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Abstract

The purpose of this paper is to present a novel Hybrid Random
Number Generator (HRNG). Here “hybrid” refers to the fact that to
construct this generator it is necessary to use 1) physical components
– texts – and a physical process, and 2) a mathematical procedure.
This HRNG makes it possible to generate genuine random numbers
which may be used both for computer simulation of probabilistic sys-
tems and in the field of cryptography. The results of a comparative
study of the binary strings generated by this HRNG and of those
generated by two highly used implementations of a congruential al-
gorithm designed to generate pseudorandom numbers are given here.
One of the latter is the implementation incorporated into the Java
2 platform (version 1.6), and the other is the implementation in-
corporated into the runtime library of Microsoft’s Visual C++ 2008
compiler.

Keywords: random number generator, pseudorandom number generator,
hybrid random number generator.

Resumen

Se presenta un generador h́ıbrido de números aleatorios que será
denominado, de manera abreviada, “HRNG”. Mediante el califica-
tivo “h́ıbrido” se hace referencia al hecho de que la construcción
de dicho generador requiere recurrir a 1) unos entes de carácter
f́ısico —textos— y un procedimiento f́ısico y a 2) un procedimiento
matemático. El HRNG permite generar genuinos números aleatorios
que pueden ser utilizados tanto para la simulación computacional de
sistemas probabiĺısticos como en el campo de la criptograf́ıa. Se
aporta los resultados de un estudio comparativo de cadenas bina-
rias generadas con el HRNG y cadenas binarias generadas por dos
implementaciones —ampliamente utilizadas— de un algoritmo con-
gruencial diseñado para generar números pseudoaleatorios: a) la im-
plementación incorporada a la versión 1.6 de la plataforma Java 2
y b) la implementación incorporada a la biblioteca de ejecución del
compilador Microsoft Visual C++ 2008.

Palabras clave: generador de números aleatorios, generador de números
pseudoaleatorios, generador h́ıbrido de números aleatorios

Mathematics Subject Classification: 11K45, 65C10.

Rev.Mate.Teor.Aplic. (ISSN 1409-2433) Vol. 18(2): 265–297, July 2011



a hybrid random number generator (hrng) 267

1 Introduction

1.1 Main issues addressed in scientific literature on ran-
dom numbers and pseudorandom numbers

In scientific literature on random numbers and pseudorandom numbers,
one of the main topics is the difference between genuine random numbers
and others which are purportedly similar to them but not the same. The
latter are usually referred to as pseudorandom numbers.

One widely accepted criterion is that purely mathematical procedures
cannot generate true random numbers. John von Neumann’s famous re-
mark may have helped to spread this opinion. He once stated jokingly:
“Anyone who considers arithmetical methods of producing random digits
is, of course, in a state of sin” [13]. If this is accepted, then true ran-
dom numbers may be generated only with certain procedures involving
processes found in Physics and other related fields.

In spite of the above, the main theoretical approaches developed to
characterize the notion of randomness of certain numbers are independent
of how those numbers are generated [1, 4, 8, 10, 12].

Another of the important topics considered in the scientific literature
is that of tests for randomness. If one has certain numbers (to be charac-
terized preliminarily in section 1.2, and more precisely, in section 2), it is
usually accepted that diverse tests may be carried out to assess whether
they are random, or in any case, whether they are “random enough”, ac-
cording to the purpose for which they will be used [5, 7]. These initially
general or somewhat vague notions will be further clarified as this paper
progresses.

1.2 An ideal random-bit generator (IRBG) and some pos-
sible applications

For a clearer understanding of the methods presented here, it is useful to
consider an ideal machine that every so often (for instance, every millisec-
ond) generates a digit with the following two characteristics: a) the digit
is either a zero (0) or a one (1), and b) there is the same probability that
the digit will be a 0 or a 1 (that is, for each digit generated by this ideal
machine, the probability that it could be a 1 is 0.5, and that it could be a 0
is 0.5). This ideal machine will be called an “ideal random-bit generator”
(IRBG). It will also be supposed that it has an ideal “memory” device
(e.g., an “ideal hard disk”) which makes it possible to store a sequence of
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bits (generated by the IRBG) that is as long, or that contains as many
bits, as desired. This sequence will be called a “binary string”.

One possible application of the IRBG is that of obtaining random
numbers similar to those provided in a well-known publication of the Rand
Corporation [9]. Let us admit, for example, that a sequence of five digits
is required such that each of them can be one of the following: 0, 1, 2,
3, 4, 5, 6, 7, 8 and 9. It can also be accepted that the probability of any
one of these digits being in any of the five positions possible in any of the
sequences of five digits is the same. (Hence, the probability is equal to
0.1.)

How could this type of five-digit sequence be obtained with an IRBG?
The first four digits of a binary sequence generated by the IRBG and
stored in a memory device will be used for this purpose. This four-digit
binary sequence is interpreted first as a number expressed in base 2, and
then, as a number in base 10. Thus there will be the same probability
( 1
16 ) that the binary sequence will correspond to any of these 16 numbers:

0, 1, 2, . . . , 15. (For example, the binary sequences 0000, 0101, 1011 and
1111 correspond to the numbers 0, 5, 11 and 15, respectively.) If the
binary sequence corresponds to one of the numbers 0, 1, 2, . . . , 9, then the
number obtained is considered the first of the numbers in the sequence of
five numbers to be constructed. If, on the other hand, the four-digit binary
sequence corresponds to one of the numbers 10, 11, 12, 13, 14 or 15, it is
discarded, and the next four digits of the binary string mentioned above
(generated by the IRBG and stored in the memory device) are considered.
The same procedure is carried out with that sequence of four more new
digits as was done with the first four-digit binary sequence. One continues
to repeat the procedure until obtaining the desired sequence of five digits
expressed in base 10. It is evident that each of these five digits has the
same probability (0.1) of being any of the following ten numbers: 0, 1, 2,
3, 4, 5, 6, 7, 8, 9.

This procedure can be used as many times as needed to obtain the
required random numbers. Although in the characterization of this pro-
cedure it was taken into account that the numbers obtained are expressed
in sequences of five digits corresponding to base 10, clearly the same ap-
proach can be applied to obtain random numbers which can be expressed
in sequences of a finite number of digits (corresponding to that base) that
are as long as desired.

Is it possible for the number of digits in the binary string generated
by the IRBG and stored in its memory device not to be long enough
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(e.g., in cases in which many sequences of four-digit binary sequences are
discarded) to obtain all the sequences of a finite number (i.e., sequences
of digits in base 10, which are as long as necessary) of digits expressed
in base 10) that one wishes to construct? Not at all. It must be kept
in mind that this IRBG is an ideal machine that never fails. Using this
machine, one can obtain a binary string composed of a series of digits
which is as long as required. Moreover, that binary string can always be
stored in the ideal memory device mentioned. (What happens in the “real
world”? This will be covered in section 2.) This procedure may be used,
therefore, as many times as needed, with the objective of constructing as
many random numbers as desired.

Another possible application of the IRBG is the generation of prob-
abilities expressed with as many decimal digits as needed and such that
each of these digits has the same probability (0.1) of being any one of the
following ten numbers: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Suppose, for instance,
that it is necessary to generate a probability expressed with 8 decimal
digits. To achieve this, the first step is to generate, using the procedure
described above, a random number expressed by an eight-digit sequence in
base 10. Let us admit that the sequence generated is 08760552. To obtain
the probability desired, the sequence can be considered to be the “decimal
part” of that probability. Hence, the probability obtained is 0.08760552.

1.3 Objective of this paper

The objective of this paper is to present a system whose behavior is the
same as that of an IRBG, or at least as similar as possible. Once the
system is described, an analysis will be carried out as to how similar it is
to the IRBG.

2 First approximation to a physical-mathematical
system which operates like an IRBG

At present an impressive number of literary works (such as novels and
essays) are easily accessible on the Internet. One of these was selected
and processed in a particular way. (All of the literary works used for this
purpose were taken from “Project Gutenberg” – www.gutenberg.org.) To
understand the nature and the sense of this procedure, one must keep in
mind that this literary text (or any literary work, for that matter) can
be considered to consist of a sequence of characters. (The term “charac-
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ter” is used here with the meaning of sign or symbol, as commonly found
in Computer Science.) One objective of this procedure is to prevent the
appearance of subsequences of characters composed of numerous repeti-
tions of the same character such as that corresponding to a blank space
(between words). Another objective is to prevent the presence of long sub-
sequences of characters that are identical or very similar to those found
in other works. (Licenses regarding the use of the texts or other legal
information can be the cause of this type of subsequences of characters.)
The reason for this procedure will be discussed in section 3.

The text resulting from the work subjected to this treatment can be
considered a sequence of characters. The first character in the sequence
will be called “character 1”, the second “character 2”, the third “character
3”, and so on. Each of these characters is one of those specified in Table 1.

Consider the subsequence composed of the first 100 characters of the
sequence of characters obtained when processing the selected literary work
as specified. One of these 100 characters may be chosen using any criterion
or method; that is, it is arbitrary. The character thus selected will be called
s1. Beginning with s1, an advance of 1600 characters is made within the
sequence considered in order to determine another character which will
be called s∗1. In other words, there are 1599 characters between s1 and s∗1.
Metaphorically, the operation can be described as a “long leap” of 1600
characters from the initial character s1 to the final character s∗1. (For
example, if s1 was “character 57”, then s∗1 would be “character 1657”.)
Consideration is given to the order numbers in Table 1 which correspond
to s1 and s∗1. If s1 is assigned a number whose order number is less
than that of s∗1, then the digit 0 will be the first digit of a binary string
under construction. (This binary string will be the first approximation
to a hypothetical binary string generated by an IRBG.) Therefore, for
example, if the order number of s1 (in Table 1) is 53 and the order number
of s∗1 (also in Table 1) is 118, then the first digit of the binary string to be
generated is 0, since 53 < 118. On the other hand, if the order number
corresponding to s1 is greater than the order number of s∗1, then the first
digit of the binary string to be generated is 1. If s1 is identical to s∗1, then
their order numbers are the same. In this case, it will be considered that
no digit for the binary string to be constructed has been generated from
s1 and s∗1.

Attention will now be given to another two characters from the se-
quence of characters to which reference was made. These two characters
– s2 and s∗2 – are determined in the following way: An advance of 50
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Number Number Number Number
0 (ctl) 32 (blank space) 64 @ 96 ‘
1 (ctl) 33 ! 65 A 97 a
2 (ctl) 34 ” 66 B 98 b
3 (ctl) 35 # 67 C 99 c
4 (ctl) 36 $ 68 D 100 d
5 (ctl) 37 % 69 E 101 e
6 (ctl) 38 & 70 F 102 f
7 (ctl) 39 ’ 71 G 103 g
8 (backspace) 40 ( 72 H 104 h
9 (tab) 41 ) 73 I 105 i
10 (line feed) 42 * 74 J 106 j
11 (ctl) 43 + 75 K 107 k
12 (ctl) 44 , 76 L 108 l
13 (carriage return) 45 - 77 M 109 m
14 (ctl) 46 . 78 N 110 n
15 (ctl) 47 / 79 O 111 o
16 (ctl) 48 0 80 P 112 p
17 (ctl) 49 1 81 Q 113 q
18 (ctl) 50 2 82 R 114 r
19 (ctl) 51 3 83 S 115 s
20 (ctl) 52 4 84 T 116 t
21 (ctl) 53 5 85 U 117 u
22 (ctl) 54 6 86 V 118 v
23 (ctl) 55 7 87 W 119 w
24 (ctl) 56 8 88 X 120 x
25 (ctl) 57 9 89 Y 121 y
26 (ctl) 58 : 90 Z 122 z
27 (ctl) 59 ; 91 [ 123 {
28 (ctl) 60 < 92 \ 124 |
29 (ctl) 61 = 93 ] 125 }
30 (ctl) 62 > 94 ˆ 126 ˜
31 (ctl) 63 ? 95 127 (ctl)

Table 1: List of characters and order numbers. (Source: The Unicode
Standard, Version 5.0, Fifth Edition, The Unicode Consortium, Addison-
Wesley Professional, 27 October 2006.)
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characters from s1 was performed to determine the character called s2. In
other words, there are 49 characters between s1 and s2. Metaphorically,
this may be described as a “short leap” of 50 characters from the initial
character s1 to the final character s2. (For example, if s1 was “character
57”, then s2 would be “character 107”.) As of s2, there is a “long leap”
of 1600 characters to be able to determine another character to be called
s∗2. (For example, if s2 was “character 107”, then s∗2 would be “character
1707”.) Note the order numbers in Table 1 which correspond to s2 and
s∗2. If the order number corresponding to s2 is less than the order number
corresponding to s∗2, then the digit obtained is 0. If the order number
corresponding to s2 is greater than the order number corresponding to s∗2,
then the digit obtained is 1. If the order number of s2 is identical to that
of s∗2, then they both will be the same character. In that case, it will be
considered that from s2 and s∗2, no digit was obtained for the binary string
to be built. If, based on the comparison of the order numbers of s1 and s∗1,
a digit has been obtained, then that digit will be the second digit in the
binary string. If, based on the comparison of order numbers correspond-
ing to s1 and s∗1, no digit was obtained previously, then the digit obtained
from the comparison of the order numbers corresponding to s2 and s∗2 will
be the first digit obtained for the binary string. The same procedure will
be used repeatedly to obtain the successive digits belonging to the binary
string to be generated.

Another way to characterize the procedure used to generate this binary
string is as follows: Beginning with s1, with successive “short leaps” of
50 characters, the characters s2, s3, . . . , sn−1, sn are selected successively.
Thus, one has the sequence of characters s1, s2, s3, . . . , sn. Beginning with
each of the characters comprising this sequence, there is a “long leap” of
1600 characters. Hence, from character s1, character s∗1 is selected, from
s2, character s∗2 is selected, and so forth, until reaching sn, from which s∗n
is selected. One has then another sequence of characters: s∗1, s

∗
2, s

∗
3, . . . , s

∗
n.

Later the order number corresponding to s1 (in Table 1) is compared
to the order number corresponding to s∗1, that of s2 to that of s∗2, and so on
successively. If the order number corresponding to si, for i = 1, 2, . . . , n,
is less than the order number corresponding to s∗i , then it is considered
that from the ordered set of characters {si, s

∗
i }, the digit obtained is 0. If

the order number corresponding to si is greater than that of s∗i , then it
is considered that from the ordered set {si, s

∗
i }, the digit 1 is obtained.

If si is identical to s∗i (and therefore, the order number of si is equal to
that of s∗i ), it is considered that from the ordered set {si, s

∗
i }, no digit is
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obtained. Given that from each ordered set {si, s
∗
i }, a digit may or may

not be obtained, the number of digits will be, at most, the same as the
number of ordered sets that have been considered.

Given that the digits of a binary string to be constructed are, whenever
feasible, obtained sequentially from the ordered sets {s1, s

∗
1}, {s2, s

∗
2},. . . ,

{sn, s∗n}, an order can be established for those digits.

Suppose that the number of digits of the binary string generated with
the procedure described turns out to be insufficient, given the objective
for which the string will be used. One may select, then, another literary
work. The same procedure will be applied to this second text. Thus a new
binary string is obtained. This second binary string is a continuation or
prolongation of the first. If necessary, a third text may be selected, from
which a third binary string is obtained using the above procedure which
was already used twice. This string is also considered a continuation of
the binary string obtained previously. This procedure may be repeated
as many times as needed. Since it may be required to use many literary
texts to obtain a binary string composed of a number of bits long enough
for the purpose intended, it is easy to understand why, as indicated above,
the paragraphs which are the same or similar in more than one text must
be eliminated. In this way, it is possible to remove from the texts any
significant patterns or regularities which could interfere with the objective
of obtaining a genuinely random string from those texts.

The sequence of characters obtained from all of the literary works will
be called S1, and the binary string obtained from it, B1. Moreover, in
section 3.2 a description will be provided of another procedure which will
make it possible to increase the number of bits in a given binary string
significantly without using additional literary works.

The theoretical basis of the procedure described to generate a binary
string is as follows: Let there be a character (e.g., a letter) from a writ-
ten literary text in a particular language (such as English). Suppose that
from that character there is a “leap” of 50 characters or more to determine
the second character. (In other words, between that first character and
the second, there are at least 49 characters.) Admit that for this type of
“leap”, the identity of the second character does not depend on that of the
first. The basis for this supposition is that between the first character and
the second there are characters corresponding to at least two words, even
if they are very long words made up of many letters. (Each letter is con-
sidered a character.) Suppose that the first character corresponds to the
first letter of a 14-letter word. The first 13 characters between the initial
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character (the character from which the leap was made) and the second
(the “target” character) correspond to the rest of the word mentioned.
Then a character corresponding to a blank space between the words can
be identified. The presence of two 14-letter words (one after another) and
a space between them would require another 29 characters. Thus it is pos-
sible to justify the use of the first 42 characters of the 49 characters found
between the initial character of the 50-character “leap” and the “target”
character. The presence of the characters corresponding to at least two
words between the “initial” character and the “target” character gives a
high degree of verisimilitude to the hypothesis stated above. Hence, let
there be 4 consecutive words (w1, w2, w3 and w4). Consider a “leap” be-
ginning from any character in w1 and ending on any character of w2. It
appears highly unlikely that by knowing a character in w1 it would be
possible to guess what the character in w2 might be. This would occur
even if all the characters in w1 are known; that is, even if one knows what
w1 is. There are many words which may conceivably come after w1, and
become w2. Reasoning of this type is applicable to w2 and w3, and also
to w3 and w4. Consider now the “leap” going from some character in w1

to some character in w4. For the reasons given above, it is highly unlikely
that by knowing that character in w1, one could infer anything with re-
gard to the “target” character in w4. Therefore, if from a given character
a “short leap” of at least 50 characters is made to a second character, it
is reasonable to accept that this last character is independent of whatever
the first one was.

For these same reasons, a “leap” of 1600 characters (the “long leap”
mentioned above), ensures that the type of independence described is
achieved between the first character and second one. Therefore, it can be
admitted that regardless of what character s∗1 is, it does not depend on
what character s1 is. (The notation introduced above is being used here.)
Likewise, regardless of what character s∗2 is, it does not depend on what
character s2 is, etc.

The first character, the second character, . . . , and the last character
in Table 1 will be called c1, c2, . . . , c128. The following hypothesis will be
accepted: if a character is selected at random in a literary text written in
a particular language, such as English, there is a certain probability that
it will be the first character on the list in Table 1, another probability
that it will be the second character on the list, and so on. The probability
that upon choosing a character at random in that text, the character will
be c1 will be called p(c1). (It may be considered that the value of that

Rev.Mate.Teor.Aplic. (ISSN 1409-2433) Vol. 18(2): 265–297, July 2011



a hybrid random number generator (hrng) 275

probability depends on, or is a function of, c1.) Likewise, the probability
that, when choosing a character at random in that text, the character will
be c2 will be called p(c2). In general, the probability that upon choosing
a character at random in that text, that character will be ci is p(ci) for
i = 1, 2, . . . , 128.

Look again at the ordered sets {si, s
∗
i }, for i = 1, 2, . . . , n, mentioned

above. Also consider any two characters (such as c68 and c116) in Table 1.
Suppose that any one of the ordered sets is chosen at random. The prob-
ability that the ordered set will be the same as the ordered set {c68, c116}
will be specified as p{c68, c116}. Given that the probability that second
element of the ordered set will be c116 is independent of the fact that the
first element of the ordered set is c68, the following equation is valid:

p{c68, c116} = p(c68) · p(c116). (1)

Likewise, for the probability that the ordered set, chosen at random,
will be the ordered set {c116, c68}, the following is valid:

p{c116, c68} = p(c116) · p(c68). (2)

Note that the second members of equations (1) and (2) are equal. (The
order of the factors – two probabilities – does not alter the value of the
product.) Thus, the first members of these equations are also equal:

p{c68, c116} = p{c116, c68}. (3)

Whenever there is an ordered set {c68, c116}, in the ordered sets {si, s
∗
i },

where i = 1, 2, . . . , n, a 0 will be generated for the desired binary string;
and whenever there is an ordered set {c116, c68}, a 1 will be generated for
that binary string. According to the procedure specified for that binary
string, the literary works subjected to this treatment will be converted to
a sequence of characters S1. Each of the characters is on the list in Ta-
ble 1. Two of these characters are c68 and c116. It is clear that the number
of characters composing S1 will be well over 128. Thus, many of these 128
characters will appear many times in S1. This will occur, in particular,
with the characters c68 and c116. Some of the ordered sets {si, s

∗
i }, where

i = 1, 2, . . . , n, will be sets to which the elements c68 and c116 belong.
Consider any one of these ordered sets and admit that it is known that
c68 and c116 belong to it, but that the order of these elements in the set
is not known. With equation (3), it can be stated that the probability
that from that set a 0 will be obtained as a digit of the binary string is
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the same as the probability that a 1 will be obtained. Considerations like
those presented for c68 and c116 could be given for any pair of characters
ci and cj (for i = 1, 2, . . . , 128; and j = 1, 2, . . . , 128) of those appearing
on the list of characters in Table 1. Thus, equation (3) can be generalized
as follows:

p{ci, cj} = p{cj , ci}. (4)

Any of the ordered sets {si, s
∗
i }, where i = 1, 2, . . . , n, will be one of

the ordered sets {ci, cj}, where i = 1, 2, . . . , 128, and j = 1, 2, . . . , 128. For
each instance in which i = j, no digit (neither 0, nor 1) will be generated
from the ordered set considered. For each case in which i 6= j, either a 0
or a 1 will be generated from that ordered set, according to the criterion
specified above. The probability that the presence in the ordered sets
{si, s

∗
i } (for i = 1, 2, . . . , n) of any ordered set from which the digit 0 is

generated from a binary string that is being constructed is the same (see
equation (4)) as the probability of the presence of a “symmetric” set with
respect to that from which a digit 1 is generated for the binary string.
For this reason, the probability that any digit chosen at random from the
binary string obtained will be a 0 is the same as the probability that it
will be a 1. Each of those two probabilities ought to be, therefore, equal
to 1

2 . This is precisely the defining characteristic of the binary string
generated by an IRBG. The conclusions reached in this section have not
been proven, but a number of reasons have been given showing that they
are plausible. Using a computer program designed for the purpose, it is
possible (a) to count the number of times n{ci, cj} that any of the ordered
pairs of characters {ci, cj} of the type mentioned in equation (4) appears
in the sequence of all the pairs of characters actually used to compare the
order numbers corresponding to the two characters belonging to each pair;
and (b) to divide that number n{ci, cj} by the total number NT of pairs of
characters actually used existing in that sequence of pairs of characters to
which reference was made. Thus, it is possible to determine the frequency
f{ci, cj}:

f{ci, cj} =
n{ci, cj}

NT

. (5)

With the same procedure, the frequency of f{cj, ci} may be obtained.
However, f{ci, cj} and f{cj, ci} are the best approximations for the prob-
abilities p{ci, cj} and p{cj , ci} respectively. Therefore, if the main hy-
pothesis of this paper, expressed by equation (4) – p{ci, cj} = p{cj , ci} –
is correct, the following equation also should be valid:

f{ci, cj} ≃ f{cj, ci}. (6)
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It was verified that (6) is true for each of the seven ordered pairs of
characters and their corresponding symmetrical pairs of those characters.
These results are presented in section 6.

In section 5, a presentation will be provided of the results obtained
when subjecting to statistical tests the conclusion that the procedure de-
scribed above leads to a system operating like an acceptable first approx-
imation to an IRBG.

3 Second approximation to a physical-mathema-
tical system which operates like an IRBG

The physical-mathematical system discussed in section 2 generates a bi-
nary string (namely B1) which as shown in section 5, passes the statistical
tests described there. Thus, it is reasonable to consider that the binary
string B1, generated by a first approximation to an IRBG, will be accept-
able in the fields of statistics (e.g., to generate random numbers) and of
computer simulation (e.g., to decide whether an event of a probabilistic
nature will occur during a simulation process that is being carried out).
Nevertheless, doubts could arise concerning the acceptability of that bi-
nary string in the field of cryptography, where the messages encrypted
using a random binary string (like B1) should be able to be deciphered
only by using it again. (This issue will be addressed in section 3.2.) Some
person P who is not authorized to have access to the string might obtain
it, and consequently, decipher those messages, if that person made correct,
detailed guesses regarding the procedure used to generate the string. For
the string to be acceptable in the field of cryptography, the probability
that P would be able to make those guesses must be extremely low; that
is, it should have a value very close to 0.

This second approximation to a mathematical system operating like an
IRBG does make it possible for the binary string generated by this second
physical-mathematical system to be acceptable not only in the fields of
statistics and computer simulation but also in that of cryptography [6].

3.1 One way to generate a random permutation with the
first 128 natural numbers

A total of 128 rectangular cards were prepared. A “1” was written on
one side of one of these cards, a “2” on another of these cards, a “3” on
still another of these cards, and so forth, in such a way that the number
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“128” was written on one side of the last of these cards. (A briefer way
of expressing what was done with the cards is as follows: They were
numbered from 1 to 128.) Next, with all of the numbered cards going in
the same direction, they were shuffled as is often done with a pack of cards.
This pack of numbered cards was placed face-down on a table. The top
card was selected, and note was made of the corresponding number (i.e.,
of the number written on the card). That number was given the number
“1”, and the card was not returned to the pack. Again the top card was
chosen, note was taken of the number on the card, and it was assigned the
number “2”. It was not returned to the pack either. For example, suppose
that the first card had the number “17” and the second was “105”. In this
case, “17” would be “1”, and “105” would be “2”, and so on successively.
Thus, one permutation of the 128! possible permutations of the first 128
natural numbers was obtained.

3.2 Characterization of the second approximation to a
physical-mathematical system which operates like an
IRBG

The permutation obtained as specified in section 3.1 was applied to ob-
tain a permutation of the characters in Table 1. Therefore, for example,
suppose that the permutation obtained with that procedure assigned the
numbers 1 and 2 to numbers 17 and 105, respectively. In that case, the
permutation of the characters in Table 1 will be one in which c1 is replaced
by c17, and c2 by c105. In the same way, each of the remaining characters
in Table 1 may be replaced by some character in the same table. This
permutation of the characters in Table 1 does not apply to the table; the
table remains unchanged. The permutation obtained from the characters
in Table 1 is applied to the entity to be specified in this section.

There will necessarily be a one-to-one correspondence between the set
of characters in Table 1 and the set of characters obtained with the ap-
plication of the permutation described. In other words, the permutation
will be “character to character”, and not “one character to several char-
acters” or “several characters to one”. Of course, given the nature of the
permutation considered, the set of characters replacing these characters
in Table 1 will be the same set of the characters in that table.

Recall that the sequence of characters obtained from all the texts used
and subjected to the treatment described in section 2 is called S1. If each
character in S1 is replaced by the corresponding character according to
the permutation specified, a new sequence of characters is obtained and
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it will be called S2. (It is clear, therefore, that the sequence of characters
S1 is the entity to which the permutation obtained from the characters in
Table 1 is applied.)

A new binary string (B2) may be obtained from S2 by applying the
same procedure used to obtain the binary string B1 from S1. This new
binary string (B2) also passes (as did B1) the statistical tests specified in
4.2. The corresponding results are presented in section 4.3.

As stated above, B2 may be used with an extremely high degree of
security not only in the fields of statistics and computer simulation, but
also in that of cryptography. In fact, consider the case of a person P who
does not have access to that binary string – in any particular form – or to
a system which generates it automatically. To obtain B2, P would have
to make correct guesses not only about a) which literary works were used,
and b) exactly how this material was processed to obtain S1, but also
about what permutation was used to obtain S2 from S1. However, the
probability that the specific permutation would be guessed is very low.
Actually there are 128! possible permutations of 128 elements and there
is no reason to suppose that the probability of choosing any particular
one of those would be greater than that of choosing any one of the others.
Consequently, it may be accepted that the probability of P making a
correct guess about which permutation was actually selected is equal to

1
128! . In other words, the probability that the guess is wrong is equal to
1 − 1

128! . Thus it is almost certain that P’s guess would be incorrect.
For this reason, B2 – obtained from S2 – really is useful in the field of
cryptography as well [2].

Once one has B2, new permutations of the 128 characters in Table 1
can be generated automatically. Each of these new permutations makes
it possible to obtain a new binary string which can be useful in the fields
of statistics, computer simulation and cryptography. In this section an
explanation is provided about how to use B2 to obtain a permutation of
these 128 characters. A line segment is considered as an interval whose
initial extreme, or point, corresponds to 0 and whose final extreme, or
point, corresponds to 1. In addition, 128 equal-length subintervals are
considered in that interval. The characterization of those subintervals is
as follows: “subinterval 1” is that whose extreme points are 0 and 1

128 , and
“subinterval 2” is that whose extremes are 1

128 and 2
128 , and so forth until

reaching the last of those subintervals, “subinterval 128”, whose extremes
are 127

128 and 1. By using B2, a number is generated in the interval ranging
from 0 to 1. (With this objective the procedure can be used to generate
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probabilities from a binary string, as specified in section 1.2.) Suppose, for
example, that one is using a precision of 7 decimal digits. If the number
thus generated belongs only to “interval 1”, character c1 in Table 1 will be
considered to be chosen. If the number generated belongs only to “interval
2”, character c2 in Table 1 will be considered to be chosen, and so on
successively. (Thus, for instance, if the number generated is 0.5196774,
which belongs only to “subinterval 67”, character c67 will be considered
to be selected from the table.)

Given the precision under which we are operating, how can one pro-
ceed if the number generated corresponds to one of the extremes shared
by any two of the adjoining subintervals mentioned above? In that case,
one way of proceeding is to discard the number generated and generate
a new number. This criterion will continue to be used until the number
generated no longer corresponds to any of the extreme points. Suppose
that one of the 128 characters in Table 1 was already chosen. Then, every
time character c1 appears in S1, it will be replaced by the character se-
lected as indicated above. If, for example, character 67 (c67) was selected
from Table 1, every time c1 appears in S1, this character will be replaced
by c67. The remaining 127 characters in the table are renumbered from 1
to 127, thus preserving the increasing order of the subscripts identifying
them. (In this case, the first 66 characters of Table 1 will continue to be
numbered in the same way, but according to the renumeration mentioned,
number 67 will correspond to character c68, number 68 will correspond to
c69, and so on, until reaching character c128 of the table, which corresponds
to number 127.) Then, 127 subintervals of equal length are considered in
that interval having 0 and 1 as extremes. The first of these subintervals,
“subinterval 1”, will have points 0 and 1

127 as extremes, “subinterval 2”
will have points 1

127 and 2
127 as extremes, and so forth. Therefore, “inter-

val 127” will have points 126
127 and 1 as extremes. A new number with 7

decimal digits between 0 and 1 is generated from B2. If, with the precision
used, this new number corresponds to one of the extremes of two of the
new subintervals, it is discarded and another number is generated. This
criterion continues to be applied until the number generated belongs only
to one of the 127 subintervals considered. There will be some character in
Table 1 such that the number which it was assigned using the renumbering
process described above is the same as the last number generated. That
is the second character selected from Table 1. Then, every time that c2

appears in S1, it will be replaced by the second character selected. On
each occasion, of course, consideration is given to a number of subinter-
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vals within the subinterval extending from 0 to 1, equal to the number
of characters of Table 1 which have not yet been chosen. In this way, a
permutation of the first 128 characters in Table 1 may be obtained. If
this permutation is the same as that which led to the generation of S2

from S1, it is discarded and another new permutation of those characters
is obtained. This criterion continues to be applied until obtaining a per-
mutation different from that which led to the generation of S2 from S1.
The replacements corresponding to the different characters are made in S1

according to the new permutation. Hence a sequence of characters (S3) is
obtained. Using the procedure described in section 2, a new binary string
is obtained from S3 and will be called B3. The binary string B2 can be
made longer with the binary string B3.

Using B2 repeatedly to obtain new permutations of the characters in
Table 1, new binary strings may be obtained to make the existing binary
string longer. It is essential to discard any permutation of characters in
Table 1 which is the same as another that was obtained previously, so that
no binary string will be repeated.

4 Generators of binary strings tested for ran-
domness

The physical-mathematical system characterized in section 2, which is an
initial approximation to an IRBG, will be referred to here as (HRNG)1.
This random-number generator (RNG) can be considered to be hybrid
(H) since it is not purely mathematical; that is, it also includes a physi-
cal component. The literary texts are the “raw material” from which the
random binary string is obtained, thus making it possible to generate, for
example, random numbers expressed in base 10 and probability values.
Subscript 1 in the expression (HRNG)1 refers to the fact that this gen-
erator is the first of its type that was obtained before using the different
permutations of the characters in Table 1, as was done to obtain a second
approximation to the IRBG.

Here three particular cases of this second approximation, obtained by
using different sets of permutations of characters in Table 1 (such that
any two of those sets are disjoint; i.e., they do not include, as elements,
any permutations in common) will be called (HRNG)2, (HRNG)3 and
(HRNG)4. In future work in which this type of random number generator
is used with permutations of the characters in Table 1, it will generally be
referred to as HRNG.
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In addition to (HRNG)1, (HRNG)2, (HRNG)3, and (HRNG)4, two
common pseudorandom generators were used to generate binary strings:
a) the implementation of a congruential algorithm incorporated into the
Java 2 platform (version 1.6), and the implementation of the same algo-
rithm incorporated into the runtime library of Microsoft’s Visual C++
2008 compiler. They were subjected to the randomness tests described in
section 5.

Both Java and Visual C++ generate pseudorandom numbers with a
code based on a linear congruential algorithm used by Knuth [3], which
can be expressed by a single equation:

Xn+1 = (aXn + c) mod m (7)

X0 is the initial “seed” for the pseudorandom sequence. Given the
same “seed”, the algorithm will produce the same sequence of pseudoran-
dom numbers as output.

The set of parameters (a, c y m) used in Java [11] is different from the
corresponding set used in Visual C++. (Standard references regarding
this selection are not readily available, so the corresponding source code
was consulted to obtain this information.)

Both the implementation of the algorithm used in Java and that used
in Visual C++ offer the user the option of obtaining as many times as
necessary certain binary sequences: one composed of 32 bits in the case
of Java and one of 16 bits in the case of Visual C++.

As expressed above, using the Java generator a 32-bit pseudorandom
binary string can be generated. This process can be repeated as many
times as required. Thus the first 32-bit binary string is generated. Then
the second binary string having the same length is generated. This second
binary string is considered to be a prolongation or a continuation of the
first string. Using the same generator, a third 32-bit binary string is
generated. This third 32-bit string is considered to be a continuation of
the binary string formed by lengthening the first binary string with the
second. The process can be continued until the binary string is as long as
desired according to one’s objectives.

In addition, by using the Visual C++ generator repeatedly to form
16-bit binary strings, applying the same procedure described above for
binary strings produced with the Java generator, a binary string of the
desired length can be obtained. Suppose, for example, that one requires
a 1853-bit binary string. Using the Visual C++ generator, it is possible
to obtain 116 binary strings of 16 bits each. In this way a 1856-bit binary
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string may be obtained. If the last three (or the first three) bits of this
string are discarded, the desired string is obtained.

5 Randomness tests applied and the results ob-
tained

The different generators described in section 4 were used to form bi-
nary strings which were tested for randomness. These generators include
four introduced in this article – (HRNG)1, (HRNG)2, (HRNG)3, and
(HRNG)4 – and two others which are highly used (to be called Java and
C++ for short).

In this section, a discussion will be provided of 1) the statistical tests
applied to the binary strings obtained by using these generators, and 2)
the results obtained by using those tests.

Let there be a genuinely random binary string like that generated by
the IRBG. The expression p(0, 0) will be used to refer to the probability
that a dyad (i.e., a sequence of two consecutive bits) selected at random
from that string will be (0, 0). Likewise, the expressions p(0, 1), p(1, 0),
p(1, 1) will refer to the probabilities that the dyad will be (0, 1), (1, 0) and
(1, 1), respectively. For the type of binary string specified, the following
should be fulfilled: p(0, 0) = p(0, 1) = p(1, 0) = p(1, 1) = 1

4 . In other
words, there is no reason to suppose that in a random binary string there
would be a tendency for any one of the four possible dyads to be present,
different from the tendency of any of the other three dyads to be present.

The expression p(0, 0, 0) will be used to refer to the probability that a
triad (i.e., a sequence of three consecutive bits) randomly chosen from that
random binary string will be (0, 0, 0). Likewise, the expressions p(0, 0, 1),
p(0, 1, 0), p(0, 1, 1), p(1, 0, 0), p(1, 0, 1), p(1, 1, 0) and p(1, 1, 1) will refer,
respectively, to the probabilities that the triad will be (0, 0, 1), (0, 1, 0),
(0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0) and (1, 1, 1). For the type of binary
string specified, the following should be fulfilled: p(0, 0, 0) = p(0, 0, 1) =
p(0, 1, 0) = p(0, 1, 1) = p(1, 0, 0) = p(1, 0, 1) = p(1, 1, 0) = p(1, 1, 1) = 1

8 .
In other words, there is no reason to suppose that in a random binary
string there would be a tendency for any one of the eight possible triads
to be present, different from the tendency of any of the other seven triads
to be present.
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Clearly, the preceding idea can be generalized for the sixteen possible
tetrads, for the thirty-two possible pentads, etc.

In a binary string, given any two of its consecutive bits, there are four
possible types of transitions from the first to the second: from a 0 to a
0, from a 0 to a 1, from a 1 to a 0, and from a 1 to a 1. If the given
binary string is random, the probability that a certain transition chosen
at random will be the same as the probability that it will be any of the
other three. In other words, there is no reason to suppose that in a random
binary string there would be a tendency for any one of the four possible
transitions to be present, different from the tendency of any of the other
three transitions.

The term “length of a binary string”, Ls, will be used to refer to the
number of bits comprising it. Given the above considerations, one can
calculate, for random binary strings of various lengths, which are, from a
theoretical perspective, the most probable numbers for the different dyads,
triads, tetrads, pentads and transitions that will be present in them. In
addition, one can count how many different dyads, triads, tetrads, pen-
tads and transitions are actually present in those binary strings. (The
numerical values counted are usually also known as “values observed”.) It
follows quite naturally then that the non-parametric statistical chi-square
(χ2) test may be applied to determine whether, with a given level of signif-
icance, the differences found between the expected numerical values based
on theoretical considerations and the corresponding numerical values ac-
tually observed are significant. This test was used, in all cases with a level
of significance of 0.05, with the objective indicated above.

Note that, for these cases, the null hypothesis (i.e., the hypothesis
that these differences are not significant) is precisely the hypothesis that
we wish to prove in this study.

The results of the χ2 test are shown in Table 2, with a level of signifi-
cance of 0.05 and the degrees of freedom pertinent for the different cases
(3 for transitions and dyads, 7 for the triads, 15 for the tetrads and 31
for the pentads) when applied to 1000 binary strings of specified lengths,
formed by each of the different generators used. It can be noted that in
all cases the percentages corresponding to the numbers of binary strings
such that each of them does not pass the χ2 test are greater for the Java
and C++ generators than for the generators introduced here.
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Transitions Ls = 8001
test (HRNG)1 (HRNG)2 (HRNG)3 (HRNG)4 JAVA C++

Passed test 961 951 951 950 930 921
Failed test 39 49 49 50 70 79
Failures (%) 3.9% 4.9% 4.9% 5.0% 7.0% 7.9%

Dyads Ls = 8000
test (HRNG)1 (HRNG)2 (HRNG)3 (HRNG)4 JAVA C++

Passed test 957 960 954 950 930 923
Failed test 43 40 46 50 70 77
Failures (%) 4.3% 4.0% 4.6% 5.0% 7.0% 7.7%

Triads Ls = 16000
test (HRNG)1 (HRNG)2 (HRNG)3 (HRNG)4 JAVA C++

Passed test 956 961 954 950 925 930
Failed test 44 39 46 50 75 77
Failures (%) 4.4% 3.9% 4.6% 5.0% 7.5% 7.9%

Tetrads Ls = 32000
test (HRNG)1 (HRNG)2 (HRNG)3 (HRNG)4 JAVA C++

Passed test 957 954 954 953 938 939
Failed test 43 46 46 47 62 61
Failures (%) 4.3% 4.6% 4.6% 4.7% 6.2% 6.1%

Pentads Ls = 64000
test (HRNG)1 (HRNG)2 (HRNG)3 (HRNG)4 JAVA C++

Passed test 974 970 952 955 935 940
Failed test 26 30 49 45 65 60

Failures (%) 2.6% 3.0% 4.9% 4.5% 6.5% 6.0%

Table 2: χ2 tests.
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Another test to which the binary strings obtained with the generators
considered in this paper were subjected is based on the following statistical
result: The binomial distribution for which each of the two possible events
has the same probability of occurring is an excellent approximation to the
normal distribution, for very numerous sets of data. Suppose that by
using one of these generators, such as (HRNG)1, 100,000 binary strings
are obtained, where Ls = 1000 for each. If a graph is made of the number
of binary strings which include exactly a particular number of “ones”
based on that quantity, a good approximation to a normal curve can
be obtained. (Of course, for each of the 100,000 strings the number of
“ones” included in it could vary from 1 to 1,000.) See this graph in
Figure 1. (The dotted line represents the binomial distribution; and the
solid curve, the corresponding normal distribution.) The same procedure
was used to present graphs of the same type corresponding to the binary
strings generated by (HRNG)2, (HRNG)3, (HRNG)4, Java and C++,
in Figure 2, Figure 3, Figure 4, Figure 5 and Figure 6, respectively. Note
that in these graphs the approximations to the normal curve corresponding
to the binomial distributions obtained by using the generators introduced
here are better than the approximations to the normal curve corresponding
to the binomial distributions obtained with the Java and C++ generators.
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Figure 1: Distribution for 100,000 binary strings generated by (HRNG)1.
N1 refers to the number of ‘ones’ generated in each string; and Ns(N1)
refers to the number of binary strings as a function of N1.
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Figure 2: Distribution for 100,000 binary strings generated by (HRNG)2.
N1 refers to the number of ‘ones’ generated in each string; and Ns(N1)
refers to the number of binary strings as a function of N1.
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Figure 3: Distribution for 100,000 binary strings generated by (HRNG)3.
N1 refers to the number of ‘ones’ generated in each string; and Ns(N1)
refers to the number of binary strings as a function of N1.
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Figure 4: Distribution for 100,000 binary strings generated by (HRNG)4.
N1 refers to the number of ‘ones’ generated in each string; and Ns(N1)
refers to the number of binary strings as a function of N1.
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Figure 5: Distribution for 100,000 binary strings generated by Java. N1

refers to the number of ‘ones’ generated in each string; and Ns(N1) refers
to the number of binary strings as a function of N1.
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Figure 6: Distribution for 100,000 binary strings generated by C++. N1

refers to the number of ‘ones’ generated in each string; and Ns(N1) refers
to the number of binary strings as a function of N1.
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Another way to appreciate the quality of the approximations (of the
binomial distributions considered) to the normal distribution is as follows.
Let µ and σ be the mean and standard deviation, respectively, of each of
the distributions considered. For the normal curve, the percentage of the
area under the curve from point µ − σ to point µ + σ is approximately
68.26%. This value can be seen in Table 3, along with two others.

Interval Percentage of area under curve

From µ − σ to µ + σ 68.26%
From µ − 2σ to µ + 2σ 95.44%
From µ − 3σ to µ + 3σ 99.74%

Table 3: Normal reference curve.

Information of the same type as that displayed in Table 3 is shown in
Table 4 for the binomial distributions formed by the generators discussed
in this paper.

Interval
Percentage of area under curve

(HRNG)1 (HRNG)2 (HRNG)3 (HRNG)4 JAVA C++
µ − σ to

68.20% 68.27% 68.27% 68.26% 67.16% 67.19%
µ + σ

µ − 2σ to
95.54% 95.35% 95.86% 95.45% 94.45% 94.43%

µ + 2σ

µ − 3σ to
99.70% 99.72% 99.75% 99.74% 99.49% 99.39%

µ + 3σ

Table 4: Binomial distributions.

The comparison of data seen in Table 3 and Table 4 makes it possible
to note once again that the approximations to the normal curve corre-
sponding to the binomial distributions obtained by using the generators
presented here are better than the approximations to the normal curve
corresponding to the binomial distributions obtained by using the Java
and C++ generators.

The concept of “index of randomness” for m-ary strings, where m =
2, 3, 4, . . . , was introduced in a previous article [10]. (In particular, this
index can be computed for strings such that m = 2; that is, for binary
strings.) It is feasible to compute the most probable value of the average of
the indexes of randomness of a certain number, such as 25,600, of binary
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strings that could potentially be generated by the IRBG, such that for
each of them Ls = 8. There are 256 different binary strings with Ls = 8.
For none of them is there a tendency to be generated by the IRBG which
is different from the tendency to be generated for any of the other 255
strings. First, then, the randomness index corresponding to each of the
aforementioned binary strings is computed. Second, the average is found
of the 256 values of the randomness indexes computed. That average is
precisely the most likely value sought. In addition, each of the generators
considered here is used to form 25,600 binary strings such that, for each
of them, Ls = 8. With each of the sets of 25,600 binary strings, the
following is done: First, the randomness index is computed for each of
the 25,600 binary strings. Second, the average of the 25,600 randomness
indexes already computed is found.

The same approach is used to compute the most probable value of
the average of the indexes of randomness of a certain number, such as
6,553,600, of binary strings that could potentially be generated by the
IRBG, such that for each of them Ls = 16. There are 65,536 different
binary strings with Ls = 16. For none of them does there exist a tendency
to be generated by the IRBG which is different from the tendency to be
generated for any of the other 65,535 strings. First, then, the randomness
index corresponding to each of the 65,536 above-mentioned binary strings
is computed. Second, the average is found of the 65,536 values of the
randomness indexes computed. That average is precisely the most likely
value sought. In addition, each of the generators considered here is used to
generate 6,553,600 binary strings such that for each of them Ls = 16. With
each of the sets of 6,553,600 binary strings, the following is carried out:
First the randomness index is computed for each of the 6,553,600 binary
strings. Second, the average is calculated of the 6,553,600 randomness
indexes already computed.

The results are given in Table 5. It can be seen that according to the
values of the randomness indexes computed, the generators described here
are better approximations to the IRBG than those of Java and C++.

6 Discussion

6.1 Support for the main hypothesis of this paper

As indicated in section 2, it is possible to determine the frequencies of
appearance of the different ordered pairs of characters in a sequence of
those pairs actually used in an HRNG. Thus, for example, seven pairs of
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Ls = 8
IRBG (HRNG)1 (HRNG)2 (HRNG)3 (HRNG)4 JAVA C++

Avg. 0.4238 0.4234 0.4235 0.4233 0.4241 0.4002 0.4591
Min. 0 0 0 0 0 0 0
Max. 0.6466 0.6464 0.6464 0.6464 0.6466 0.6890 0.6300

Ls = 16
IRBG (HRNG)1 (HRNG)2 (HRNG)3 (HRNG)4 JAVA C++

Avg. 0.5445 0.5442 0.5452 0.5442 0.5442 0.5454 0.5454
Min. 0 0 0 0 0 0
Max. 0.7113 0.7112 0.7112 0.7112 0.7112 0.7101 0.7154

Table 5: Randomness indexes.

these frequencies were determined for an HRNG corresponding to that
which was introduced as the second approximation to an IRBG. Each of
these pairs corresponded to a frequency of appearance of a certain pair
of characters and to the frequency of the pair ordered symmetrically with
regard to the prior one. Thus, for example, f{a, e} and f{e, a} were
determined. These frequencies are the best approximations available for
the probabilities p{a, e} and p{e, a}, respectively. In general, if ci and cj

are any two of the characters in Table 1, f{ci, cj} and f{cj, ci} would be
the best approximations available for p{ci, cj} and p{cj , ci}, respectively.
However, if the main hypothesis of this study is valid (equation (4) in
section 2), then f{ci, cj} and f{cj, ci} should be, as mentioned in section
2, approximately equal.

f{ci, cj} ≃ f{cj, ci}. (6)

Seven examples of this type are presented below; they have been ob-
tained for a total of 4, 429, 227, 264 ordered pairs of characters actually
used.

f{a, e} = 0.00581045 ≃ f{e, a} = 0.00581117

f{d, f} = 0.0050659 ≃ f{f, d} = 0.0050797

f{D, t} = 0.00005488 ≃ f{t,D} = 0.00005494

f{k, z} = 0.00000724 ≃ f{z, k} = 0.00000713

f{l, s} = 0.00149778 ≃ f{s, l} = 0.00148978
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f{m, o} = 0.00101311 ≃ f{o,m} = 0.00101905

f{n, r} = 0.00242873 ≃ f{r, n} = 0.00242742

Equally satisfactory results were obtained for other pairs of frequencies
of the type f{ci, cj} and f{cj , ci}. These results are a strong element of
support indicating that the main hypothesis of this paper is correct.

6.2 Permutations of the characters in Table 1

It can be proven that if the number of permutations mentioned in 3.2 is
very small – for example, the same as or less than 100 – compared to
the total number of permutations existing of the characters in Table 1,
then the probability that any two of them will coincide or will have a high
degree of similarity is very small.

Although some potential users of the HRNG may accept that the pre-
ceding statement is correct (an issue to be taken up in detail in another
paper), they may be concerned about the possibility that those highly un-
likely events may actually occur and produce binary strings with undue
regularities. (In this paper, for which 43 permutations of this type were
used, none of these extremely unlikely situations occurred.) Fortunately,
the nature of the HRNG makes it possible, quite naturally, to use diverse
procedures to prevent these hypothetical regularities. Only one of them
will be addressed below.

It is important to remember that “short leaps” of 50 characters and
“long leaps” of 1600 characters were used. A reason was given for the
choice of a minimum for the “short leap”, but no reason was given for
having chosen precisely 1600 characters as the “length” of each “long
leap”. Actually, if for the reasons specified in section 2, a “short leap” of
50 characters provides a very high degree of security regarding the inde-
pendence of the “target” character with respect to the “source” character,
it can be accepted that any “long leap” which is at least 5 times longer
than the “short leap” of 50 characters is enough to be completely sure
about that type of independence: that of the “target” character with re-
spect to the “source” character. It is possible, therefore, to fix the value
the “short leap” at 50 characters but use the “long leap” as a parameter
to which different amounts of characters may be assigned, such as from
501 to 3001 characters, in the following way: 501, 551, 601, . . . , 3001. In
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other words, the difference between any two consecutive “long leaps” from
the above list is 50 characters. Thus, 51 different types of “long leaps”
are available. Suppose now that it has been decided to use 51 different
permutations to produce a certain set of HRNG-type generators, such as
((HRNG2), (HRNG)3, (HRNG)4). (Recall that to construct each one of
these generators, a different subset – of the set of those 51 permutations –
should be used, such that any two of those subsets are disjoint.) Then, for
the first permutation a “long leap” of 501 characters will be used; for the
second, 551 characters, and so on successively. In this way, for the last, a
“long leap” of 3001 characters will be utilized. The simultaneous use of
these two techniques – the use of (a) different permutations of characters,
and (b) different lengths of “long leap” – is a way to ensure that none of
the binary strings generated will have any undue regularities.

Aside from the above, it is important to remember the criterion gener-
ally used to evaluate the quality of any pseudorandom or random number
generator: the quality of the generator is considered acceptable if the
products it generates pass certain randomness tests, and unacceptable if
it does not pass them. The products of the HRNG have passed the tests
described in section 5. To evaluate to the quality of the HRNG, it has
not been deemed reasonable to apply a criterion different from that used
to evaluate the quality of any other random or pseudorandom number
generator.

7 Conclusions and prospects

7.1 Conclusions

The physical mathematical system developed makes it possible to generate
random numbers with the required amount of digits, expressed in base 10.
It also permits the generation of random probabilities, as shown above,
with the desired amount of decimal digits.

Four important advantages of the generators (HRNG)2, (HRNG)3
(HRNG)4, etc. include the following:

1. The synthesis of those generators does not require special physical
or electronic resources. For this process, a digital computer and ad-
equate software based on the procedure discussed above will suffice.

2. These generators are adequate in the field of statistics, in that of the
computational simulation of systems of probabilistic behavior and
in that of cryptography.
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3. The amount of literary works available in digital format is enormous.
Therefore, the possibility of this approach “using up” the resources
from which to generate random numbers cannot be a limiting factor.

4. If an infinite sequence of numbers were produced by a generator of
the type described here, it would not be a periodic sequence, like
an infinite numerical sequence would be if it were produced by a
congruential generator, such as that used in Java and C++.

Suppose that an infinite sequence of numbers were produced by a
congruential pseudorandom number generator. This sequence would
necessarily be comprised of infinite repetitions of one of its subse-
quences. (In other words, it would be an “infinite periodic numerical
sequence”.)

One disadvantage of the HRNG presented is the following: Its use de-
mands a much larger amount of memory than that required by common
pseudorandom number generators. In effect, the “product” of the HRNG
to be used should be a binary string made up of 1,000,000,000 bits. This
sequence of bits requires the corresponding amount of computer mem-
ory. (Considering the current state of computer technology, this memory
is not terribly demanding for a microcomputer.) Pseudorandom num-
ber generators do not require this amount of computer memory because
they generate their “products” in “real time”, whenever the numbers are
needed.

7.2 Prospects

Any of the generators introduced here for which a permutation of the
characters in Table 1 was used in the construction process can be applied
in the field of cryptography. Although this topic will be covered in another
paper, the essence of what makes this possible will be summarized briefly
below.

Let there be a message composed of a sequence of characters. Clearly
each character can be encrypted with a sequence of bits. Thus, the mes-
sage may finally be expressed with a series of bits (i.e., by a binary string
M). Suppose that the length of that string is 50,000 (Ls = 50, 000). Then
with one of the generators introduced here, for which a permutation of
the characters in Table 1 was used in the construction process (that is,
one of the generators (HRNG)2, (HRNG)3, or (HRNG)4, etc.), another
binary string G whose length is also equal to 50,000 is generated. How can
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yet another binary string (also with Ls = 50, 000), which is an encrypted
version of M , be obtained from these binary strings? As follows: Observe
the first bits of both binary strings M and G. If these bits are the same
(i.e., if both are “zeroes” or if both are “ones”), a “one” is assigned to
the first bit of the encrypted message C. On the contrary, if both bits are
different, a “zero” is assigned to that first bit. Then the second bits of
M and G will be considered. If both bits are the same, a “one” will be
assigned to the second bit in C. If, on the contrary, they are different, a
“zero” will be assigned to that second bit in C. This process will continue
until the last bit of the encrypted message has been obtained. Figure 7
illustrates this.

Figure 7: One way of obtaining C, an encrypted version of M

It is evident that a receiver of an encrypted message C, who has G or
the possibility of generating G, can decipher C (i.e., regenerate M).

This study is a product of an ongoing research project “Analysis of
fluctuations” of the Universidad Nacional (Costa Rica). It is being con-
ducted by members of the Applied Mathematics and Computer Simulation
Group and has been oriented toward developing a resource which will be
used as a tool in a project requiring a great deal of tasks related to the
simulation of probabilistic systems which must be carried out with no
undesirable bias.

A future paper will be devoted to another generator, a purely mathe-
matical generator, which will be able to “compete” with any of the gen-
erators (HRNG)2, (HRNG)3, etc., introduced here.
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