 The number of blooming plant species varied over time (Fig. 3). All blooming plant 

177 species in both ecosystems peaked during the dry season (Fig. 3), but insect-pollinated plants had 

178 flowering peaks at the beginning (May) and the second half of the rainy season (September-

179 October) (Fig. S2a). Insect+bird and bird-pollinated plant categories did not show a clear 

180 seasonal pattern (Fig. S2 b-c); on the contrary, floral resources in these two plant categories 

181 varied little throughout the year. In the case of bird-pollinated plant species, the number of 

182 blooming species was always higher in the Montane Forest than in Paramo (Fig. S2 d).  
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183 The multidimensional scaling distances showed that species composition differed 

184 between sites (Montane Forest and Paramo), seasons (dry and rainy), and their interaction for all 

185 plant categories (i.e., all blooming plant species, insect-visited plants, insect+bird-visited plants 

186 and bird-visited-plants) (Table 1; Fig. S3; Table S1).  In all cases, the site explained the largest 

187 fraction of the variance, followed by season, and then their interaction (Table 1), though there is 

188 still a large portion of the variance that is not explained by the factors included in the model. 

189 This is expected since phenological cues are multifactorial, and their synergistic effect is not yet 

190 fully understood (Satake et al., 2022). The changes in species composition between the rainy and 

191 dry seasons are more pronounced in the Montane Forest than in the Paramo, for all blooming 

192 plant species (Fig. 4). However, this pattern is reversed for bird-pollinated plant species, where 

193 species composition differences between the dry and the rainy season are greater in the Paramo 

194 compared to the Montane Forest (Fig. S4).  

195 Beta diversity for each plant pollination type differed between the Montane Forest and 

196 the Paramo for all categories of blooming plants (Table 2, Fig. 4; Fig. S4 a-d). This suggests that 

197 particular factors have shaped each ecosystem, such as climatic conditions and underlying 

198 historical factors (e.g. colonization-dispersal events) and influenced the beta diversity of 

199 blooming plants differently. 

200

201 4. DISCUSSION 

202 Our results show differences in species composition and diversity of plants between two 

203 adjacent ecosystems at tropical high elevations. Local and regional environmental traits, and 

204 historical events likely act synergistically to produce the differences observed (Simpson, 1975; 

205 Hooghiemstra et al., 1992; Islebe et al., 1995, 1996; SklenáY et al., 2011). In comparison to the 
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206 adjacent Montane Forest, the Paramo has a lower richness of flowering species. The study sites 

207 are geographically adjacent and separated by 2 km; however, the relatively small change in 

208 elevation (~400 m) becomes a determinant factor in shaping species composition differences. 

209 Consequently, temporal turnover (beta diversity) of blooming plants also differed between 

210 ecosystems and such differences are likely related to the uniqueness of the Costa Rican Paramo 

211 vegetation (Cleef & Chaverri, 1992). The evolution of a unique vegetation in the Costa Rican 

212 Paramo, which differs notably from the adjacent Montane Forest, could be the result of several 

213 factors: a) the plant dispersal events that occurred during the late Pleistocene (Simpson & Neff, 

214 1992; SklenáY et al., 2011; LondoÒo et al., 2014), b) the geographic isolation when climate 

215 changed after the Pleistocene, and c) the prevalence of cold climatic conditions at the summit of 

216 the Talamanca Mountain range. Vicariance driven by the climate shifts after the Pleistocene in 

217 conjunction with topographic isolation, has shaped the evolution of several plant clades within 

218 the Andean cordilleras (Simpson,1975; Luebert & Weigend, 2014). For instance, a possible 

219 explanation for the rapid radiation of the common Valeriana and Hypericum species in the 

220 Andean Paramo, as well as the species present in the Costa Rican Paramo, is the repeated 

221 fragmentation-isolation process, as a consequence of the Pleistocene climatic fluctuations in a 

222 topographically complex region (Moore & Donoghue, 2007; N¸rk et al., 2014). 

223 Temporal variation in floral resources imposes a constraint on plant-pollinator 

224 interactions (Hegland & Boeke, 2006; Fuchs et al., 2010; Encinas-Viso et al., 2012; Bagella et 

225 al., 2013). Our results showed that the flowering phenology of all groups of plants differed 

226 between dry and rainy seasons. When we analyzed the entire blooming plant community as a 

227 whole (i.e., insect-visited, bird-visited, and insect+bird-visited plants) flowering peaks occurred 

228 in the dry season, in contrast to insect-visited plants, whose flowering peak occurred in the rainy 
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229 season. Such differences are often associated with the response of different groups of plants to 

230 different environmental cues (Arroyo et al., 1981; Defila & Clot, 2005; Davies et al., 2013; 

231 Chmura et al., 2018; Satake et al., 2022). In other seasonal ecosystems, it has been suggested that 

232 water acquisition and storage strategies associated with growth form are related to different 

233 temporal patterns of flowering (CortÈs-Flores et al., 2017). For example, flowering of herbaceous 

234 species occurs during the rainy season, while flowering in trees and shrubs can occur during both 

235 rainy and dry seasons (Frankie et al., 1974; Batalha & Martins, 2004; CortÈs-Flores et al., 2017). 

236 The flowering phenology patterns that we observed are consistent with the assumption that in 

237 seasonal tropical ecosystems, insect pollinators are more abundant during the rainy season, when 

238 more floral resources are available (Southwood et al., 1979; Siemann et al., 1998; RamÌrez, 

239 2006; Souza et al., 2018). At least one hummingbird species is active year-round in our study 

240 site, a pattern recognized in other tropical studies, which reported continuous hummingbird 

241 activity across the year (Barrantes, 2005; Abrahamczyk et al., 2011). The presence of a particular 

242 floral visitor functional group throughout the year can be explained by the staggered flowering 

243 phenologies of plant species in tropical communities, as shown in this study (Lopezaraiza-Mikel 

244 et al., 2013; Lobo et al., 2003, Abrahamczyk et al., 2011; MelÈndez-RamÌrez et al., 2016).

245 An important difference between the Costa Rican Paramo and Andean Paramos is that in 

246 Costa Rica, this ecosystem covers only a small and isolated area at the summit of the Talamanca 

247 mountain range. Such conditions make this site unique and susceptible to threats imposed by 

248 climate change and human intervention. Projections on climate change indicate that temperatures 

249 and the length of dry season will increase in the highlands, seriously threatening this ecosystem 

250 in Central and South America (Karmalkar et al., 2008; Lyra et al., 2017; Freeman et al., 2018). In 

251 Costa Rica, the Paramo ecosystem is protected within national parks, but despite this level of 
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252 protection, they are subject to a wide range of pressures from human activities, such as 

253 anthropogenic fires, the construction of communication towers, and agricultural and urban 

254 expansion around protected areas, as well as the invasion of exotic plant species (Chaverri & 

255 Esquivel-Garrote, 2005) which, in addition to climate change, seriously threaten this unique 

256 ecosystem. 

257 5. CONCLUSIONS

258 We conclude that richness and beta diversity of blooming plant species differed between 

259 the Paramo and the adjacent Montane Forest, and such differences are likely a consequence of 

260 historical events (e.g., dispersal promoted by changes in climate), and the edaphic and climatic 

261 conditions prevailing in the study region. Floral resource availability differed between the two 

262 seasons (dry and rainy), due to differences in climatic conditions (Kˆrner, 2021) that  may act as 

263 environmental cues that trigger the phenological patterns in different plant species; however, a 

264 phylogenetic effect (e.g., related plant species flowering at the same time due to common 

265 ancestry) cannot be discarded (Davies et al., 2013). Our findings also showed that the 

266 composition and diversity of floral resources for insects and birds are lower in the Paramo than 

267 in the Montane Forest. This supports the idea that resource depletion may limit the use of the 

268 Paramo for nectar-feeding birds and insects (Janzen et al., 1976; Barrantes, 2005; Fuchs et al., 

269 2010). This study showed that analyses of species composition and richness based on flowering 

270 phenology data are useful in evaluating potential floral resources for floral visitors (insects and 

271 birds), and how these resources change spatially and temporarily in these endangered 

272 ecosystems.

273
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1 Table 1. Non-parametric PERMANOVA based on BrayñCurtis distances for all blooming plants 
2 at two sites (Montane Forest and the Paramo), two seasons (dry and rainy), and their interaction.
3

All blooming plants (MSD/Bray ñ Stress = 0.98)

Factor df SS R2 F P

Site 1 5.03 0.38 48.55 0.001

Season 1 1.46 0.11 14.11 0.001

Site*season 1 0.87 0.06 8.37 0.001

Residual 58 5.99 0.45

Total 61 13.36 1.00
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1

2 Table 2. Comparison of beta diversity for blooming plants between Montane Forest and Paramo 
3 forest in Costa Rica, based on the betadisper  function (Oksanen et al., 2020).
4

All blooming plants

Factor df SS MS F P

Site 1 0.03 0.03 9.48 0.003

Residual 60 0.21 0.00

Insect+bird-visited plants

Site 1 0.03 0.03 9.26 0.002

Residual 60 0.22 0.00

Insect-visited plants

Site 1 0.05 0.05 11.96 0.002

Residual 60 0.27 0.00

Bird-visited plants

Site 1 0.05 0.05 3.83 0.057

Residual 60 0.76 0.01

5

6

J ) 1(: 2FW

Manuscript to be reviewed


