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Abstract

The Fokker Planck equation appears in the study of diffusion
phenomena, stochastics processes and quantum and classical me-
chanics. A particular case from this equation, ut−uxx−xux−u = 0,
is examined by the Lie group method approach. From the invari-
ant condition it was possible to obtain the infinitesimal generators
or vectors associated to this equation, identifying the corresponding
symmetry groups. Exact solution were found for each one of this
generators and new solution were constructed by using symmetry
properties.

Keywords: Lie groups; partial differential equations; invariant solutions;
Fokker Planck equation.

Resumen

La ecuación de Fokker Planck aparece en el estudio de fenómenos
de difusión, procesos estocásticos y mecánica clásica y cuantica. Un
caso particular de esta ecuación, ut − uxx − xux − u = 0, es ana-
lizada empleando el método de los grupos de Lie. De la condi-
ción de invariación fue posible obtener los generadores infinitesi-
males ó vectores de la ecuación identificando los correspondientes
grupos de simetŕıa. Se obtuvieron soluciones exactas para cada uno
de estos generadores y se construyeron nuevas soluciones aplicando
propiedades de simetŕıa.

Palabras clave: grupos de Lie; ecuaciones diferenciales parciales; solu-
ciones invariantes; ecuación de Fokker Planck.

Mathematics Subject Classification: 35A30.

1 Introduction

The Fokker-Planck equation also known as the Kolmogorov forward equa-
tion (diffusion equation), describes the time evolution of the probability
density function of the velocity of a particle, and can be generalized to
other observables as well [9]. Nicolay Bogoliubov and Nikolay Krylov were
the first to derivate this equation in the study of classical and quantum
mechanics. In the general case the time-dependent probability distribution
is given by the equation:

∂u

∂t
= −

N∑
i=1

∂

∂xi
[Ai(x1, · · · , xN )u] +

N∑
i=1

N∑
j=1

∂2

∂xi∂xj
[Bij(xi, · · · , xN )u]

(1)
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solutions for a unidimensional fokker-planck equation 3

where A is the drift vector and B the diffusion tensor.
The foregoing equation is frequently studied to model certain pheno-

mena in which parameters defined by probability distribution functions
(e.g., Brownian motion) appear.

To find exact solutions to this equation can be useful to study inter-
esting physics phenomena but it is only possible for some particular cases
[2], [13].

In this article several exacts solutions are found by the Lie group
method, for the one spatial dimensional x, with A = −x and B = 1:

∂u

∂t
− ∂2u

∂x2
=

∂

∂x
(ux), (2)

that is
ut − uxx − xux − u = 0. (3)

In late 1800s, mathematicians Sophus Lie and Felix Klein, inspired
by Evariste Galois’ pioneering work in polynomial equations, decided to
apply his results to differential equations. This new line of inquiry was
based on the Erlangen program, addressing such equations in geometric
terms. From this perspective, differential equations are studied as objects
isomorphic to Rn space, seeking properties that remain invariant under
a specified group of transformations in the same space. Lie identified
groups of continuous transformations which, when acting on differential
equations, left such equations invariant (i.e., Lie groups) [3], [6], [4].

Thus, in the simplest case of first order equations:

f(x, y, y′) = 0, (4)

the study focuses on groups of transformations that have the following
form:

x1 = ϕ(x, y, α)

y1 = φ(x, y, α)

y′1 =
dy1
dx1

= θ(x, y, y′, α),

(5)

which, when acting on the variables in the differential equation (4), trans-
form it in such manner that:

f(x, y, y′) = f(x1, y1, y
′
1),

i.e., the original equation and the equation written in the new coordi-
nates provided by such group are indistinguishable, which is tantamount
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to transforming solutions to the original equation into solutions for the
transformed equation. Such group of transformations is often referred to
as symmetry.

For example the group of transformations of the plane corresponding
to translation with respect to the y axis:

x1 = x

y1 = y + α,

may be extended in order to act on derivatives of a first order ordinary
differential equation by:

y′1 =
dy1
dx1

=
dy

dx
,

this extended group leaves the following separable equation invariant:

dy

dx
− f(x) = 0,

because:
dy

dx
− f(x) =

dy1
dx1

− f(x1).

The Lie theory proves that if a group of symmetries in an ordinary
differential equation is known, then a one to one change in coordinates
exists which transforms such group into a group of translations with re-
spect to one of the axes and the equation into one of separable variables.
Likewise, such group may be used to identify an integrating factor of the
differential equation that converts it into an exact equation.

In the case of ordinary differential equations of the n order, a group
of symmetries of the form (5), extended to act on derivatives up to the
n order can be used to reduce the order of differential equations by one
unit [5].

Invariability of partial differential equations (PDE) under a one para-
meter group of symmetries, permits reduction in the number of indepen-
dent variables by one unit, especially useful in the case of second order
equations with one dependent and two independent variables that can
be transformed into ordinary equations conserving some of the solutions
of the PDE [7], [10], [11]. This article deals with the application of the
Lie Group Method to the Fokker-Planck equation (3). First a discus-
sion of the method is presented. Then, the Lie symmetries are found for
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solutions for a unidimensional fokker-planck equation 5

the unidimensional Fokker-Planck equation and finally with these sym-
metries the associated exact solutions were calculated and new solutions
were obtained.

2 Description of the method

The second order PDE could be written as:

F (t, x, u, ut, ux, utt, utx, uxx) = 0, (6)

where the equation can be seen as a submanifold in space isomorphic to
R8. One element of this space is the octuple (t, x, u, ut, ux, utt, utx, uxx).

2.1 Prolongation of a function

Definition 2.1 Given a smooth function:

u = f(t, x), f : R2 → R, (7)

there is an induced function f (2) = Pr(2)f(t, x) referred to as the second
extension of f, which is defined as:

Pr(2)f = (f, ft, fx, ftt, ftx, fxx). (8)

In this context a solution to (6) is a smooth function u = f(t, x), such
that

F (t, x, Pr2f(t, x)) = 0. (9)

2.2 Symbol of a group

Definition 2.2 Given the Lie group G

t1 = ϕ1(t, x, u, α) (10)

x1 = ϕ2(t, x, u, α) (11)

u1 = ϕ3(t, x, u, α), (12)

that acts on solutions to the differential equation (6), the infinitesimal
symbol or generator of the group is defined by means of the operator:

v =
∂

∂α
ϕ1(t, x, u, α)

∣∣∣∣
α=o

∂

∂x
+

∂

∂α
ϕ2(t, x, u, α)

∣∣∣∣∣
α=o

∂

∂y
+

∂

∂α
ϕ3(t, x, u, α)

∣∣∣∣∣
α=o

∂

∂u
.

(13)
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If what is known is the symbol v, it is possible to recover the equations of
the corresponding group through the Taylor series expansion t1, x1 y u1:

t1 =

∞∑
n=0

αn

n!
vnx = ϕ1(t, x, α)

x1 =

∞∑
n=0

αn

n!
vny = ϕ2(t, x, α)

u1 =
∞∑
n=0

αn

n!
vnu = ϕ3(t, x, α),

a process, which is referred to as exponentiation of the group G and which
is denoted as G = exp(αv). In practice, the equations of the group are
obtained by solving the system of equations:∫ t1

t

dt

f(t, x)
=

∫ x1

x

dx

g(t, x)
=

∫ u1

u

dt

h(t, x)
=

∫ α

0
dα,

where

f(t, x, u) =
∂

∂α
ϕ1(t, x, u, α)

∣∣∣∣
α=o

g(t, x, u) =
∂

∂α
ϕ2(t, x, u, α)

∣∣∣∣
α=o

h(t, x, u) =
∂

∂α
ϕ3(t, x, u, α)

∣∣∣∣
α=o

.

2.3 Prolongation of the group action

Let G be a local group of transformations on an open subset R2×R. There
is a G induced local action over the prolonged space of variables,

(t, x, u(2)) = (t, x, u, ut, ux, utt, utx, uxx),

referred to as the second extension of G, denoted, Pr(2)G, defined in such
a way that it transforms the derivatives of (7) into the corresponding
derivatives of the function transformed by the group.

Rev.Mate.Teor.Aplic. ISSN 1409-2433 (Print) 2215-3373 (Online) Vol. 22(1): 1–20, Jan 2015
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2.4 Symbol of the prolonged group

Definition 2.3 Let M be an open subset of R2 × R and suppose that v
is an infinitesimal generator of a group G = exp(αv), then the second
extension of v, denoted as Pr(2)v, is defined as the infinitesimal generator
of the second prolongation of G, i.e.,

Pr(2)v
∣∣∣
(t,x,u(2))

=
d

dα

∣∣∣∣
α=0

Pr(2)[exp(αv)](t, x, u(2)). (14)

The symbol takes the form:

v = f(t, x, u)
∂

∂t
+ g(t, x, u)

∂

∂y
+ h(t, x, u)

∂

∂u
, (15)

for a group that operates in an open M ⊂ R2 × R, with first and second
extension of v:

Pr(1)v = v + ht(t, x, u(1))
∂

∂ut
+ hx(t, x, u(1))

∂

∂ux,
(16)

Pr(2)v=Pr(1)v+htt(t, x, u(2))
∂

∂utt
+htx(t, x, u(2))

∂

∂utx
+hxx(t, x, u(2))

∂

∂uxx,
(17)

where,

h(t) =
∂h

∂t
+

(
∂h

∂u
− ∂f

∂t

)
ut −

∂g

∂t
ux −

∂f

∂u
u2t −

∂g

∂u
utux.

h(x) =
∂h

∂x
+

(
∂h

∂u
− ∂g

∂x

)
ux −

∂f

∂x
ut −

∂g

∂u
u2x −

∂f

∂u
utux.

(18)

h(tt) =
∂2h

∂t2
+

(
2
∂2h

∂t∂u
− ∂2f

∂t2

)
ut −

∂2g

∂t2
ux +

(
∂h

∂u
− 2

∂f

∂t

)
utt−

− 2
∂g

∂t
utx +

(
∂2h

∂u2
− 2

∂2f

∂t∂u

)
u2t − 2

∂2g

∂t∂u
utux −

∂2f

∂u2
u3t−

− ∂2g

∂u2
u2tux − 3

∂f

∂u
ututt −

∂g

∂u
uxutt − 2

∂g

∂u
ututx.

(19)
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h(tx) =
∂2h

∂t∂x
+

(
∂2h

∂t∂u
− ∂2g

∂t∂x

)
ux +

(
∂2h

∂x∂u
− ∂2f

∂t∂x

)
ut−

− ∂g

∂t
uxx +

(
∂h

∂u
− ∂f

∂t
− ∂g

∂x

)
utx −

∂f

∂x
utt −

∂2g

∂t∂u
u2x+

+

(
∂2h

∂u2
− ∂2f

∂t∂u
− ∂2g

∂x∂u

)
utux −

∂2f

∂x∂u
u2t −

∂2g

∂u2
utu

2
x −

∂2f

∂u2
u2tux−

− 2
∂g

∂u
uxutx − 2

∂f

∂u
ututx −

∂f

∂u
uxutt −

∂g

∂u
utuxx.

h(xx) =
∂2h

∂x2
+

(
2
∂2h

∂x∂u
− ∂2g

∂x2

)
ux −

∂2f

∂x2
ut +

(
∂h

∂u
− 2

∂g

∂x

)
uxx−

− 2
∂f

∂x
utx +

(
∂2h

∂u2
− 2

∂2g

∂x∂u

)
u2x − 2

∂2f

∂x∂u
utux −

∂2g

∂u2
u3x−

− ∂2f

∂u2
utu

2
x − 3

∂g

∂u
uxuxx −

∂f

∂u
utuxx − 2

∂f

∂u
uxutx.

(20)

See [2],[10].

The condition to be satisfied so that a differential equation will be
invariant under a group of transformations, or, which is necessary so that
the solutions to a differential equation transformed by a group, be, in turn,
solutions to the differential equation transformed by such group, is stated
in the following theorem.

Teorema 2.1 Let

F (t, x, Pr(2)u(t, x)) = 0, (21)

be a maximum rank second order equation defined in an open subset M ⊂
R2 × R. If G is a local group of transformations acting on M and

Pr(2)v[F (t, x, Pr(2)u(t, x)] = 0, whenever F (t, x, Pr(2)u(t, x)) = 0,

for each infinitesimal generator v of G, then G is a group of symmetries
of the differential equation [10].

2.5 Search of symmetry groups

The previous theorem together with the prolongation formula (14), defines
an effective way to calculate the symmetries of a second order differential
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equation in one dependent and two independent variables, a formulation
that can be generalized for higher orders.

In applying the theorem to such differential equation, an equation
equal to zero results in which t, x and u and their first and second order
partial derivatives may appear, as well as the f, g and h functions of a
hypothetical group of symmetries and their first and second order par-
tial derivatives with respect to t, x and u. Eliminating any dependencies
among the derivatives of u resulting from the differential equation and
equating the coefficients of the partial derivatives from u to zero, we ar-
rive at a system of numerous PDEs denominated determinant equations
(some of which repeat the same information) which can almost always be
easily solved.

This system’s general solution determines the most general form for
the differential equation’s symmetry group. As with ordinary differential
equations, the set of generators found forms a Lie algebra, and the general
group of symmetries can be found by exponentiation of these generators.

3 The Fokker-Planck equation

The Jacobian matrix

(0,−ux,−1, 1,−x, 0, 0,−1), (22)

derived from the Fokker-Planck equation, (3)

ut − uxx − xux − u = 0,

is never annulled; consequently, the submanifold defined by the differential
equation in R8 is of maximum rank, i.e., the submanifold does not have
singularities.

Applying theorem (2.1) and the prolongation formula (17) to the di-
fferential equation (3) it follows[

h
∂

∂u
+ htt

∂

∂utt
+ hxx

∂

∂uxx

]
(ut − uxx − xux − u) = 0, (23)

.

Then htt and hxx are substituted from expressions (19) and (20). Next
uxx = ut − xux − u is replaced whenever it appears in (23) and terms of
each of the derivatives of u are grouped. The coefficients of each of the
resulting monomials are equated to zero leading to a numerous system
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of partial differential equations. These system was solved by using the
specialized software Lie 5.1 to find the functions f , g and h that were
used to define the symbols or vectors (table (1)) of the Fokker-Planck
equation symmetry groups.

Table 1: Symbols of symmetry groups.

Symbol Symbol

v1 = w(t, x) ∂
∂u v5 = −e−2tu ∂

∂u − xe−2tx ∂
∂x + e−2t ∂

∂t

v2 = − ∂
∂t v6 = −etux ∂

∂u + et ∂
∂x

v3 = −e2tux2 ∂
∂u + e2tx ∂

∂x + e2t ∂
∂t v7 = −u ∂

∂u

v4 = −e−t ∂
∂x

In the foregoing table, w(t;x) is a function that satisfies the Fokker
Plank equation and v2, v3, · · · , v7, constitute a basis for the Lie algebra
group of symmetries. As expected from algebras theory, the Lie bracket
is a closed operation between these generators.

The corresponding one-parameter groups found by exponentiation of
such symbols are respectively:

(t1, x1, u1)=(t, x, u+ α1F (t, x))

(t1, x1, u1)=(t+ α2, x, u)

(t1, x1, u1)=(ln
(
e−2t−2α3

)− 1
2, x
(
e−2t−2α3

)− 1
2e−t, ue

−x2

2

[
(e−2t−2α3)

−1
e−2t−1

]
)

(t1, x1, u1)=(t, x− α4, u)

(t1, x1, u1)=(ln
(
e2t + 2α5

)1/2
, x

(
e2t + 2α5

)−1/2
et, u

(
e2t + 2α5

)1/2
e−t)

(t1, x1, u1)=(t, x+ α6, ue
−α6(x+

α6
2
))

(t1, x1, u1)=(t, x, ue−α7).

(24)

For example a funtion invariant under the group with vector v6:

v6 = −etux
∂

∂u
+ et

∂

∂x
,

must satisfy the condition:

v6[f ] = − ∂

∂t
f = 0. (25)

The well known characteristics method [6], [12], assures that the (25)
equation is equivalent to the following differential equations system:

du

−etux
=

dx

et
=

dt

0
= dα,
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solutions for a unidimensional fokker-planck equation 11

from
dt

0
= dα,

it follows that t is an invariant

t1 = t.

From
dx

et
= dα,

the integrals ∫ x1

x
dx = et

∫ α

0
dα

it is found that

x1 = x+ α6.

From
du

−etux
= dα,

separation of variables and the integration from u to u1 and from 0 to α
leads to:

u1 = ue−α6(x+α6/2).

The theory of Lie assures that a group symmetry transforms solution
into solutions, this implies that if u = f(x, t) is a solution of the differential
equation then u1 will also be a solution.

For instance, the group of symmetries obtained from the vector v6

(t1, x1, u1) = (t, x+ α6, ue
−α6(x+

α6
2
))

transforms a solution f(x, t) into a new solution,

u1 = f(x, t)e−α6(x+α6/2),

replacing x, t, u for their transformations x1, t1, u1, it follows

u1 = f(x1 − α6, t1)e
−α6(x1−α6+α6/2),

u1 = f(x1 − α6, t1)e
−α6x1K,

where K is a constant.
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12 h.h. ortiz – f.n. jiménez – a.e. posso

According to the symmetry group corresponding to the vector v7, the
product of a scalar by a solution is also a solution. In particular if x1, t1
are equal to x, t then u1 = u and

u = f(x− α6, t)e
−α6x,

This is a new solution of differential equation (3) obtained from a known
one.

New solutions obtained from the other generatos are listed below:

1. u = f(t, x) + αF (t, x),

2. u = f(t− α, x),

3. u = f
(
ln(e−2t + 2α)−1/2, x(e−2t + 4α)−1/2)

(e−2t + 2α)1/2
)
e−

1
2(x

2(e−2t+4α)−1(e−2t+2α)2e2t−1),

4. u = f(t, x+ α),

5. u = f
(
ln(e2t − 2α)1/2, x(e2t − 2α)−1/2et

)
et(e2t − 2α)−1/2,

6. u = f(t, x− α)e−αx,

7. u = f(t, x)e−α,

where F (t, x) and f(t, x) are solutions of the differential equation (3).

3.1 Invariant solutions

Since a PDE is invariant when transformed under a group of symmetries,
if the solutions of the differential equation are transformed into solutions
under such group action, it is reasonably possible that certain differential
equation solutions will also be invariant under such group. The present
study explores the possibility of using such assumption to reduce the PDE
to an ordinary differential equation, which may be solved in such a manner
as to provide exact solutions, invariant under the different groups. The
reduction method will now be applied with each of the symmetry groups
found for the finite dimension algebra (v2, . . . , v7). Again, the condition

v2[f ] = − ∂

∂t
f = 0, (26)

and the characteristics method assures that the (26) equation is equivalent
to the following differential equations system:

du

0
=

dt

1
=

dx

0
= dα,
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solutions for a unidimensional fokker-planck equation 13

from which the invariants y = x and η = u are derived, if it is assumed
that the invariant solution sought is in the form

η = w(y),

consequently, replacing this condition in the differential equation under
study (3),

ut = 0, ux = wy, uxx = wyy,

is obtained, thus
wyy + ywy + w = 0, (27)

which is an ordinary differential equation (ODE) in y and w. In such
equation, the substitution

v = w(y)eky
2
,

leads to

vyy + (1− 4k)yvy + (4k2 − 2k)y2v + (1− 2k)v = 0,

which for k = 1/4 y ν = 0, takes the form of the Weber Equation,

v′′(y) + (ν +
1

2
− 1

4
y2)v(y) = 0,

whose solution is known and can be expressed in terms of parabolic cylin-
der functions

v(y) = c1Dν(y) + c2D−ν−1(y),

where

Dν(y) = 2ν/2+1/4y−1/2Wν/2+1/4,−1/4(
1

2
y2), y

and Wl,m; is the Whittaker function (see Weber Equation [1], [14]), [15]).
An invariant solution to the (3) equation under the v2 symmetry group

is then:

u(x) = (c1D0(x) + c2D−1(ix)) e
−x2

4 . (28)

In a similar manner, the characteristic system

v3 = −e2tux2
∂

∂u
+ e2tx

∂

∂x
+ e2t

∂

∂t
,

for the generator
du

−e2tux2
=

dt

e2t
=

dx

e2tx
= dα,
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leads to the invariants

y = xe−t, y ν = ue
x2

2 ,

taking ν = w(y), it follows that,

u = we−
x2

2 ,

ut = −xe−te−
x2

2 wy,

ux = (e−twy − xw)e−
x2

2 ,

uxx = (e−2twyy − 2xe−twy + x2w − w)e−
x2

2 .

Replacing the foregoing in 3), the reduced equation

wyy = 0,

is arrived at, leading to general solution

w(y) = c1y + c2,

i.e., an invariant solution under the v3 group generator is:

u(t, x) =
[
axe−t + b

]
e−

x2

2 . (29)

The invariants y = t y η = u, are obtained for

v4 = −e−t ∂

∂x
.

consequently, an invariant solution under such group will take the form:

u = w(y),

resulting in

ut = wy,

ux = 0,

uxx = 0,

replacing in (3), it follows:

wy = w,
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resolved as

w = cey,

one invariant solution under the v4 symmetry group is then:

u = cet. (30)

Similarly, the generator

v5 = −e−2tu
∂

∂u
− xe−2tx

∂

∂x
+ e−2t ∂

∂t
,

leads to the invariant

y = xet, y ν = ue−t,

assuming that ν = w(y), then

u = wet,

ut = (ywy + w)et,

ux = e2twy,

uxx = e3twyy,

is arrived at. Replacing such equation in (3), the reduced equation

wyy = 0,

is obtained, leading to general solution

w(y) = c1y + c2,

i.e.,

u(t, x) =
[
c1xe

t + c2
]
et, (31)

is an invariant solution under the v5 generator group.

The generator

v6 = −etux
∂

∂u
+ et

∂

∂x
,

leads to the invariants

y = t, y ν = ue
x2

2 ,
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assuming ν = w(y),

u = we−
x2

2 ,

ut = wye
−x2

2 ,

ux = −xwe−
x2

2 ,

uxx = w(x2 − 1)e−
x2

2 ,

is arrived at and, replacing such equation in (3), reduced equation

wy = 0,

is obtained, with general solution

w(y) = c,

As a result,

u(t, x) = ce−
x2

2 , (32)

is an invariant solution to the equation (3) under the v6 generator group.
Finally, considering the group generators:

v1 = −w(t, x)
∂

∂u
,

and

v7 = −u
∂

∂u
,

the condition to be met by an invariant surface F (t, x, u) = u−s(t, x) = 0
is:

vF (t, x, u) = −f
∂s(t, x)

∂t
− g

∂s(t, x)

∂x
+ h

∂s(t, x)

∂u
= 0,

which is equivalent to,

f
∂s(t, x)

∂t
+ g

∂s(t, x)

∂x
= h,

since f and g are equal to cero and h ̸= 0, we conclude that no surfaces
are invariant under these groups. It is important to note that v1 implies
the linearity of the solutions.

Linear combinations of generators will now be addressed. The charac-
teristic system for the linear combination v8 = −av2 − bv7, i.e.,

v8 = a
∂

∂t
+ bu

∂

∂u

Rev.Mate.Teor.Aplic. ISSN 1409-2433 (Print) 2215-3373 (Online) Vol. 22(1): 1–20, Jan 2015



solutions for a unidimensional fokker-planck equation 17

has the invariant

y = x

and

w = ue−
b
a
t,

assuming

u = w(y)e
b
a
t,

the resulting EDO is

wyy + ywy + (1− b

a
)w = 0,

due to the change of variable

v = weky
2
,

for k = 4, the EDO is transformed into the Webber Equation

vyy + (− b

a
+

1

2
− 1

4
y2)v = 0,

with the following solution:

v(y) = k1D− b
a
(y) + k2D− b

a
−1(iy),

then

u = e−
1
4
y2e

b
a
t(k1D− b

a
(y) + k2D− b

a
−1(iy)), (33)

proceeding in a very similarly fashion, invariable solutions are obtained
under invariant generators

v9 = −av2 + bv6, (34)

and

v10 = −av2 − bv4 − cv7. (35)

A summary of the results obtained from equations (28) to (35) appears
in table (2).
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Table 2: Invariant solutions for the Fokker-Planck equation.

Generator Invariant Solution

v2 u = [c1D0(x) + c2D−1(ix)] e
−x2

4

v3 u =
[
axe−t + b

]
e−

x2

2

v4 u = cet

v5 u =
[
c1xe

t + c2
]
et

v6 u = ce−
x2

2

v7 No integral surfaces were found

v8 = −av2 − bv7 u = e−
1
4
x2
e

b
a
t
[
c1D− b

a
(x) + c2D− b

a
−1(ix)

]
v9 = −av2 + bv6 u = e

−(x− b
a et)2

4

[
c1D0(x− b

ae
t) + c2D−1(i(x− b

ae
t))

]
e

−x2

2

v10 = −av2 − bv4 − cv7. u = e−
(x+ b

a e−t)2

4

[
c1D− c

a
(x+ b

ae
−t) + c2D−1(i(x+ b

ae
−t))

]
e

c
a
t

4 Conclusions

1. The Fokker-Planck equation is invariant under a Lie group generated
by six vector fields. It was possible to find invariant solutions and
build new solutions based on known solutions in five of these group
generators or symbols.

2. The total number of possible linear combinations between the finite
dimension sub algebras v2 to v7 is 63. Exploring each of these options
is tedious. Because many of the calculations may be redundant since
the same solution may be included within the solutions found for
other one-parameter groups, the need for an algorithm applicable to
the group algebra that minimizes required calculations is obvious.
The study of these algorithms (e.g., Ovsiannikov’s optimal algebras)
may prove a good complement to the foregoing.

3. The Lie group method applied to differential equations provides an
algorithmic way to construct invariant solutions to a large number
of partial differential equations. For non-linear equations, these so-
lutions may be the only ones available, making them very important
for modeling physical situations and for comparison with numerical
solutions. Specialized software currently exists to deal with the volu-
minous calculation of symmetries required and should be taken into
account for more practical Lie theory management, especially with
respect to higher-order equations or differential equation systems.
It is suggested that interested readers consult Hereman’s review of
this specialized software [8].
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