Mostrar el registro sencillo del ítem

dc.creatorDehaspe, Joni
dc.creatorTetzlaff, Doerthe
dc.creatorSánchez Murillo, Ricardo
dc.creatorDurán Quesada, Ana María
dc.creatorSoulsby, Chris
dc.creatorBirkel Dostal, Christian
dc.date.accessioned2021-11-03T19:03:27Z
dc.date.available2021-11-03T19:03:27Z
dc.date.issued2018
dc.identifier.citationhttps://onlinelibrary.wiley.com/doi/10.1002/hyp.13258
dc.identifier.issn1099-1085
dc.identifier.urihttps://hdl.handle.net/10669/85045
dc.description.abstractRapidly transforming headwater catchments in the humid tropics provide important resources for drinking water, irrigation, hydropower, and ecosystem connectivity. However, such resources for downstream use remain unstudied. To improve under standing of the behaviour and influence of pristine rainforests on water and tracer fluxes, we adapted the relatively parsimonious, spatially distributed tracer‐aided rain fall–runoff (STARR) model using event‐based stable isotope data for the 3.2‐km2 San Lorencito catchment in Costa Rica. STARR was used to simulate rainforest intercep tion of water and stable isotopes, which showed a significant isotopic enrichment in throughfall compared with gross rainfall. Acceptable concurrent simulations of dis charge (Kling–Gupta efficiency [KGE] ~0.8) and stable isotopes in stream water (KGE ~0.6) at high spatial (10 m) and temporal (hourly) resolution indicated a rapidly responding system. Around 90% of average annual streamflow (2,099 mm) was com posed of quick, near‐surface runoff components, whereas only ~10% originated from groundwater in deeper layers. Simulated actual evapotranspiration (ET) from intercep tion and soil storage were low (~420 mm/year) due to high relative humidity (average 96%) and cloud cover limiting radiation inputs. Modelling suggested a highly variable groundwater storage (~10 to 500 mm) in this steep, fractured volcanic catchment that sustains dry season baseflows. This groundwater is concentrated in riparian areas as an alluvial–colluvial aquifer connected to the stream. This was supported by rain fall–runoff isotope simulations, showing a “flashy” stream response to rainfall with only a moderate damping effect and a constant isotope signature from deeper groundwater (~400‐mm additional mixing volume) during baseflow. The work serves as a first attempt to apply a spatially distributed tracer‐aided model to a tropical rainforest environment exploring the hydrological functioning of a steep, fractured‐ volcanic catchment. We also highlight limitations and propose a roadmap for future data collection and spatially distributed tracer‐aided model development in tropical headwater catchmentses_ES
dc.description.sponsorshipCentro de Investigaciones Geofísicas (CIGEFI)/[217‐B4‐39]/Universidad de Costa Rica/Costa Ricaes_ES
dc.language.isoenges_ES
dc.sourceHydrological Processes; Vol. 32 Núm. 21: 2018 pp. 1–19es_ES
dc.subjectBOSQUE TROPICALes_ES
dc.subjectCOSTA RICA - FLORA TROPICALes_ES
dc.subjectUniversidad de Costa Rica - Reserva Biológica Alberto Manuel Brenes (ReBAMB)es_ES
dc.subjectStable isotope ratioes_ES
dc.subjectTracer‐aided modellinges_ES
dc.subjectTracerses_ES
dc.titleSpatially distributed tracer‐aided modelling to explore water and isotope transport, storage and mixing in a pristine, humid tropical catchmentes_ES
dc.typeartículo original
dc.identifier.doi10.1002/hyp.13258
dc.description.procedenceUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones Geofísicas (CIGEFI)es_ES
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ciencias Sociales::Facultad de Ciencias Sociales::Escuela de Geografíaes_ES
dc.identifier.codproyecto217‐B4‐39


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem