
Revista de Matemática: Teoŕıa y Aplicaciones 2015 22(1) : 135–152

cimpa – ucr issn: 1409-2433 (Print), 2215-3373 (Online)

cognitive rhythms and evolutionary

algorithms in university timetables

scheduling

ritmos cognitivos y algoritmos

evolutivos en la programación de

horarios universitarios

Omar Castrillón∗

Received: 25/Feb/2014; Revised: 6/Aug/2014;

Accepted: 28/Aug/2014

∗Universidad Nacional de Colombia—Sede Manizales— Facultad de Ingenieŕıa y
Arquitectura—Departamento de Ingenieŕıa Industrial—GTA en Innovación y Desarrollo
Tecnológico, Campus la Nubia—Manizales—Código Postal 170001, Colombia. E-mail:
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Abstract

The main purpose of this research is to design a methodology
based on evolutionary algorithms to university timetable schedul-
ing. This methodology will consider the students’ cognitive rhythms,
which establish that teaching certain subjects in specific time inter-
vals is much better than other techniques. This project takes place in
three phases. First of all, there is a description of the different tech-
niques used to solve this problem. Then, a new methodology based
on cognitive rhythms and evolutionary algorithms is proposed, and
finally, different methodologies are compared to determine the best.
It is concluded that evolutionary algorithms are more efficient than
other techniques in the university timetable scheduling. Future lines
of research will determine the impact of these techniques within the
students’ learning process.

Keywords: scheduling, university timetables, genetic algorithms, fitness.

Resumen

El propósito de esta investigación es diseñar una metodoloǵıa
basada en algoritmos evolutivos para la programación de horarios
universitarios. Esta metodoloǵıa considerará los ritmos cognitivos de
los estudiantes, los cuales establecen que enseñar algunas materias
en intervalos de tiempo espećıficos es mejor que otras técnicas. Este
proyecto es desarrollado en tres fases. Primero se realiza una descrip-
ción de las diferentes técnicas empleadas para solucionar este pro-
blema. Posteriormente una nueva metodoloǵıa basada en ritmos cog-
nitivos y algoritmos evolutivos es propuesta. Finalmente diferentes
metodoloǵıas son comparadas para determinar la mejor. Se concluye
que los algoritmos evolutivos son más eficientes que otras técnicas en
la programación de horarios universitarios. Futuras ĺıneas de inves-
tigación determinarán el impacto de estas técnicas en los procesos
de aprendizaje de los estudiantes.

Palabras clave: programación; horarios universitarios; algoritmos genéti-
cos; función objetivo.

Mathematics Subject Classification: 97P30.
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1 Introduction

For the last 50 years, the university timetabling problems have been
achieved with different models, however this is a difficult non-polynomic
problem to solve (NP-Complete). Different techniques have been made to
university timetable scheduling [20, 24]; however, these methodologies do
not consider the students’ cognitive rhythms in the establishment of the
best time to attend certain classes [22, 38]. In general, the subjects with
a high level of difficulty should be taught in the middle of the school day.
Those with moderate difficulty should be taught at the beginning of the
school day, and in the same way, the easier subjects, should be taught at
the end of the school day. Cognitive rhythms are directly associated with
circadian rhythms, they include factors such as complexity, individual dif-
ferences (sex, chronotype, style, motivation) urban and rural factors [33].
These factors are very marked in the colombian universities therefore the
application of these cognitive rhythms also takes on special importance in
the university context.

Basically, there are two ways of timetable scheduling. The first one
is based on analytic techniques where the main objective is to offer a
solution. Any solution that takes into account all restrictions (teachers,
classrooms and special rooms) is accepted.

The second way is based on artificial intelligence techniques, which
generate new and best solutions from old solutions. Therefore, it is pos-
sible to go through the whole search space to obtain a good solution in a
few seconds [35, 34, 32, 7].

This article is designed in four sections: State of the art, Methods,
Experimentation, Results, Discussions and conclusions. The first section
covers the state of the art in the last fifty years. In the section named
“Methods”, a methodology based on evolutionary algorithms is proposed.
In last section “Results and Discussions” this methodology is compared
with other existing methodologies. Finally the results show that this
methodology is at least 15% more efficient than others.

2 State of the art

Twenty years ago, the evolution of this problem was related by different
articles: In 1992 the logic programming (Prolog) was used to solve it [13].
In the same year [14] an evolutionary algorithm based on taboo search
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was proposed. Finally, during the same year two kinds of constraints and
a punishment function were proposed [19].

Subsequently in 1996, a combination of data and data base knowledge
were proposed. Four years later [15] some special considerations (group
sections and special constrains) were proposed to solve this problem, and,
in 2001, methodologies based on integer programming were developed in
Access to solve this problem.

In 2002, multi-criteria objectives were considered to solve this problem
[11]. One year later [2], a constraints methodology based on search tech-
niques was proposed to solve this problem. In [39] a computer network
system was proposed to solve this problem. Afterwards, in [12] an integer
program with cost function and search reduced space was proposed.

Similarly, in [9] a solution based on integer programming was pro-
posed. In [26] some particularities that permit the student design its own
curriculum were solved based on integer linear programming. In [40] spe-
cific constraints were considered: all student must have a least two classes,
there is a maximum student number, the students have a maximum num-
ber of difficult subjects for semester.

In 2008, an evolutionary meta-heuristic solution was proposed by [17]
for this objective. In [25] the gap between theory and practice was evi-
denced. Later that year, in [23] an integer programming fast model was
proposed. One year later (2009) in [18] some extra constraints were in-
cluded in new meta-heuristics. Similarly that year, in [10] a hierarchical
low level combination was proposed. Finally that year, in [28] a hybrid
algorithm based on harmonic algorithms and climber optimizers was pro-
posed.

In 2010 a methodology based on meta-heuristic Monte Carlo and hy-
brid meta-heuristics with the aim to minimize the linear combinations
were proposed by the authors [4]. In [3] a hybrid algorithm between taboo
search and greedy search was proposed. In [21] the author first resolves
the hard constraints and then the soft constraints.

In 2011, [29] a methodology based on graph coloring and heuristic
multiples was proposed. Similarly, in [31] a mimic algorithm based on
heuristics and knowledge databases was proposed. Finally, in [27, 36] an
algorithm with an adaptive behavior based on Particles swarm optimiza-
tion (PSO) was proposed.

In 2013, an adaptive hybrid algorithm based on bees’ behavior was
proposed [37]. Later in [33, 35] this problem was solved based on NSGA
methodology for a school. In [1] a methodology based on integer linear
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programming was proposed. The problem was split in two objectives. In
[5] an adaptive linear combination between graph coloring and multiple
heuristic was proposed. Finally other applications can be found in [6].

3 Methods

Methodology based on genetic algorithms is described. It has the following
steps:

Step 1: Problem variables

For a solution to the problem, four multidimensional arrays are defined:
data, scheduling, professors and classrooms. Table 1, and Figures 1 and 2
represent these variables.

Table 1: Data. This variable contains the initial definition of the problem.
Adapted and translated [8].

Sem Subj
code

Subj name Hour/
week

Gr Prof
code

Prof
name

Max
hours
/day

Room Ideal
time

Prof 2
code

Prof 2
name

1
.
.
N

The variable named Classroom has a similar structure. Figures 1 and
2 show it.
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Figure 1: Multidimensional array, timetables professors. Adapted and trans-
lated [8].

Figure 2: Multidimensional array, timetables scheduling. Adapted and trans-
lated [8].
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This problem considered some hard constraints: professors, rooms, the
quantity of hours by day, the subjects of the same semester can not be
crossed, there are some unavailable time periods for teachers and rooms.
Similarly, there are other soft constraints: The subjects should be pro-
grammed at an ideal time; the timetable should be the most compact
possible. When all subjects (table 1) are programmed in the three tridi-
mensional structures, the hard constraints are resolved. In other case,
the problem does not have a solution. The scheduling of these subjects is
described in the next step (2).

Step 2: Initial population

All subjects represented in Table 1, should be organized (according to table
2) into a timetable scheduling to obtain a solution. When the subject is
scheduled in the tridimensional structures at the ideal time (field ideal
time table 1), there is no penalty. However, it is not always possible and
the subject could be assigned at a wrong time; in this case, the total
solution has a penalty proportional to the scheduled time. Because of the
fact that the penalty depends on the scheduling sequence it is necessary
to define an initial random array called “Father” (Teble 2).

Table 2: Subject scheduling sequence (Father).

1. . . (Rows number of table 1 = N)

The chromosome represented in Table 2 contains the first N numbers
without repetitions. (N represents the number of subjects that should be
scheduled on the three dimensional structures) According to the Father
(Table 2), all subjects are scheduled with three variables: scheduling, pro-
fessors and classrooms that are exemplified by the algorithm showed in
following lines:

Times = p
Evolution = 1
Get (Father, Size father) /*Initial Father*/
While evolution ≤ times

Success = 0
Penalty = 0
Tot pen = 0
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Cont = 1

While (cont ≤ size father) and (Success == 0)
Programming (Subject, professors, classroom, timetabling,
success, penalty, father)
/*The subjects are programming on the three
dimensional structures */
/*When it is not ideal time, the subject is penalized*/
Cont = Cont + 1
Pentot = Pentot + Penalty

Wend

If (success = 0) /*The solution is possible*/
If Fitness < bestfitness /*The best solution is saved*/

Bestfitness = Fitness
Lasevolution = Evolution
Save(solution)

End If
If fitness > Worstfitness /*The worst solution is saved*/

Worstfitness = Fitness
Save(solution)

End if
Else /*When the solution is not possible a new father is

generated.*/
New father

End If

If evolution mod 33 = 0 /*3*/
Mutation

Else
Combination

End If

Evolution = Evolution + 1
Wend

If success = 1 /*If this variable has 1 the algorithm does not find a
possible solution*/
Mgs(“Solution does not exist”)

End if

When the solution generated by table 2 is not possible this solution
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is penalized with a fitness function equal to infinite. The solution is not
feasible when is not possible to solve all hard restrictions.

Step 3: Algorithm

With mutation and combination operators, the values of tables 2 are
changed. The combination operator has 99% of probability (the crossover
process is used by this algorithm), the mutation has 1% (This process
selects two random positions into the father vector to be changed). With
these operators new fathers are generated. The algorithm evolves until
the fitness function does not improve during K interactions. The fitness
function is defined as the sum of differences between the ideal hour and
programed hour for each subject.

The fitness function can be defined as:

Fitness
Function

=

N(Subjects)∑
J=1

Abs
(
Ideal

Hour
− TimetablesScheduling×

×
(
Day,Programmed

Hour
,Semester

))
according to prove the methodology this process is repeated during ten
times. The ten best results of the fitness function are selected. These
results are compared with other artificial intelligence techniques (random
algorithms, data mining and taboo search) with an analysis of variance
under the model yi = µ+ Ti + εi, where yi represents the variable of the
answer, Ti the effect caused by the ith treatment, εi the ith experimental
error. The information collected must get over independence and normal-
ity requirements. Finally, the solution generated by traditional techniques
is compared with the best solution obtained with this methodology.

Experimentation: A hypothetical problem is used to prove this method-
ology (Table 3): Three room types are considered (Normal Room, Multi-
media Room, Computer Room). This problem is solved for two semesters
(because the whole problem employs a lot of space). However this is NP-
Hard problem with 13! = 6.227.020.800 possibilities.

4 Results

This methodology produces the following data: steps 1-3. Tables 4 and 5
show the best results of these steps. In this timetable scheduling, the best
fitness function found is 41 and the worst is 53.
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Table 3: Problem Definition. According to the methodology, the possibilities
are 13! = 6.227.020.800.
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Table 4: Timetabling 7th semester.
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Table 5: Timetabling 8th semester.
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Table 6: Repetitions by groups of 10.

Fitness Repetitions
1 2 3 4 5 6 7 8 9 10

Genetics 41 42 41 43 41 44 44 44 41 41 422
Random 42 45 41 41 42 43 41 42 56 43 436

Data Mining 42 41 43 44 42 41 43 42 45 45 428
Taboo search 41 42 41 43 41 42 45 43 41 41 420

Table 7: Variance analysis.

Source Varia GL SC CM Fcal F Tab
Sum C Total 253.10
Treatment 3.00 15.50 5.17 0.78 2.87
Exper error 36.00 237.60 6.60

Total 39,00 253,10 11,77
The model is not significative (99,95%)

In order to analyze the consistency of the results, the process is re-
peated 10 times and compared with other techniques of artificial intel-
ligence: genetic algorithms, random algorithm, data mining and taboo
search. (Tables 6 and 7). According to the variance analysis the four
methodologies compared are equal. The best fitness found with this
methodology (41) is not compared with the solution generated by tra-
ditional techniques because it was not possible to solve the problem with
these techniques. Traditional techniques solve the problem with the initial
sequence, they do not provide a solution.

To build a feasible solution under traditional techniques it is necessary
to define at least two normal rooms. In this case the best fitness function
is 40. However, in the same case with the artificial intelligence techniques
the best solution is 34. The fitness function is better at least by 15% than
the traditional techniques.

5 Discussions and conclusions

Today, many techniques have been developed to solve this problem [30, 16].
However, in the literature there is not one solution for university timetable
scheduling that considers students’ cognitive rhythms. In this article, an
evolutionary algorithm is formulated, to find the best solution. The so-
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lution proposed is more efficient (15%) than traditional solutions. Addi-
tionally, the best values compared as is illustrated in the variance analysis
show the system stability. Finally, the artificial intelligence techniques
proposed in this study can be applied to solve general type of NP-Hard
multi-objective problems.
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