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Abstract

The aim of this work is to study the continuity and semi-continuity of the Lyapunov

exponents in two different contexts. The first one concerns linear cocycles on par-

tially hyperbolic dynamics. It is known that the Lyapunov exponents can be very

sensitive as functions of the cocycle. Example of this is the result of Bochi-Mañé

which shows that every SL(2,R)-cocycle that is not uniformly hyperbolic can be ap-

proximated by another with zero exponents. We prove that the set of fiber-bunched

SL(2,R)-valued Hölder cocycles with nonvanishing Lyapunov exponents over a vol-

ume preserving, accessible and center-bunched partially hyperbolic diffeomorphism

is open. Moreover, we present an example showing that this is no longer true if we

do not assume accessibility in the base dynamics. This is a joint work with Lucas

Backes and Mauricio Poletti.

In the second part of this work we will restrict our attention to the study of llocally

constant cocycles associated with probability distributions with non-compact sup-

port in SL(2,R). Bocker-Viana proved that for distributions with compact support,

the exponents vary continuously. We analyze the behavior of the Lyapunov expo-

nents when the measures are not compact, showing that in this case, the Lyapunov

exponents, considered as functions of the measure, are semi-continuous with re-

spect to the Wasserstein topology but not the weak* topology. Moreover, we prove

that they are not continuous relative to the Wasserstein topology.
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Resumo

O objetivo deste trabalho é estudar a continuidade e a semi-continuidade dos ex-

poentes de Lyapunov em dois contextos diferentes. O primeiro diz respeito a cocic-

los lineares sobre dinâmicas parcialmente hiperbólicas. É sabido que os expoentes

de Lyapunov podem ser muito sensíveis como funções do cociclo. Exemplo disto é

o resultado de Bochi-Mañé que mostra que todo SL(2,R)-cociclo contínuo que não

é uniformemente hiperbólico pode ser aproximado por outro com expoentes nu-

los. Mostrarei que o conjunto dos SL(2,R)-cociclos “fiber-bunched”; com expoente

de Lyapunov não nulos, sobre um difeomorfismo parcialmente hiperbólico, é um

aberto. Este é um trabalho conjunto com Lucas Backes e Mauricio Poletti.

O segundo tipo de resultados trata de expoentes de Lyapunov de cociclos localmente

constantes associados a distribuções de probabilidade com suporte não compacto

em SL(2,R). Bocker-Viana provaram que, para distribuições com suporte compacto,

os expoentes variam continuamente. Analizarei o comportamente dos expoentes de

Lyapunov quando as medidas têm suporte não compacto, mostrando que neste caso

tem-se semi-continuidade com a topologia de Wasserstein, mas não na topologia

fraca*. Além disso, não há continuidade mesmo na topologia de Wasserstein.
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Resumen

El objetivo de este trabajo es estudiar la continuidad y la semi-continuidad de los

exponentes de Lyapunov en dos contextos diferentes. El primero trata sobre los

cociclos lineales con base dinámica parcialmente hiperólica. Es conocido que los

exponentes de Lyapunov pueden ser muy sensibles como funciones de los cocic-

los. Ejemplo de esto es el resultado de Bochi-Mañé que muestra que todo cociclo

SL(2,R) contínuo que no es uniformemente hiperbólico puede ser aproximado por

otros con exponentes nulos. Mostraremos que el conjunto de los cociclos “fiber-

bunched”; con exponente de Lyapunov no nulos, sobre un difeomorfismo parcial-

mente hiperbólico, es un abierto. Este es un trabajo conjunto con Lucas Backes y

Mauricio Poletti.

El segundo tipo de resultado trata de exponentes de Lyapunov de cociclos local-

mente constantes asociados a distribuciones de probabilidad con soporte no com-

pacto en SL(2,R). Bocker-Viana probaron que, para distribuciones con soporte

compacto, los exponentes vaían continuamente. Analizaremos el comportamiento

de los exponentes de Lyapunov cuando las medidas tienen soporte no compacto,

mostraremos que en este caso se tiene semi-continuidad con la topología de Wasser-

stein, pero no respecto a la topología débil*. Además, no hay semi-continuidad aún

con la topología de Wasserstein.
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1Introduction

The theory of linear cocycles goes back to the works of Furstenberg, Kesten [15,

14] and Oseledets [22]. The simplest examples of linear cocycles are given by

derivative transformations of smooth dynamical systems. The cocycle generated by

A(x) = Df(x) over f is called the derivative cocycle. Taking as an example the hy-

perbolic theory of Dynamical Systems where one can understand certain dynamical

properties of f by studying the action ofDf on the tangent space, one can hope that

by studying properties of linear cocycles one can also deduce some properties of f .

Nevertheless, the notion of linear cocycle is much more general and flexible, and

arises naturally in many other situations as in the spectral theory of Schrödinger

operators, for instance.

In the present work we are interested in the asymptotic behavior of An(x). Thus,

we are interested in understanding certain regularity properties of Lyapunov expo-

nents. The Lyapunov exponents are quantities that measure the average exponen-

tial growth of the norm iterates of the cocycle along invariant subspaces on the

fibers. They describe the chaotic behavior of the system. For example, a strictly

positive maximal Lyapunov exponent is synonymous of exponential instability. It is

an indication that the system modeled by the cocycle behaves chaotically, and the

maximal Lyapunov exponent measures the chaos. These objects are one of the most

fundamental notions in dynamical systems.

It is well known that, in general, Lyapunov exponents can be very sensitive as func-

tions of the cocycle. For instance, Bochi [7, 8] proved that in the space of SL(2,R)-

valued continuous cocycles over an aperiodic map, if a cocycle is not hyperbolic,

then it can be approximated by cocycles with zero Lyapunov exponents. In partic-

ular, there are cocycles with positive Lyapunov exponents that are accumulated by

cocycles with zero Lyapunov exponents.

Furthermore, when the base dynamic is far from being hyperbolic, for example,

when f is a rotation on the circle, Wang and You [26], showed that having non-

zero Lyapunov exponents is not an open property even in the C∞ topology.

Bocker and Viana [9] constructed an example over a hyperbolic map showing that

the same phenomenon can happen in the Hölder realm. In order to construct their

example, Bocker and Viana exploited the fact that the cocycle is not fiber-bunched.

In fact, it was shown by Backes, Butler and Brown [4] that in the fiber-bunched set-

ting over a hyperbolic map the Lyapunov exponents vary continuously with respect
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to the cocycle and, in particular, cocycles with positive Lyapunov exponents can not

be approximate by cocycles with zero Lyapunov exponents.

In the first part of this work we are interested in understanding the case when the

cocycle still have some regularity properties, namely, it is fiber-bunched but the base

dynamics exhibit some mixed behaviour of hyperbolicity and non-hyperbolicity, that

is, the map f is partially hyperbolic. More precisely, f over a compact manifold M

is such that there exists a nontrivial, Df -invariant splitting of the tangent bundle

TM = Es ⊕ Ec ⊕ Eu and a Riemannian metric on M such that vectors in Es are

uniformly contracted by Df in this metric, vectors in Eu are uniformly expanded,

and the expansion and contraction rates of vectors in Ec is dominated by the cor-

responding rates in Eu and Es, respectively. Furthermore, we say that f is center

bunched if the contraction rate on Es and the expanding rate on Eu are uniformly

bounded by the product of the contracting and expanding rates on Ec.

An su-path in M is a concatenation of finitely many subpaths, each of which lies

entirely in a single leaf of Ws or Wu. We say that f is accessible if any point in M

can be reached from any other along an su-path.

We show that if f is chaotic enough and A is fiber-bunched then the Bochi phe-

nomenon can not occur. That is, (see Chapter 2 for detailed definitions),

Theorem A. If (f, µ) is a volume preserving partially hyperbolic accessible and center-

bunched diffeomorphism over M , and A : M → SL(2,R) is a Hölder continuous fiber-

bunched map with nonvanishing Lyapunov exponents. Then A can not be accumulated

by cocycles with zero Lyapunov exponents.

Moreover, we show that the accessibility assumption in the previous result is neces-

sary.

Theorem B. There exists a volume preserving partially hyperbolic and center-bunched

diffeomorphism f and a Hölder continuous fiber-bunched map A with non-zero Lya-

punov exponents which is approximated by cocycles with zero Lyapunov exponents.

Notice that in the results mention above we consider the Lyapunov exponents as

funtions of the cocycle. The purpose of the second part of this work is to study the

continuity and semicontinuity of the Lyapunov exponents respect to measures of

non-compact support. That is, for the second part of this work we will consider the

Lyapunov exponents are functions of the measures. Moreover, we restrict our study

to the particular case of products of random matrices i,e, when the linear cocycle is

given by A((αk)k) = α0 where αk ∈ SL(2,R) for every k ∈ Z.

Our main result reads as follows (see Theorem 2.4.3 and Theorem 2.4.4 for a pre-

cise statement):
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Theorem C. The function p 7→ λ+(p) is upper semi-continuous relative to the Wasser-

stein topology but not with the weak* topology. The same remains valid for p 7→ λ−(p)

with lower semi-continuity.

The main problem regarding the weak* topology is that it is defined in terms of

bounded continuous or bounded Lipschitz functions. That is, we have that µn
∗

−→ µ

if
∣

∣

∣

∣

∫

ψdµn −
∫

ψµ

∣

∣

∣

∣

→ 0,

for all bounded continuous (or Lipschitz) functions (see [21, Chapter 2]). In the

case of probability measures with non compact support we don’t have a bounded co-

cycle so we can not guarantee the semicontinuity as in the compact case. However,

convergence in the Wasserstein topology, as we will see in Section 2.3, is equivalent

to the convergence of integrals of Lipschitz, not necessarily bounded, functions.

Moreover, this topology is defined over borel measures with finite first moment and

the convergence implies convergence of the moments of order 1. These two prop-

erties are the ones that allow us to control the convergence outside a compact set

and prove the semicontinuity.

Regarding continuity of Lyapunov exponents we prove the following (see Theorem

2.4.5 for a precise statement):

Theorem D. The function p 7→ λ+(p) is not continuous in the Wasserstein Topology.

The same remains valid for p 7→ λ−(p).

For the proof of this theorem we present an example of measures with vanishing

Lyapunov exponent converging to one with strictly positive exponent. The main

idea is to take a measure with a countable support containing only hyperbolic ma-

trices and create a sequence by replacing one element of the original support by a

rotation that exchanges vertical and horizontal axes. However, the support of the

measures constructed this way move further apart from the original support.

The same result can be obtained by considering more variables in the alphabet,

for example SL(2,R)5. Hence, instead of one (big) rotation we can decompose it

into several small rotations in each coordinate allowing us to leave the supports

arbitrarily close.

1.1 Structure of the work

The present work is divided in three parts:

• In Chapter 2 we present basic definitions and some preliminary results in

order to give a precise statement of Theorems A through D.

1.1 Structure of the work 3



• Chapter 3 is devoted to the proof of the results regarding partially hyperbolic

diffeomorphims. Section 3.1 has the preliminary results we are going to need

in the proof. The second section, Section 3.2, presents the proof of Theorem

A while the proof of Theorem B is presented in Section 3.3.

• In Chapter 4 we focus on the study of probability measures with non compact

support. The first section is devoted to the study of semicontinuity while the

second one focuses on analyze the continuity.

4 Chapter 1 Introduction



2Definitions and statements

2.1 Linear cocycles and Lyapunov exponents

Let (M,B, µ) be a measurable space and f an invertible measure preserving trans-

formation f : (M,µ) → (M,µ). A measurable function A : M → GL(2,R) gives the

dynamically defined products

An(x) =















A(fn−1(x)) . . . A(f(x))A(x), if n > 0,

Id, if n = 0,

(A−n(fn(x)))−1 = A(fn(x))−1 . . . A(f−1(x))−1, if n < 0.

(2.1)

The linear cocycle defined by A over f is the transformation

F : M × R
2 → M × R

d (x, v) 7→ (f(x), A(x)v),

where its n-th iterate is given by Fn(x, v) = (fn(x), An(x)v).

Let L1(µ) denote the space of µ-integrable functions onM and suppose that log+ ‖A±1‖

belongs to L1(µ). It follows from the sub-additive ergodic theorem of Kingman [19],

that the limits

λ+(A,x) = lim
n→∞

1

n
log ‖An(x)‖,

λ−(A,x) = lim
n→∞

1

n
log ‖A−n(x)‖−1,

exist for µ-almost every x ∈ M . We call such limits Lyapunov exponents. Moreover,

when λ+(A,x) > λ−(A,x) it follows from the well-known theorem of Oseledets

[22] that there exists a decomposition R
2 = Eu,A

x ⊕ Es,A
x into vector subspaces

depending measurably on x such that for µ-almost every point

A(x)Eu,A
x = Eu,A

f(x),

λ+(A,x) = lim
n→∞

1

n
log ‖An(x)v‖,

for every non-zero v ∈ Eu,A
x . Equivalently for s and λ−(A,x). This decomposition

is called the Oseledets decomposition. Furthermore, the Lyapunov exponents are f -

invariant, so if µ is ergodic it implies that they are constant for µ-almost every point

x. In this case we write λ+(A,x) = λ+(A,µ) and λ−(A,x) = λ−(A,µ).
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2.2 Partial hyperbolicity

Let f : M → M be a Cr, r ≥ 2, diffeomorphism defined on a compact manifold M ,

f is said to be partially hyperbolic if:

1. There exists a non-trivial splitting of the tangent bundle TM = Es ⊕Ec ⊕Eu

invariant under the derivative Df ;

2. There exist a Riemannian metric ‖ · ‖ on M , such that we have positive con-

tinuous functions ν, ν̂, γ, γ̂ with ν, ν̂ < 1 and ν < γ < γ̂−1 < ν̂−1 such that,

for any unit vector v ∈ TxM ,

‖Df(x)v‖ < ν(x) if v ∈ Es(x),

γ(x) <‖Df(x)v‖ < γ̂(x)−1 if v ∈ Ec(x),

ν̂(x)−1 <‖Df(x)v‖ if v ∈ Eu(x).

All three sub-bundles Es, Ec, Eu are assumed to have positive dimension. We say

that f is center-bunched if

ν < γγ̂ and ν̂ < γγ̂.

Center bunching means that the hyperbolicity of f dominates the nonconformality

of Df on the center. We need this hypothesis because we are going to use some

results of [2]. Along this chapter we take M to be endowed with the distance

dist : M ×M → R associated to such a Riemannian structure.

The stable and unstable bundlesEs andEu of a partially hyperbolic diffeomorphism

are uniquely integrable [12]. Their integral manifolds form two transverse contin-

uous foliations Ws and Wu, whose leaves are immersed sub-manifolds of the same

class of differentiability as f . These foliations are referred to as the strong-stable

and strong-unstable foliations. They are invariant under f , in the sense that

f(Ws(x)) = Ws(f(x)) and f(Wu(x)) = Wu(f(x)),

where Ws(x) and Wu(x) denote the leaves of Ws and Wu, respectively, passing

through any x ∈ M . We say that f is accessible if M and ∅ are the only su-

saturated sets. This means that, except of ∅, M is the only set that is a union of

entire strong-stable and strong-unstable leaves.

Let A : M → SL(2,R) be an α-Hölder continuous map with 0 < α ≤ 1. This means

that there exists a constant C > 0 such that

‖A(x) −A(y)‖ ≤ C dist(x, y)α

6 Chapter 2 Definitions and statements



for all x, y ∈ M where ‖A‖ denotes the operator norm of a matrix A, that is,

‖A‖ = sup {‖Av‖/‖v‖; ‖v‖ 6= 0} .

Let Hα(M) denote the space of all such α-Hölder continuous maps. We endow this

space with the α-Hölder topology which is generated by the norm

‖A‖α = sup
x∈M

‖A(x)‖ + sup
x 6=y

‖A(x) −A(y)‖

dist(x, y)α
.

We say that the linear cocycle generated by A over f is fiber-bunched if

‖A(x)‖‖A(x)−1‖ν(x)α < 1 and ‖A(x)‖‖A(x)−1‖ν̂(x)α < 1

for every x ∈ M . Since our base dynamics f is going to be fixed, we simply say that

A is fiber-bunched. Observe that this is an open condition in Hα(M).

2.3 Wasserstein topology

Let (M,µ) and (N, ν) be two probability spaces. Coupling µ and ν means construct-

ing a measure π on M ×N , such that π projects to µ and ν on the first and second

coordinate respectively. When µ = ν we call π a self-coupling.

If (M,d) is a Polish metric space, for any two probability measures µ, ν on M , the

Wasserstein distance between µ and ν is defined by the formula

W1(µ, ν) = inf
π∈Π(µ,ν)

∫

M
d(x, y)dπ(x, y), (2.2)

where the infimum is taken over the set Π(µ, ν) which denotes the set of all the

couplings of µ and ν.

The Wasserstein space is the space of probability measures which have a finite

moment of order 1. By this we mean the space

P1(M) :=

{

µ ∈ P (M) :

∫

M
d(x0, x)dµ(x) < +∞

}

,

where x0 ∈ M is arbitrary and P (M) denotes the space of Borel probability mea-

sures on M . This does not depend on the choice of the point x0, and W1 defines a

finite distance on it (see [1, Chapter 7]).

An important property of the Wasserstein topology is the Kantorovich duality. It

establishes that

W1(µ, ν) = sup

{
∫

M
ψdµ −

∫

M
ψdν

}

,

2.3 Wasserstein topology 7



where the supremum on the right is over all 1-Lipschitz functions ψ.

The next definition characterizes the convergence in the Wasserstein space P1(M).

From now on the notation µk
W

−→ µ means that µk converges in the Wasserstein

topology, while µk
∗

−→ µ means that µk converges in the weak* topology.

Definition 2.3.1. [25, Definition 6.8] Let (M,d) be a Polish metric space. Let (µk)k∈N

be a sequence of probability measures in P1(M) and let µ be another element of P1(M).

Then µk is said to converge in the Wasserstein topology to µ, if one of the following

equivalent properties is satisfied for some (and then any) x0 ∈ M :

1. µk
∗

−→ µ and
∫

d(x0, x)dµk(x) →
∫

d(x0, x)dµ(x);

2. µk
∗

−→ µ and

lim sup
k→∞

∫

d(x0, x)dµk(x) ≤
∫

d(x0, x)dµ(x);

3. µk
∗

−→ µ and

lim
R→∞

lim sup
k→∞

∫

d(x0,x)≥R
d(x0, x)dµk(x) = 0;

4. For all continuous functions ϕ with |ϕ(x)| ≤ C(1 + d(x0, x)), C ∈ R, one has

∫

ϕ(x)dµk(x) →
∫

ϕ(x)dµ(x).

A crucial fact is that the Wasserstein distance W1 metrizes the convergence in the

Wasserstein topology in P1(M). In other words, µk
W

−→ µ if and only if W1(µk, µ) →

0. This equivalence also implies that W1 is continuous on P1(M) (see [25, Theorem

6.18]).

Theorem 2.3.1 (Topology in P1(M)). Let (M,d) be a Polish metric space. Then the

Wasserstein distance W1, metrizes the convergence in the Wasserstein topology in the

space P1(M). Moreover, with this metric P1(M) is also a complete separable metric

space and, any probability measure can be approximated by a sequence of probability

measures with finite support.

2.4 Main results

With the definitions mention in the last sections we now proceed to properly state

the results mention in Chapter 1.
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2.4.1 Partially hyperbolic base dynamics

Let f : M → M be a partially hyperbolic diffeomorphism on a compact manifold M

and µ a probability measure in the Lebesgue class of M . By Lebesgue class we mean

the set of measures that are generated by a volume form. Moreover, we say that f

is volume preserving if it preserves some probability measure in the Lebesgue class

of M.

The main results regarding partially hyperbolic diffeomorphisms are the follow-

ing.

Theorem 2.4.1. Let f : M → M be a Cr, r ≥ 2, partially hyperbolic, volume pre-

serving, center bunched and accessible diffeomorphism defined on a compact manifold

M . Also, let µ be an ergodic f -invariant measure in the Lebesgue class. If A ∈ Hα(M)

is fiber-bunched and λu(A,µ) > λs(A,µ) then A can not be accumulated by cocycles

with zero Lyapunov exponents.

We observe that a similar result can be stated in terms of GL(2,R)-valued cocy-

cles changing ‘cocycles with zero Lyapunov exponents’ by ‘cocycles with just one

Lyapunov exponent’.

Indeed, the accessibility property guarantees connectedness of M . Hence, by con-

tinuity of A either, det(A(x)) > 0 for every x ∈ M or det(A(x)) < 0 for every

x ∈ M . Suppose we are in the first case (the other case can be easily deduced

from this one). Then, given A : M → GL(2,R) consider gA : M → R the map de-

fined by gA(x) = (detA(x))
1

2 and B : M → SL(2,R) such that A(x) = gA(x)B(x).

Therefore,

λu/s(A,µ) = λu/s(B,µ) +

∫

log(gA(x)) dµ(x),

and consequently,

λu(A,µ) = λs(A,µ) ⇐⇒ λu(B,µ) = 0 = λs(B,µ).

We also present an example showing that the accessibility assumption in the previ-

ous theorem is necessary. More precisely,

Theorem 2.4.2. There exists a volume preserving partially hyperbolic and center-

bunched diffeomorphism f and a Hölder continuous fiber-bunched map A with non-

zero Lyapunov exponents which is approximated by cocycles with zero Lyapunov expo-

nents.

2.4 Main results 9



2.4.2 Measures with non compact support

Let M = SL(2,R)Z and, let f : M → M be the shift map over M defined by

(αn)n 7→ (αn+1)n.

Consider the function

A : M → SL(2,R), (αn)n 7→ α0,

and we define its n-th iterate, the product of random matrices, by

An((αk)k) = αn−1 · · ·α0.

Given an invariant measure p in SL(2,R) we can define µ = pZ which is an invariant

measure in M .

It is a well-known fact that when the measures have compact support, the Lyapunov

exponents are semicontinuous with the weak* topology (see for example [24, Chap-

ter 9]). However, in the non compact setting this is no longer true. If they were

semicontinuos then every measure with vanishing Lyapunov exponents would be a

point of continuity. The next theorem shows that this is not the case.

Theorem 2.4.3. There exist a measure p and a sequence of measures (qn)n on SL(2,R)

converging to q in the weak* topology, such that λ+(qn) ≥ 1 for n large enough but

λ+(q) = 0.

Consider in SL(2,R) the metric given by

d(α, β) = ‖α− β‖ + ‖α−1 − β−1‖.

Since the space SL(2,R) is a Polish metric space with this metric we can consider

the Wasserstein topology in P1(SL(2,R)).

The Wasserstein topology is stronger than the weak* topology, as mentioned in

Definition 2.3.1. The principal consequence of the convergence in the Wasserstein

topology is that it implies convergence of the moments of order 1. This allow us to

control the weight of integrals outside compact sets and, proof semi-continuity of

the Lyapunov exponents in P1(SL(2,R)). We are thus led to the following result.

Theorem 2.4.4. The function defined on P1(SL(2,R)) by p → λ+(p) is upper semi-

continuous relative to the Wasserstein topology. The same remains valid for the func-

tion p → λ−(p) with lower semi-continuity.
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Finally, we will present a construction of discontinuity points of the Lyapunov expo-

nents as functions of the probability measure, relative to the Wasserstein topology.

This implies that the Wasserstein topology is not enough to guarantee continuity of

the Lyapunov exponents.

Theorem 2.4.5. There exist a measure q and a sequence of measures (qn)n on SL(2,R)

converging to q in the Wasserstein topology, such that λ+(qn) = 0 for all n ∈ N but

λ+(q) > 0.

2.4 Main results 11





3Partially hyperbolic base

dynamics

The aim of this chapter is to give a proof for Theorem A and Theorem B. Let us

give an outline of the proof of Theorem A, it goes by contradiction. Assume there

exist a sequence {Ak}k with λu(Ak, µ) = λs(Ak, µ) = 0 for every k ∈ N and such

that Ak converges to A in the Hölder topology. The basic strategy is to consider

the projective cocycles FAk
, FA : M × P

1 → M × P
1 defined by (A, f) and (Ak, f)

respectively, and to analyze the probability measures m and mk on M ×P
1 that are

invariant under FA and FAk
respectively, and project down to µ on M .

The accessibility condition allow us to define, in Section 3.1.2, holonomy maps HA
γ

for every su-path γ on every point x ∈ M . Using a result of Avila, Santamaria,

Viana in [2] we show in Section 3.2.1 that the Oseledets decomposition is invariant

by those holonomy maps. Thus, we can separate our proof in two cases:

In the first case we assume there exist x ∈ M and a non trivial su-loop γ on x

such that HA
γ is hyperbolic. Hence, for k sufficiently large the holonomy maps HAk

γ

are also hyperbolic and the conditional measures mk
x have at most two atoms. In

Section 3.2.1 we prove uniform convergence of the conditional measures and, in

Section 3.2.2 we use it to prove that mk
x can not have a finite number of atoms

contradicting this case.

In the second case we assume that for every point x and every su-loop γ at x that

HA
γ = id. Section 3.1.3 gives a characterization of the sequence of holonomy maps

for the cocycles Ak. This characterization give us again two cases: either there exist

a nontrivial su-loop γ at some point x such that HAk
γ is hyperbolic for infinitely

many k or they are the identity for every su-loop for some k large enough. The

hyperbolic case is solved as before, for the identity case, we can perform a change

of coordinates that makes the cocycles A and Ak constant without changing its

Lyapunov exponents, this is explained in Section 3.1.2. The proof concludes by

establishing the convergence of the Lyapunov exponents for the constant cocycles.

This is done in Section 3.2.3.

Section 3.3 contains the proof of Theorem B as well as another construction show-

ing that we have a fiber-bunched cocycle A over a partially hyperbolic and center-

bunched map f with arbitrarily large Lyapunov exponent λ+ which can be approxi-

mated by cocycles with zero Lyapunov exponents.
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The results presented in this chapter are the product of a joint work with Lucas

Backes and Mauricio Poletti in [6].

3.1 Preliminary results

In this section we recall some classical notions and present some useful results that

are going to be used in the proof of our main theorem. Along this chapter we

consider f : M → M , A ∈ Hα(M) and µ be as in Theorem A.

3.1.1 Holonomies and disintegrations

Given x, y ∈ M , we define the equivalence relation x ∼s y by y ∈ Ws(x). Observe

that this is f -invariant, that is, if x ∼s y then f(x) ∼s f(y). Given L > 0, we write

x ∼s
L y when there exist a sequence of points x = z0, ..., zn = y such that zi ∼s zi+1

and dWs(zi+1, zi) ≤ L for every i = 1, . . . , n− 1.

For every pair of points x, y ∈ M satisfying that x ∼s y, the fiber-bunched assump-

tion assures that the limit

Hs,A
xy = lim

n→+∞
An(y)−1 ◦ An(x)

exists (see [2, Proposition 3.2]). Moreover, by [2, Remark 3.4] we know that for

every L > 0, the map

(x, y,A) → Hs,A
xy

is continuous on Ws
L ×Hα(M), where Ws

L = {(x, y) ∈ M ×M ;x ∼s
L y}.

The family of maps Hs,A
xy is called an stable holonomy for the cocycle (A, f). Also by

[2, Proposition 3.2] we have for x ∼s
L y and z ∼s

L y,

• Hs,A
xx = id,

• Hs,A
xy = Hs,A

zy ◦Hs,A
xz ,

• ‖HA
xy‖ ≤ N for some N > 0 and,

• Hs,A
fj(x)fj (y)

= Aj(y)Hs,A
xy A

j(x)−1 ∀j ≥ 0.

Dually, we write x ∼u y if y ∈ Wu(x) and, we define the unstable holonomy Hu,A
xy

as the stable holonomies for (A−1, f−1). That is

Hu,A
xy = lim

n→−∞
An(y)−1 ◦ An(x)

whenever x and y are on the same strong-unstable leaf. Even more, (x, y,A) →

Hu,A
xy is continuous on Wu

L ×Hα(M), where Wu
L = {(x, y) ∈ M ×M ;x ∼u

L y}.
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We say that a measure m on M × P
1 projects on µ if π∗m = µ where π is the

canonical projection π : M × P
1 → M . By the Ergodic Decomposition theorem

[21, Theorem 5.1.3] any such measure admits a disintegration with respect to the

partition {{x}×P
1}x∈M and the measure µ, that is, there exists a family of measures

{mx}x∈M on {{x} × P
1}x∈M so that for every measurable B ⊂ M × P

1,

• The map x → mx(B) is measurable,

• mx({x} × P
1) = 1 and,

• m(B) =
∫

M mx(B ∩ ({x} × P
1))dµ(x).

Moreover, such disintegrantion is essentially unique [23]. Identifying each fiber

{x} × P
1 with P

1, we can think of x → mx as a map from M to the space of

probability measures on P
1 endowed with the weak* topology.

Given B ∈ GL(2,R) we write PB : P1 → P
1 for the induced projective map. That

is, the map defined by PB[v] = [Bv].

The projective cocycle associated to A is the map FA : M × P
1 → M × P

1 given by

FA(x, v) = (f(x),PA(x)[v]).

Observe that m is FA-invariant if and only if (PA(x))∗mx = mf(x) for µ-almost

every point x ∈ M .

We say that a FA-invariant measure m projecting on µ is essentially s-invariant if

there exists a total measure set M s ⊂ M such that for every x, y ∈ M s satisfying

x ∼s y we have
(

Hs,A
xy

)

∗
mx = my.

Such measure m is also known as an s-state. One speaks of s-invariant if M s = M .

Analogously, we say that m is essentially u-invariant (or an u-state) if the same is

true replacing stable by unstable in the previous definition. We say that m is es-

sentially su-invariant if it is simultaneously essentially s-invariant and essentially

u-invariant. The main property of essentially su-invariant measures is the follow-

ing

Proposition 3.1.1. [2, Theorem B] If λ+(A,µ) = λ−(A,µ), any FA-invariant mea-

sure m projecting on µ admits a disintegration {mx}x∈M for which M s = Mu = M .

Moreover, accessibility of f implies that mx depends continuously on the base point

x ∈ M in the weak* topology.
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3.1.2 Accessibility and holonomies

An su-path from x to y is a path connecting x and y which is a concatenation of

finitely many subpaths, each of which lies entirely in a single leaf of Ws or a single

leaf of Wu. Every sequence of points x = z0, z1, . . . , zn = y, with the property that zi

and zi+1 lie in the same leaf of either W s or W u , for i = 0, ..., n−1 defines a unique

su-path (see Figure 3.1). If in addition x = y, then the sequence determines an su-

loop or a closed su-path (see Figure 3.2). With these terminology the accessibility of

f means that any point in M can be reached from any other along an su-path.

Wu

Ws

bx
b

z1

bz2 b z3

b

z4

b z5

b y

Figure 3.1: su-path

Wu

Ws

bx
b

z1

bz2 b z3

b

z4

b z5

b z6

b

z9

b z8

b

z7

Figure 3.2: su-loop
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We define the concatenation of two su-paths γ1 given by z0, . . . , zn and γ2 given by

z′
0, z

′
1, . . . , z

′
m, with z′

0 = zn, by γ1 ∧ γ2 which is the su-path given by the sequence

of points z0, . . . , zn, z
′
1, . . . , z

′
m.

We say that an su-path γ defined by the sequence x = z0, z1, . . . , zn = y is a (K,L)-

path if n ≤ K and dW∗(zi+1, zi) ≤ L for every i = 1, . . . , n − 1 where dW∗ is

the distance induced by the Riemannian structure on the submanifold W∗ for ∗ =

s, u. Observe that, by the compactness of M and continuity of stable (unstable)

manifolds of bounded size, the space of (K,L)-paths is compact. In particular,

Wilkinson [27] proved that accessibility implies uniform accessibility:

Lemma 3.1.2. [27, Lemma 4.5] There exist constants K and L such that every pair

of points in M can be connected by an (K,L)-path.

Consider K and L given by the lemma above. If γ is the su-path defined by the

sequence z0, z1, . . . , zn then we write HA
γ = H∗,A

zn−1zn
◦ . . . ◦H∗,A

z0z1
for ∗ ∈ {s, u}.

Let us assume that HA
γ = id for every (3K,L)-loop. This implies that the same

remains valid for every su-loop. Indeed, observe initially that any su-loop γ can be

transformed into an su-loop with legs of size at most L just by breaking one “large”

leg into several with smaller sizes. Thus, it is enough to consider su-loops with legs

of size at most L.

If γ is a (2K,L)-path from x to y then, by Lemma 3.1.2, there exists a (K,L)-path

γ′ from x to y. If −γ′ denotes the path γ′ with opposite orientation then γ ∧ (−γ′)

is a (3K,L)-loop and

HA
γ ◦ (HA

γ′)−1 = HA
γ ◦HA

−γ′ = HA
γ∧(−γ′) = id .

Hence, HA
γ = HA

γ′ .

Now, taking any su-loop γ with an arbitrary number of legs whose lengths are at

most L we can decompose it as γ = γ1 ∧ · · · ∧γk, where every γi is a (K,L)-path. In

particular, γk−1 ∧ γk is a (2K,L)-path and by the previous argument we can replace

it by a (K,L)-path γ′
k−1 with the same starting and ending points and, so that

HA
γk−1∧γk

= HA
γ′

k−1

.

Thus, taking γ′ = γ1 ∧· · ·∧γk−2 ∧γ′
k−1 we have that γ and γ′ have the same starting

and ending points and HA
γ = HA

γ′ . Repeating this procedure a finite number of

times we get some (K,L)-loop γ′′ such that HA
γ = HA

γ′′ = id. Finally, we conclude

that HA
γ = id for every su-loop proving our claim. An example of this process is

shown in Figure 3.3 where L = 4 and K = 2.
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(a) Original su-loop γ
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b
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(b) Construction of γ
′

k−1

Wu

Ws
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x = z0

bz1
bz2

bz3
b

z4

bz5

b

z8

b

z9

b

z10
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b

z12

b z7

b
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b

z15
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z14
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z13
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z′
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γ′′

(c) Final su-loop γ
′′

Figure 3.3: Process to transform an arbitrary su-loop into a (3K,L)-loop.
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As a consequence we get that if γ is an su-path connecting x and y then HA
γ does not

depend on γ. In fact, if γ1 and γ2 are su-paths connecting x and y then γ1 ∧ (−γ2) is

an su-loop and thus

HA
γ1

◦ (HA
γ2

)−1 = HA
γ1

◦HA
−γ2

= HA
γ1∧(−γ2) = id .

Let us denote this common value simply byHA
xy. From the properties of the holonomies

and the fact that any two points x, y ∈ M can be connected by a (K,L)-path it fol-

lows that

• HA
yzH

A
xy = HA

xz,

• A(y)HA
xy = HA

f(x)f(y)A(x),

• A → HA
xy is uniformly continuous for any pair of points x, y ∈ M and

• ‖HA
xy‖ ≤ N for some N > 0 and any x, y ∈ M .

Fix x ∈ M and, given y ∈ M , consider the following transformation

Â(y) = HA
f(y)xA(y)HA

xy. (3.1)

We are going to prove that this change of coordinates makes the cocycle (A, f)

constant without changing its Lyapunov exponents.

Notice that by the properties of the holonomies

Â2(y) = Â(f(y))Â(y) = HA
f2(y)xA(f(y))HA

xf(y)H
A
f(y)xA(y)HA

xy,

and consequently Â2(y) = HA
f2(y)xA

2(y)HA
xy. More generally, Ân(y) = HA

fn(y)xA
n(y)HA

xy

for every n ∈ N. Hence, (Â, f) and (A, f) have the same Lyapunov exponents. In-

deed, notice that

λ+(Â, µ) = lim
n→∞

1

n
log ‖Ân(y)‖

= lim
n→∞

1

n
log ‖HA

fn(y)xA
n(y)HA

xy‖

≤ lim
n

1

n
(2 logN + log ‖An(y)‖)

= λ+(A,µ).

Similarly, since An(y) = HA
xfn(y)Â

n(y)HA
yx we have that λ+(A,µ) ≤ λ+(Â, µ). Thus,

we proved our claim.
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Moreover, for any z, y ∈ M ,

Â(z)−1Â(y) =
(

HA
f(z)xA(z)HA

xz

)−1
HA

f(y)xA(y)HA
xy

= HA
zxA(z)−1HA

xf(z)H
A
f(y)xA(y)HA

xy

= HA
zxA(z)−1HA

f(y)f(z)A(y)HA
xy

= HA
zxA(z)−1A(z)HA

yzH
A
xy

= HA
zxH

A
yzH

A
xy

= HA
zxH

A
xz

= id .

In particular, Â is constant and consequently its largest Lyapunov exponent is the

logarithm of the norm of the greatest eigenvalue of Â. Summarizing, if HA
γ = id for

every (3K,L)-loop γ then we can perform a change of coordinates that makes the

cocycle (A, f) constant without changing its Lyapunov exponents.

3.1.3 PSL(2,R) cocycles and invariant measures in P1

Let PGL(2,R) be the projective linear group, that is the induced action of the

general linear group on the associated projective space P
1. Let π : R2 \{0} → P

1 be

the natural projection given by v 7→ [v]. Each automorphism P̃ ∈ GL(2,R) induces

a projective transformation P ∈ PGL(2,R) through P [v] = [P̃ v].

On the other hand, endomorphisms of R
2 (i.e. linear maps) do not project, in

general, to self maps of P1. Nevertheless, it was pointed out by Furstenberg [15]

that the space of projective maps has a natural compactification. If Q̃ ∈ End(R2)

is a linear transformation of rank r > 0 with kernel ker Q̃ and image Im Q̃ then,

Q̃ determines a quasi-projective transformation Q of P1 given by Q([v]) = [Q̃(v1)]

where v1 is any vector such that v − v1 ∈ ker(Q̃). Observe that Q is defined and

continuous on the complement of the projective subspace kerQ = {[v] : v ∈ ker Q̃},

and its image is ImQ = {[v] : v ∈ Im Q̃}. The number r is called the rank of this

quasiprojective transformation. Rank 1 quasi-projective transformations are quasi-

constant maps, each of them is undefined on a hyperplane in P
1 and its image is a

single point. We refer the reader to [17], [13] or [10] for a deeper discussion of

this topic.

The space of quasi-projective transformations inherits a topology from the space

of linear maps, through the natural projection π̃ : Q 7→ Q̃. Clearly, every quasi-

projective transformation Q is induced by some linear map Q̃ such that ‖Q̃‖ = 1. It

follow that the space of quasi-projective transformations is compact for this topol-

ogy (see [13, Theorem 2.83]). In particular, every sequence of projective trans-
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formations has a subsequence converging to some quasi-projective transformation

Q.

The next result will be needed in the proof of the proposition below. Its proof can

be found in [10, Lemma 6.1] for projective transformations in CP
1. The notion

of quasi-projective maps has been extended to transformations on Grassmannian

manifolds by Gol’dsheid and Margulis [16] and a proof of the following lemma in

this context can be found in [3, Lemma 2.4].

Lemma 3.1.3. If (Pn)n is a sequence of projective transformations converging to a

quasi-projective transformation Q, and (νn)n is a sequence of probability measures

in P
1 weakly converging to some probability ν0 with ν0(kerQ) = 0 then (Pn)∗νn

converges weakly to Q∗ν0.

The following result plays an important part in our proof of Theorem A below.

Proposition 3.1.4. Let (Ln)n be a sequence of SL(2,R) matrices converging to id

and, for each n ∈ N let ηn be an Ln-invariant measure on P
1 converging in the weak*

topology to 1
2 (δp + δq) for some p, q ∈ P

1 with p 6= q. Then for every n sufficiently large

either Ln is hyperbolic or Ln = id.

Proof. The proof is by contradiction. We start observing that as Ln converges to the

identity and the trace map is continuous, all the matrices have positive trace for n

sufficiently large. Consequently, if Ln is not the identity we have three possibilities:

the trace tr(Ln) > 2 which means that the matrix Ln is hyperbolic, tr(Ln) < 2 so

the matrix Ln is elliptic or tr(Ln) = 2 and the matrix Ln is parabolic and is non

diagonalizable with both eigenvalues equal to 1.

Elliptic case: Suppose initially that all the matrices Ln have tr(Ln) < 2. Hence

it is conjugated to a rotation of angle θn = arccos
(

tr(Ln)
2

)

. In particular, for each

n ∈ N there exists Pn ∈ SL(2,R) so that Ln = P−1
n RθnPn where Rθn stands for the

rotation of angle θn. Moreover, since tr(Ln)
n→+∞
−−−−−→ 2, we get that θn

n→+∞
−−−−−→ 0.

Now, for each n ∈ N let us consider νn = Pn∗ηn which is an Rθn-invariant measure.

In fact, for every measurable set A ⊂ P
1

νn(R−1
θn
A) = ηn((P−1

n ◦Rθn)A)

= ηn((Rθn ◦ Pn)−1A)

= ηn((Pn ◦ Ln)−1A)

= ηn((L−1
n ◦ P−1

n )A)

= ηn(P−1
n A)

= νn(A).
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We start observing that there exists a subsequence {nj}j so that νnj
converges to

Leb where Leb stands for the Lebesgue measure on P
1. Indeed, if θn is an irrational

number then we know that the only Rθn-invariant measure is Leb. In particular,

νn = Leb. Thus, if there are infinitely many values of n for which θn is an irrational

number we are done.

Suppose then that θn is a rational number for every n ∈ N. In particular, Rθn is

periodic and denoting by qn its period, since θn
n→+∞
−−−−−→ 0, we have that qn

n→+∞
−−−−−→

+∞.

In what follows we make an abuse of notation thinking of P1 as [0, 1] identifying

the extremes of the interval.

Let ϕ : P1 → R be a continuous map and ε > 0. Since P
1 is compact, there exists

δ > 0 so that | ϕ(x) − ϕ(y) |< ε whenever d(x, y) < δ. Thus, taking n ≫ 0 so

that qn > 1
δ we get that | ϕ(x) − ϕ

(

j
qn

)

|< ε for every x ∈ Ij =
[

j
qn
, j+1

qn

)

and

j = 0, 1, . . . , qn − 1. In particular,

∣

∣

∣

∣

∣

∣

1

νn

([

j
qn
, j+1

qn

))

∫
j+1

qn

j

qn

ϕdνn − ϕ

(

j

qn

)

∣

∣

∣

∣

∣

∣

< ε. (3.2)

Since νn is Rθn-invariant and

I =
qn−1
⋃

j=0

Ij =
qn−1
⋃

j=0

R−j
θn

(I0),

then νn

([

j
qn
, j+1

qn

))

= 1
qn

for every j = 0, 1, . . . , qn − 1. Summing the expression in

3.2 for j from 0 up to qn − 1 and dividing both sides by qn we get that

∣

∣

∣

∣

∣

∣

∫ 1

0
ϕdνn −

1

qn

qn−1
∑

j=0

ϕ

(

j

qn

)

∣

∣

∣

∣

∣

∣

< ε.

On the other hand, since ϕ is Riemann integrable,

lim
n→∞

1

qn

qn−1
∑

j=0

ϕ

(

j

qn

)

=

∫

ϕdLeb

which implies that νn
n→+∞
−−−−−→ Leb as claimed. So, restricting to a subsequence, if

necessary, we may assume that νn
n→+∞
−−−−−→ Leb.

We now analyze the accumulation points of ηn = P−1
n ∗νn. If {P−1

n }n stay in a

compact set of SL(2,R) then, taking a subsequence if necessary, we may assume

that there exists P ∈ SL(2,R) so that P−1
n → P . In particular, limn→∞ ηn =

P∗Leb which contradicts our assumption since P∗Leb is non-atomic. If
∥

∥P−1
n

∥

∥ → ∞
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then we can work on the compactification of quasi-projective transformations. In

particular, restricting to a subsequence, if necessary, we may suppose that Qn =

P−1
n /‖P−1

n ‖ converges to some quasi-projective map Q. Note that, since ‖P−1
n ‖ =

‖Pn‖ → ∞, ‖Qn‖ = 1 and | detQn| = limn 1/‖Pn‖2 = 0, then Q has rank 1 i.e. is

a quasi-constant map and its image is a single point z (see for instant the proof of

[24, Lemma 6.4]).

Thus, as the kernel has zero Lebesgue measure we can apply Lemma 3.1.3 to con-

clude that

lim
n→∞

P−1
n ∗νn = lim

n→∞
Qn∗νn = Q∗Leb = δz

which is a contradiction. Consequently, Ln may be elliptic only for finitely many

values of n.

Parabolic case: To conclude the proof it remains to rule out the cases when tr(Ln) =

2 and the matrix are non diagonalizable for infinitely many values of n. So, suppose

Ln is non diagonalizable and both of its eigenvalues are 1 for every n. Then by the

Jordan’s normal decomposition we have

Ln = P−1
n

(

1 1

0 1

)

Pn

for some Pn ∈ GL(2,R). Consequently, the only invariant measure for Ln is atomic

and have only one atom, contradicting the fact that ηn
n→+∞
−−−−−→ 1

2(δp + δq). Thus, Ln

can be parabolic and different from id only for finitely many values of n concluding

the proof of the proposition.

Let us consider the projective special linear group given by PSL(2,R) = SL(2,R)/{±Id}.

That is, given A,B ∈ SL(2,R) let us define equivalence relation ∼ given by A ∼ B

if and only if A = B or A = −B. Given A ∈ SL(2,R), let

[[A]] = {B ∈ SL(2,R);B ∼ A}

be the equivalence class of A with respect to ∼. Then, we have that PSL(2,R) =

{[[A]];A ∈ SL(2,R)}. Observe that the norm ‖·‖ on SL(2,R) naturally induces

a norm, which we are going to denote by the same symbol, on PSL(2,R): given

A ∈ SL(2,R),

‖[[A]]‖ := ‖A‖ = ‖−A‖.

Given A : M → SL(2,R) let us consider Ã : M → PSL(2,R) defined by Ã(x) =

[[A(x)]]. By Kingman’s subadditive ergodic theorem [19] and the ergodicity of µ it

follows that the limit

L(Ã, µ) = lim
n→+∞

1

n
log ‖Ãn(x)‖
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exists and is constant for µ-almost every x ∈ M . In particular, since Ãn(x) =

[[An(x)]] then ‖An(x)‖ = ‖Ãn(x)‖ for every x ∈ M and n ∈ N. Hence, we get

that λu(A,µ) = L(Ã, µ). Another simple observation is that for every v ∈ P
1,

[A(x)v] = [Ã(x)v] and, consequently, the action induced by A on P
1 coincide with

the action of Ã on P
1.

Moreover, HÃ
γ = [[HA

γ ]] ∈ PSL(2,R) is well defined and have similar properties

with respect to Ã as those of HA
γ with respect to A described in Section 3.1.2.

In particular, a similar conclusion to that of Section 3.1.2 holds for Ã whenever

HÃ
γ = [[id]] for every (3K,L)-loop γ: we can perform a change of coordinates

that makes the cocycle (Ã, f) constant without changing L(Ã, µ). Consequently,

denoting this new cocycle by ˆ̃A, it follows that L(Ã, µ) is equal to logarithm of the

norm of the greatest eigenvalue of any representative of ˆ̃A.

Furthermore, Proposition 3.1.4 also have a counterpart for PSL(2,R) cocycles. In

order to state it, recall that a sequence {L̃n}n in PSL(2,R) is said to converge

to L̃ ∈ PSL(2,R) if there are representatives L and Ln in SL(2,R) of L̃ and L̃n,

respectively, so that the sequence {Ln}n converges to L in SL(2,R).

Proposition 3.1.5. Let L̃n ∈ PSL(2,R) be a sequence converging to [[id]] and, for

each n ∈ N let ηn be an L̃n-invariant measure on P
1 converging to 1

2 (δp + δq) for some

p, q ∈ P
1 with p 6= q. Then for every n sufficiently large either L̃n is hyperbolic or

L̃n = [[id]].

This result follows easily from Proposition 3.1.4: for every L̃n ∈ PSL(2,R) we can

take a representative of L̃n in SL(2,R) with positive trace and apply the aforemen-

tioned result to these representatives.

3.2 Proof of Theorem A

Let f : M → M , A : M → SL(2,R) and µ be given as in Theorem A and suppose

there exists a sequence {Ak}k∈N in Hα(M) with λu(Ak, µ) = λs(Ak, µ) = 0 for

every k ∈ N and such that Ak converges to A in Hα(M).

For each k ∈ N, let mk be an ergodic FAk
-invariant probability measure on M × P

1

projecting on µ where FAk
is defined similarly to FA. The set M(µ) of probabil-

ity measures on M × P
1 that project down to µ is sequentially compact (see [24,

Lemma 6.4]). Hence, passing to a subsequence if necessary, we may assume that

the sequence {mk}k converges in the weak* topology to some measure m which is,

as one can easily check, FA-invariant and projects on µ. In order to prove Theorem

A we are going to analyze these families of measures and its respective disintegra-

tions.
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3.2.1 Continuity and convergence of conditional measures

Recall that Ws
L = {(x, y) ∈ M ×M ;x ∼s

L y} is compact and, since (x, y,A) → Hs,A
xy

is continuous, given a sequence {Ak}k∈N converging to A in Hα(M),

{Ws
L ∋ (x, y) → Hs,Ak

xy }k∈N

is equi-continuous for k sufficiently large. Then, using this, Proposition 3.1.1 and

its proof in [2] we have:

Corollary 3.2.1. For every k sufficiently large there exists an su-invariant disintegra-

tion {mk
x : x ∈ M} of mk with respect to the partition {{x} ×P

1 : x ∈ M} and µ such

that

{M ∋ x → mk
x}k≫0 is equi-continuous.

As an application of this corollary we get that

Proposition 3.2.2. The measure m is su-invariant and admits a continuous disinte-

gration {mx}x∈M with respect to {{x}×P
1}x∈M and µ so thatmk

x converges uniformly

on M to mx.

In order to prove the previous proposition we need the following auxiliary result.

Lemma 3.2.3. Let X and Y be compact metric spaces, µ a Borel probability measure

on X and {νk}k∈N be a sequence of probability measures on X × Y projecting on µ

and converging in the weak* topology to some measure ν. Then for every measurable

function ρ : X → R in L1(µ) and every continuous function ϕ : Y → R,

lim
k→∞

∫

ρ× ϕdνk =

∫

ρ× ϕdν.

Proof. Let ϕ be a continuous real valued function on Y . It is well-known that

the continuous functions are dense in L1(µ) (see for instance [21, Appendix A.5]).

Thus, given ε > 0, we can take ρ̂ : X → R a continuous function so that
∫

X
|ρ̂− ρ|dµ <

ε

2 supϕ
.

By the weak convergence, we can take k0 ∈ N such that for every k > k0,

∣

∣

∣

∣

∫

ρ̂× ϕdνk −
∫

ρ̂× ϕdν

∣

∣

∣

∣

<
ε

2
.
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Then, for k > k0,

∣

∣

∣

∣

∫

ρ× ϕdνk −
∫

ρ× ϕdν

∣

∣

∣

∣

< supϕ

∫

X
|ρ̂− ρ|dµ+

∣

∣

∣

∣

∫

ρ̂× ϕdνk −
∫

ρ̂× ϕdν

∣

∣

∣

∣

< ε.

We now proceed to the proof of Proposition 3.2.2:

Proof of Proposition 3.2.2. For each k ∈ N, let {mk
x}x∈M be the disintegration of

mk given by Corollary 3.2.1. We start observing that by the equicontinuity of the

disintegrations and Arzelà-Ascoli’s theorem, for every continuous function ϕ : P1 →

R, there exists a subsequence of
{

∫

P1 ϕdmk
x

}

k
such that

∫

P1

ϕdm
kj
x → Ix(ϕ)

uniformly on M . Moreover, fixing ϕ, the uniform convergence implies that Ix(ϕ) is

continuous in M .

Taking a dense subset {ϕj}j∈N of the space C0(P1) of continuous functions and

using a diagonal argument, passing to a subsequence if necessary, we can suppose

that
∫

P1

ϕdmk
x → Ix(ϕ)

for every ϕ ∈ C0(P1). It is easy to see that Ix defines a positive linear functional on

C0(P1). Consequently, by Riesz-Markov’s theorem, for every x ∈ M there exists a

measure m̂x on P
1 such that Ix(ϕ) =

∫

ϕdm̂x.

On the other hand, letting {mx}x∈M be a disintegration of m with respect to {{x}×

P
1}x∈M and µ and invoking Lemma 3.2.3 it follows that for every continuous func-

tion ϕ : P1 → R and any µ-positive measure subset D ⊂ M ,
∫

D

∫

P1

ϕdmk
xdµ =

∫

M×P1

χD × ϕdmk →
∫

M×P1

χD × ϕdm =

∫

D

∫

P1

ϕdmxdµ.

Consequently, mx = m̂x for µ almost every x ∈ M . Thus, extending mx = m̂x

for every x ∈ M we get a continuous disintegration of m such that mk
x → mx

uniformly on x ∈ M . In particular, by the equicontinuity of the holonomies and the

su-invariance of mk for every k it follows that m is also su-invariant as claimed.

From now on we work exclusively with the disintegrations {mk
x}x∈M and {mx}x∈M

of mk and m, respectively, given by Corollary 3.2.1 and the previous proposition.
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Recall we are assuming λu(A,µ) > 0 > λs(A,µ) hence, by the Oseledets’ theorem

there exist a decomposition R
2 = Es,A

x ⊕ Eu,A
x . Moreover, we have the following

result, for its proof we refer the reader to [5, Proposition 3.1]:

Lemma 3.2.4. If λu(A,µ) > 0 > λs(A,µ), every FA-invariant probability measure

m that projects down to µ may be written as a convex combination ams + bmu with

a, b ≥ 0 and a + b = 1, where m∗ is an FA-invariant measure projecting on µ such

that its disintegration {m∗
x}x∈M with respect to µ satisfies m∗

x(E∗
x) = 1 for ∗ ∈ {s, u}.

It follows from the lemma above that for any FA-invariant measure m, its condi-

tional measures are of the form mx = aδ
Eu,A

x
+ bδ

Es,A
x

for some a, b ∈ [0, 1] such

that a+ b = 1 where here and in what follows we abuse notation and identify a 1-

dimensional linear space E with its class [E] in P
1. Furthermore, Avila, Santamaria,

Viana in [2, Theorem D] established that under the hypothesis of Theorem A every

su-invariant section of a continuous fiber bundle π : E → M is continuous in M .

Thus we have:

Lemma 3.2.5. There exist continuous and su-invariant functions which coincide with

x → Es,A
x , Eu,A

x for µ-almost every point. By su-invariance we mean that for every

(admissible) choice of x, y, z ∈ M , Hs,A
xy E

∗
x = E∗

y and Hu,A
xz E∗

x = E∗
z for ∗ ∈ {s, u}.

Proof. Recallmk is a FAk
-invariant measure such thatmk → m. Since λu(Ak, µ) = 0

for every k ∈ N we get that
∫

ΦAk
dmk = 0 where ΦAk

: M × P
1 → R is given by

ΦAk
(x, v) = log ‖Ak(x)v‖

‖v‖ . On the other hand,

∫

ΦAk
dmk →

∫

ΦAdm.

Thus,
∫

ΦAdm = 0 which implies that

aλ+(A,µ) + bλ−(A,µ) =

∫

ΦAdm = 0.

Furthermore, since A(x) ∈ SL(2,R) for all x ∈ M we have λ+(A,µ) = −λ−(A,µ).

Therefore, a = b = 1/2. Now, by Proposition 3.2.2 we know that {mx}x is su-

invariant. Consequently, since Eu,A
x is u-invariant and Es,A

x is s-invariant, it follows

δ
Eu,A

x
=

1

a
(mx − bδ

Es,A
x

)

is also s-invariant. Analogously, Es,A
x is u-invariant. In particular, Eu,A

x and Es,A
x are

su-invariant. Continuity follows easily from [2, Theorem D] as mention above.

From now on we think of Es,A
x and Eu,A

x as continuous functions defined for every

x ∈ M .
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3.2.2 Excluding the atomic case with a bounded number of

atoms

In this subsection we prove thatmk
xk

can not have a bounded number of atoms (with

bound independent of k) for infinitely many values of k ∈ N and any xk ∈ M . The

general case will be reduced to this one. In order to do so, we need the following

lemma.

Lemma 3.2.6. If mk
y has an atom for some y ∈ M , then there exists j = j(k) ∈ N

such that for every x ∈ M , there exist v1
x, . . . v

j
x ∈ P

1 so that

mk
x =

1

j

j
∑

i=1

δvi
x
.

Proof. Let vy ∈ P
1 be such thatmk

y(vy) = β > 0 and for every x ∈ M , let γx be an su-

path joining y and x. Taking wx = HAk
γx
vy, by the su-invariance of the disintegration

{mk
x}k it follows that mk

x(wx) = β for every x ∈ M . Thus, considering

L = {(x, vx) ∈ M × P
1; mk

x(vx) = β}

we get that it is FAk
-invariant. Indeed,

mk
f(x)(PA(x)vx) = (PA(x))∗m

k
x(PA(x)vx) = mk

x(vx) = β

Consequently, since mk is ergodic and

mk(L) =

∫

mk
x

(

L ∩
(

{x} × P
1
))

dµ ≥ β > 0.

it follows that mk(L) = 1. In particular, mk
x

(

L ∩
(

{x} × P
1
))

= 1 for µ-almost every

x ∈ M . Otherwise, if the set D ⊂ M where mk
x

(

L ∩
(

{x} × P
1
))

< 1 has positive

measure, then

mk(L) =

∫

M
mk

x

(

L ∩
(

{x} × P
1
))

dµ(x)

=

∫

D
mk

x

(

L ∩
(

{x} × P
1
))

dµ(x) +

∫

Dc
mk

x

(

L ∩
(

{x} × P
1
))

dµ(x)

<

∫

D
dµ(x) +

∫

Dc
dµ(x) = 1.

By the definition of L, this implies that

mk
x =

1

j

j
∑

i=1

δvi
x
,

where 1
j = β (in particular, j does not depend on x).
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This is true for every x in a full measure set M̂ ⊂ M . To prove that this claim holds

true for every x ∈ M , given x ∈ M take some su-path γx from a point z ∈ M̂ to x.

By su-invariance, if we define ωi
x = HA

γx
vi

z we have

mk
x =

(

HA
γx

)

∗
mk

z =
1

j

j
∑

i=1

δωi
x
.

We now proceed to prove that for infinitely many k non conditional measure of mk

can have a bounded number of atoms with bound independent of k. The proof is

going to be by contradiction. Assume there exist a subsequence k’s such that there

exist x ∈ M such that mk
x has a bounded number of atoms.

So, passing to a subsequence and using the previous lemma suppose mk
x has j(k)

atoms and that the sequence {j(k)}k is bounded. Restricting again to a subse-

quence, if necessary, we may assume that j(k) is constant equal to some j ∈ N. In

particular, since

mx =
1

2
δ

Es,A
x

+
1

2
δ

Eu,A
x
,

for k sufficiently large mk
x has an even number of atoms. Thus, writing

mk
x =

1

j

j
∑

i=1

δvi
k

(x)

and reordering if necessary we may suppose that vi
k(x) → Eu,A

x for i ≤ j
2 and

vℓ
k(x) → Es,A

x for ℓ > j
2 . Moreover, by Proposition 3.2.2, such convergence is

uniform.

Observe now that for each k there exists some xk ∈ M such that Ak(xk)vik

k (xk) =

vjk

k (f(xk)) for some ik ≤ j
2 and jk >

j
2 . Otherwise, the set

L =
⋃

x∈M

{x} × {v1
k(x), . . . v

j
2

k (x)}

would be FAk
-invariant with measure

mk(L) =

∫

mk
x({v1

k(x), . . . v
j
2

k (x)})dµ =
1

2
,

contradicting the ergodicity. Thus, restricting to a subsequence, if necessary, we

may assume without loss of generality that vik

k (xk) = v1
k(xk) and vjk

k (xk) = vj
k(xk)

for every k ∈ N and that xk → x. In particular,

A(x)Eu,A
x = lim

k→∞
Ak(xk)v1

k(xk) = lim
k→∞

vj
k(f(xk)) = Es,A

f(x),
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a contradiction.

Summarizing, we can not have a subsequence {ki}i so that the sequence {j(ki)}i is

bounded where j(k) stands for the number of atoms of mk
x (which is independent

of x ∈ M).

3.2.3 Conclusion of the proof

Now we consider the general case. The idea of the proof is to use Proposition 3.1.5

to reduce the proof to the case presented in Section 3.2.2,

Given x ∈ M let γ be a non-trivial su-loop at x. In particular, from Lemma 3.2.5 it

follows that

HA
γ E

∗,A
x = E∗,A

x

for ∗ ∈ {s, u}. Consequently, either HA
γ is hyperbolic or HA

γ = ± id.

If there exist x and γ such that HA
γ is hyperbolic then, by the convergence of

HAk
γ to HA

γ , it follows that HAk
γ is also hyperbolic for every k ≫ 0. Thus, since

(

HAk
γ

)

∗
mk

x = mk
x, it follows that mk

x is atomic and has at most two atoms for ev-

ery k ≫ 0 but from Section 3.2.2 we know this is not possible. So, we get that

HA
γ = ± id for every su-loop at x and every x ∈ M and therefore HÃ

γ = [[id]] for

every su-loop at x and every x ∈ M where Ã is defined in 3.1.3.

From Proposition 3.1.5 we get that either there exists a non-trivial su-loop γ at

some point x ∈ M and a sequence {kj}j going to infinite as j → +∞ so that H
Ãkj
γ

is hyperbolic for every j and thus H
Akj
γ is also hyperbolic for every j, or HÃk

γ = [[id]]

for every su-loop γ and every k > kγ for some kγ ∈ N.

Arguing as we did above we conclude that the first case can not happen. So, all we

have to analyze is the case when HÃk
γ = [[id]] for every su-loop γ and every k > kγ

for some kγ ∈ N.

If there exists k0 ∈ N so that kγ ≤ k0 for every su-loop γ then HÃk
γ = [[id]] for all

k > k0 and for all γ. Making the change of coordinates given in 3.1 for every k > k0

(recall Section 3.1.3) we get the that L(Ãk, µ) is equal to the logarithm of the norm

of the greatest eigenvalue of any representative of ˆ̃Ak(x), where ˆ̃Ak(x) is a constant

element of PSL(2,R), and ˆ̃Ak(x) → ˆ̃A(x). In particular,

λu(Ak, µ) = L(Ãk, µ)
k→+∞
−−−−→ L(Ã, µ) = λu(A,µ)

which is a contradiction.

Recall that in order to perform the change of coordinates in 3.1 it is enough to

assume that HÃk
γ = [[id]] for every (K ′, L′)-loop γ for some K ′, L′ > 0. To conclude
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the proof of Theorem A, in view of the previous argument, we only have to show

that we can not have kγ arbitrarily large for (K ′, L′)-loops.

Let kγ be minimum for its defining property, that is, HÃk
γ = [[id]] for every k > kγ

and H
Ãkγ
γ 6= [[id]]. Suppose that for each j ∈ N there exist xj ∈ M and a (K ′, L′)-

loop γj at xj so that kγj

j→+∞
−−−−→ +∞. Passing to a subsequence we may assume

xj
j→+∞
−−−−→ x and γj

j→+∞
−−−−→ γ where γ is an su-loop at x. This can be done because

each γj has at most K ′ legs and each of them with length at most L′. In particular,

if γj is defined by the sequence xj = zj
0, z

j
1, . . . , z

j
nj

= xj then nj ≤ K ′ for every j.

Thus, passing to a subsequence we may assume nj = n ≤ K ′ for every j ∈ N and

zj
i

j→+∞
−−−−→ xi for every i = 1, . . . , n, consequently γ is the su-loop defined by the

sequence x = x0, x1, . . . , xn = x.

Now, since HÃ
γ = [[id]], H

Ãkγj
γj

j→+∞
−−−−→ HÃ

γ and H
Ãkγj
γj 6= [[id]] it follows from

Proposition 3.1.5 (recall Proposition 3.2.2) that H
Ãkγj
γj is hyperbolic for every j ≫ 0

and thus H
Akγj
γj is also hyperbolic for every j ≫ 0. Consequently, m

kγj
x is atomic

and has at most two atoms for every x ∈ M and every j ∈ N which again from

Section 3.2.2 we know is not possible concluding the proof of Theorem A.

Remark 3.2.7. We observe that Theorem A can also be proved using the techniques of

couplings and energy developed in [4]. We chose to present the previous proof because

it is shorter and also different. It is also worth noticing that a similar result was

obtained by Liang, Marín and Yang [20, Theorem 6.1] for the derivative cocycle under

the additional assumption that f has a pinching hyperbolic periodic point. In our

context, such a hypothesis would immediately imply that all the conditional measures

mk
x are atomic with at most two atoms for every k ≫ 0. In particular, Theorem A

would follow from the results of Section 3.2.2.

3.3 Examples

At this section we present two examples of fiber-bunched cocycles with nonvanish-

ing Lyapunov exponents over a partially hyperbolic map which are accumulated by

cocycles with zero Lyapunov exponents. The construction of this examples is based

on an example constructed by Wang and You in [26, Theorem 2]. Let us present

this result.

Let X be a Cr, r ≥ 1, compact manifold, T : X → X be ergodic with a normalized

invariant measure ν and A(x) be a SL(2,R)-valued function on X. We say that the

dynamical system (x, v) 7→ (T (x), A(x)v) in X × R
2 is a quasi periodic cocycle if the

base of the system is a rotation on the torus. That is, if X = T
m = R

m \Zm and

T = Tω : x 7→ x+ ω.
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Let ω be an irrational number. We call a rational number p/q a best approximation

of ω if every other rational fraction with the same or smaller denominator differs

from ω by a greater amount. In other words if the inequalities 0 < s ≤ q, and

p/q 6= r/s imply that
∣

∣

∣

∣

ω −
p

q

∣

∣

∣

∣

<

∣

∣

∣

∣

ω −
r

s

∣

∣

∣

∣

.

Irrational numbers have an unique continued fraction expansion:

ω = [a0 : a1, a2...] = a0 +
1

a1 +
1

a2 + · · ·

where a0 ∈ Z and an ∈ N for n ≥ 1. The continued fraction expansion of an

irrational number is infinite, whereas rational numbers have finite but not unique

continued fraction expansions. For the proof of the properties of the continued

fraction expansion that we mention here we refer to [18].

Given an irrational number ω = [a0 : a1, a2, ...] the n-th convergent is the rational

number pn/qn = [a0 : a1, ..., an]. The sequence (pn/qn)n converges to ω and this

sequence is the best approximation to ω: for any other rational number a/b such

that b ≤ qn we have
∣

∣

∣

∣

ω −
pn

qn

∣

∣

∣

∣

<

∣

∣

∣

∣

ω −
a

b

∣

∣

∣

∣

.

Moreover, we say ω is of bounded type if there exist M > 0 such that an ≤ M for all

n.

With this definitions we are able to state Wang and You’s result.

Theorem 3.3.1. [26, Theorem 1] Consider quasi-periodic SL(2,R) cocycles over S1

with ω being a fixed irrational number of bounded-type. For any 0 ≤ l ≤ ∞, there

exists a cocycle Al ∈ C l(S1, SL(2,R)) with arbitrarily large Lyapunov exponent and

a sequence of cocycles Ak ∈ C l(S1, SL(2,R)) with zero Lyapunov exponent such that

Ak → Al in the C l topology. As a consequence, the set of SL(2,R)-cocycles with

positive Lyapunov exponent is not C l open.

3.3.1 Proof of Theorem B

Let ω be an irrational number of bounded type and f0 : S1 → S1 be given by

f0(t) = t+2πω where S1 is the unit circle. Let A0 : S1 → SL(2,R) be the cocycle Ar

given by Theorem 3.3.1. And {Ak}k be a sequence in Cr(S1,SL(2,R)) converging

to A0 in the Cr topology, so that λu(Ak, ν) = 0 for every k ∈ N where ν denotes the

Lebesgue measure on S1 (also given by Theorem 3.3.1) .
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Now, given f1 : N → N , a volume-preserving Anosov diffeomorphism of a compact

manifold N , let us consider the map f : M := S1 ×N → M given by

f(t, x) = (f0(t), f1(x))

and let Â : M → SL(2,R) be given by

Â(t, x) = A0(t).

Thus, defining Âk(t, x) = Ak(t) and denoting by µ the Lebesgue measure on M we

have that the limit of Âk is Â. Moreover,

λu(Âk, µ) = λu(Ak, ν) = 0

for every k ∈ N and

λu(Â, µ) = λu(A0, ν) > 0.

Consequently, since f is a volume-preserving partially hyperbolic and center-bunched

diffeomorphism and f1 may be chosen so that (Â, f) is fiber-bunched, we complete

the proof of Theorem B.

3.3.2 Random product cocycles

We now present another construction showing that given any real number λ > 0, we

have a fiber-bunched cocycle A over a partially hyperbolic and center-bunched map

f so that λu(A,µ) = λ which can be approximated by cocycles with zero Lyapunov

exponents. We start with a general construction.

Let Σ = {1, . . . , k}Z be the space of bilateral sequences with k symbols and σ : Σ →

Σ be the left shift map. Given maps fj : K → K and Aj : K → SL(2,R) for

j = 1, . . . , k where K is a compact manifold, let us consider f : Σ × K → Σ × K

and A : Σ ×K → SL(2,R) given, respectively, by

f(x, t) = (σ(x), fx0
(t)) and A(x, t) = Ax0

(t).

The random product of the cocycles {(Aj , fj)}
k
j=1 is then defined as the cocycle over

f which is generated by A. Observe that this definition generalizes the notion of

random products of matrices explaining our terminology. Indeed, taking K as being

a single point we recover the aforementioned notion.

Differently from the case of random products of matrices where one have continuity

of Lyapunov exponents (see [4],[9], [24]), in the setting of random products of

cocycles Lyapunov exponents can be very ‘wild’. This is what we exploit to construct

our next example.
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Let f0 : S1 → S1 and ν be as in the previous example and let A0 ∈ Cr(S1, SL(2,R))

be given by Theorem 3.3.1 so that λu(A0, ν) > λ.

Taking f1 : S1 → S1 to be f1(t) = t and A1 : S1 → SL(2,R) given by A1(t) = id,

let (A, f) be the random product of the cocycles (A0, f0) and (A1, f1) as defined

above. Thus, letting η be the Bernoulli measure on Σ defined by the probability

vector (p0, p1) where p0 is so that p0λ
u(A0, ν) = λ and considering µ = η × ν, we

are going to prove that the cocycle generated by A over f has positive Lyapunov

exponents and is accumulated by cocycles with zero Lyapunov exponents.

Indeed, let {A0,k}k be a sequence in Cr(S1, SL(2,R)) converging to A0 for which

the cocycle (A0,k, f0) satisfies λu(A0,k, ν) = 0 for every k ∈ N whose existence is

guaranteed by our choice ofA0 and Theorem 3.3.1. Also let {A1,k}k be the sequence

such that A1,k = id for every k ∈ N and (Ak, f) be the random product of (A0,k, f0)

and (A1,k, f1). It is easily to see that Ak
k→∞
−−−→ A.

Now, for µ-almost every (x, t) ∈ Σ × S1,

λu(Ak, µ, x, t) = lim
n→∞

1

n
log ‖An

k (x, t)‖.

Thus, observing that An
k(x, t) = A

τn(x)
0,k (t) where

τn(x) = #
{

1 ≤ j ≤ n; σj(x)0 = 0
}

,

it follows that

λu(Ak, µ, x, t) = lim
n→∞

τn(x)

n

1

τn(x)
log

∥

∥

∥A
τn(x)
0,k (t)

∥

∥

∥ = p0λ
u(A0,k, ν).

In particular, λu(Ak, µ, x, t) is constant equal to λu(Ak, µ) for µ-almost every (x, t) ∈

Σ × S1. Analogously, λu(A,µ) = p0λ
u(A0, ν). Consequently,

λu(Ak, µ) = 0 for every k ∈ N and λu(A,µ) = λ > 0

as claimed. Observe that despite the fact of not being smooth, the map f is partially

hyperbolic in the sense of the expansion and contraction properties when Σ is en-

dowed with the usual metric. Moreover, it is center-bunched and the cocycle A is

fiber-bunched.
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4Probability distributions with non

compact support

In this chapter we present our results regarding the continuity of Lyapunov expo-

nents when the base measure has non compact support. We first analyze the semi-

contiuity relative to the weak* topology and to the Wasserstein topology in Section

4.1. Finally, in Section 4.2, we prove that the Wasserstein topology is not enough to

guarantee the continuity of the Lyapunov exponents.

4.1 Semicontinuity

Let us begin by giving an example that shows that if we only assume convergence

in the weak* topology, the Lyapunov exponents are not necessary semicontinuous.

On the other hand, in Section 4.1.2 we use the convergence of the first moments

provided by the Wassertein topology, to prove the semicontinuity relative to this

topology.

4.1.1 Semicontinuity counterexample with weak* topology

At this section we proof Theorem 2.4.3. Thus, we construct a sequence of measures

qk converging to q in the weak* topology such that λ+(qk) ≥ 1 while λ+(q) = 0.

We begin by defining the function α : N → SL(2,R) by

α(2k − 1) =

(

σk 0

0 σ−1
k

)

α(2k) =

(

σ−1
k 0

0 σk

)

where (σk)k is an increasing sequence such that σ1 > 1 and σk → +∞.

Let µ = qZ be a measure in M where q is the measure on SL(2,R) given by

q =
∑

k∈N

pkδα(k),

with
∑

pk = 1, 0 < pk < 1 for all k ∈ N.
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The key idea to construct this example is to find pk and σk such that log ‖A‖ ∈ L1(µ)

and satisfying the hypothesis above. Consider 0 < r < 1/2 < s < 1, and l = s/r > 1.

Let us take σk = elk for all k, which is an increasing sequence provided that l > 1.

For k ≥ 2 take p2k−1 = p2k = rk. Since 0 < r < 1/2 it is easy to see that

∑

k≥3

pk = 2
∑

k≥2

p2k = 2
∑

k≥2

rk = 2
r2

1 − r
< 1

We have to choose p1 and p2 such that
∑

pk = 1. Then, it is enough to take

p1 = p2 =
1

2

(

1 − 2
r2

1 − r

)

.

We continue by showing that log ‖A‖ ∈ L1(µ). This is an easy computation,

∫

M
log ‖A‖dµ = 2p2 log σ1 + 2

∑

k≥2

p2k log σk = 2p2l + 2
∑

k≥2

sk.

Since 0 < s < 1 this geometric series is convergent. Moreover, since p2k−1 = p2k for

all k then λ+(q) = 0.

What is left is to construct the sequence qn. Fix n0 > 1 large enough so 1
2

(

1 − 2 r2

1−r

)

>

l−n for all n ≥ n0, and consider qn =
∑

k q
n
k δα(k) where for n ≥ n0

qn
2n = l−n + rn,

qn
2 =

1

2

(

1 −
r2

1 − r

)

− l−n

qn
k = pk other case.

Thus, since qn
k converges to pk when n goes to infinite for all k, it is easy to see that

qn converges in the weak* topology to q.

The proof is completed by showing that λ+(qn) ≥ 1 for n large enough. It follows

easily since,

λ+(qn) = |qn
2n−1 − qn

2n| log σn + |qn
1 − qn

2 | log σ1 = l−nln + l−n+1,

which is equal to 1 + l−n+1 ≥ 1 for all n ≥ n0.

4.1.2 Semicontinuity relative to the Wasserstein topology

We now consider the Wasserstein topology in P1(SL(2,R)). The advantage of using

this topology is that all probability measures in P1(SL(2,R)) have finite moment

of order 1. Therefore, the Lyapunov exponents always exist. This observation is a
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direct consequence of the fact that log : [1,∞) → R is a 1-Lipschitz function and,

‖α‖ ≥ 1 for every matrix α ∈ SL(2,R), because

∫

log ‖A(x)‖dµ =

∫

log ‖α‖dp ≤
∫

d(α, id)dp < ∞.

Before beginning the proof of Theorem 2.4.4 we need to recall some important re-

sults regarding the relationship between Lyapunov exponents and stationary mea-

sures.

A probability measure η on P
1 is called a p-stationary if

η(E) =

∫

η(α−1E)dp(α),

for every measurable set E ∈ P
1 and α−1E = {[α−1v] : [v] ∈ E}.

Roughly speaking, the following result shows that the set of stationary measures for

a measure p is closed for the weak* topology.

Proposition 4.1.1. Let (pk)k be probability measures in SL(2,R) converging to p in

the weak* topology. For each k, let ηk be pk-stationary measures and ηk converges to

η in the weak* topology. Then η is a stationary measure for p.

Furthermore, when f is the shift map, it is well-known that

λ+(p) = max

{
∫

Φdp× η : η p− stationary
}

, (4.1)

where Φ : SL(2,R) × P
1 → R is given by

Φ(α, [v]) = log
‖αv‖

‖v‖
.

For more details see for example [24, Proposition 6.7].

Let us begin the proof of Theorem 2.4.4. In order to do this we will prove that λ+(p)

is upper semi-continuous. The case of λ−(p) is analogous.

Let (pk)k be a sequence in the Wasserstein space P1(M) converging to p, that is

W (pk, p) → 0. For each k ∈ N let ηk a stationary measure that realizes the maximum

in (4.1). That is:

λ+(pk) =

∫

Φdpkdηk.

Since P
1 is compact then M(P1) the set of all invariant measures in P

1 is sequen-

tially compact (see [21, Proposition 2.1.6]). Then, passing to a subsequence if nec-

essary, we can suppose ηk converges in the weak* topology to a measure η which,

as established by Proposition 4.1.1, is a p-stationary measure.
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Let ǫ > 0, we want to prove that there exist a constant k0 ∈ N such that for each

k > k0
∣

∣

∣

∣

∫

Φdpkdηk −
∫

Φdpdη

∣

∣

∣

∣

< ǫ.

In order to do this we need to consider some properties of the Wasserstein topology.

First of all, since the first moment of p is finite, there exist K1 a compact set of

SL(2,R) such that
∫

Kc
1

d(α, id)dp <
ǫ

36
. (4.2)

Moreover, by Proposition 2.3.1, since pk
W

−→ p there exist R′ > 0 satisfying

lim sup
k

∫

d(α,id)>R′

d(α, id)dpk <
ǫ

36
,

then, there exist k′ > 0 such that for every k > k′

∫

d(α,id)>R′

d(α, id)dpk <
ǫ

36
. (4.3)

Take R > 0 big enough so B(id, R′) ∪ K1 ⊂ B(id, R) and define the compact set

K = B̄(id, R).

Since the function log : [1,∞) → R is 1-Lipschitz and ‖α‖ ≥ 1 for all α ∈ SL(2,R),

then

|Φ(α, [v])| =

∣

∣

∣

∣

log
‖αv‖

‖v‖

∣

∣

∣

∣

≤ log ‖α‖ ≤ |‖α‖ − ‖ id ‖| ≤ d(α, id). (4.4)

Our proof starts with the observation that

∣

∣

∣

∣

∫

Φdpkdηk −
∫

Φdpdη

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

K×P1

Φdpkdηk −
∫

K×P1

Φdpdη

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Kc×P1

Φdpkdηk

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Kc×P1

Φdpdη

∣

∣

∣

∣

.

On account of (4.3) it follows that
∣

∣

∣

∣

∫

Kc×P1

Φdpkdηk

∣

∣

∣

∣

≤
∫

Kc
d(α, id)dpk <

ǫ

3
. (4.5)

Furthermore, (4.2) implies that

∣

∣

∣

∣

∫

Kc×P1

Φdpdη

∣

∣

∣

∣

≤
∫

Kc
d(α, id)dp <

ǫ

3
. (4.6)
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We now proceed to analyze the integral:

∣

∣

∣

∣

∫

K×P1

Φdpkdηk −
∫

K×P1

Φdpdη

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

K×P1

Φdpkdηk −
∫

K×P1

Φdpkdη

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

K×P1

Φdpkdη −
∫

K×P1

Φdpdη

∣

∣

∣

∣

.

Consider ΦK = Φ|K×P1 the restriction of Φ to the compact space K ×P
1. Then, ΦK

is uniformly continuous with the product metric. Hence, there exist δ = δ(ǫ) such

that for every [v] ∈ P
1 and every α, β ∈ K satisfying d(α, β) < δ we have

|ΦK(α, [v]) − ΦK(β, [v])| <
ǫ

18
.

Moreover, by the compactness of the set K we can find α1, ..., αN ∈ K such that

K ⊂ ∪N
i=1B(αi, δ). Therefore, the convergence of (ηk)k to η in the weak* topology

implies that for each i = 1, ..., N there exist ki > 0 such that for k > ki

∣

∣

∣

∣

∫

P1

ΦK(αi, [v])dηk −
∫

P1

ΦK(αi, [v])dη

∣

∣

∣

∣

<
ǫ

18
.

Take k′′ = max{k1, ..., kN }. From the above it follows that given α ∈ K there exist

i such that d(α,αi) < δ and for every k > k′′ if Φi([v]) = ΦK(αi, [v]) then

∣

∣

∣

∣

∫

P1

ΦK(α, ·)dηk −
∫

P1

ΦK(α, ·)dη

∣

∣

∣

∣

≤
∫

P1

|ΦK(α, ·) − Φi| dηk +

∣

∣

∣

∣

∫

P1

Φidηk −
∫

P1

Φidη

∣

∣

∣

∣

+

∫

P1

|Φi − ΦK(α, ·)| dη <
ǫ

6
.

Since this convergence is uniform on α, this implies that

∣

∣

∣

∣

∫

K×P1

ΦK(α, [v])dηkdpk −
∫

K×P1

ΦK(α, [v])dηdpk

∣

∣

∣

∣

<
ǫ

6
, (4.7)

for all k > k′′.

Now, for each n ∈ N define An = SL(2,R)\B(id, R + 1/n) and, consider the

Urysohn function fn : SL(2,R) → [0, 1] given by

fn(α) =
d(α,An)

d(α,An) + d(α,K)
,

which converges pointwise to χK , the characteristic function on K. It is easily seen

that fn is continuous for each n, equal to zero in An and equal to 1 in K. Therefore,

the functions

ϕn(α) =

∫

P1

Φ(α, [v])dη · fn(α)
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are continuous. Fix (any) n ∈ N, then since |ϕn(α)| ≤ d(α, id) and, by Proposition

2.3.1 (4), there exist k′′′ = k′′′(n) such that for every k > k′′′

∣

∣

∣

∣

∫

ϕndpk −
∫

ϕndp

∣

∣

∣

∣

<
ǫ

18
.

Moreover, if we denote

ϕ(α) =

∫

P1

Φ(α, [v])dη · χK(α).

Since ϕn − ϕ = 0 in K and

|ϕn − ϕ| ≤ log ‖α‖|fn(α) − χK(α)| ≤ 2d(α, id).

By (4.2) and (4.3) we have
∫

|ϕn − ϕ|dp ≤ 2

∫

Kc
d(α, id)dp <

ǫ

18
,

∫

|ϕn − ϕ|dpk ≤ 2

∫

Kc
d(α, id)dpk <

ǫ

18

for each k > k′. Thus, if k > max{k′, k′′′} we get

∣

∣

∣

∣

∫

K×P1

Φdpkdη −
∫

K×P1

Φdpdη

∣

∣

∣

∣

<
ǫ

6
. (4.8)

Finally, taking k0 = max{k′, k′′, k′′′}, by (4.5) - (4.8), we conclude that for every

k > k0
∣

∣

∣

∣

∫

Φdpkdηk −
∫

Φdpdη

∣

∣

∣

∣

< ǫ.

We just proved that

λ+(pk) =

∫

Φdpkdηk →
∫

Φdpdη ≤ λ+(p),

which concludes our proof.

Note that this theorem also implies that the probability measures with zero Lya-

punov exponents are points of continuity. This is clear since, in that case,

λ+(p) = 0 = λ−(p).

Remark 4.1.2. Theorem 2.4.3 does not contradicts Theorem 2.4.4 since p /∈ P1(SL(2,R)).

To see this take x0 = id, then

∫

d(x, x0)dp =
∞
∑

k=0

pk‖αk − id ‖ = 2
∞
∑

k=0

rk(elk − 1)

40 Chapter 4 Probability distributions with non compact support



which diverges.

4.2 Examples of discontinuity

In this section we now proceed to the proof of Theorem 2.4.5. The idea of the proof

is to construct a measure q with countable support of hyperbolic matrices (αk)k and

positive Lyapunov exponent, and approximate it with measures qn whose support

is the same as q but changes the matrix αn by a rotation that exchanges the vertical

and horizontal axes. This would allow qn to have zero Lyapunov exponents.

Moreover, in Sections 4.2.2 and 4.2.3 we present two example of discontinuity

points of the Lyapunov exponents in the Wasserstein topology in SL(2,R)5 and

GL(2,R)2 respectively. The advantage of having more coordinates is that we can

exchange the axes by small rotations guarantying the closeness of the supports.

4.2.1 Proof of Theorem D

Consider the matrix valued function α defined by the hyperbolic matrices

α(k) =

(

k 0

0 k−1

)

Take m ∈ N the smallest natural number bigger than 1 such that
∑

n≥m e−√
n < 1,

which exist since
∑

k e
−

√
k is convergent, and define

pk = e−
√

k, if k ≥ m,

p1 = 1 −
∑

n≥m

e−√
n,

pk = 0, otherwise.

It is obvious from the definition that
∑

k pk = 1. Hence, we define the probability

measure q =
∑

pkδα(k). We need to see that q ∈ P1(SL(2,R)), in order to do so

notice that if x0 = id

∫

d(x, x0)dq =
∑

k

pk‖α(k) − id ‖ =
∑

k

e−
√

k(k − 1)

which is convergent by the Cauchy condensation test. Moreover, we have

λ+(q) =
∑

k≥m

e−
√

k log k > 0.

4.2 Examples of discontinuity 41



Now, consider B =

(

0 −1

1 0

)

and for each n consider

βn(k) =

{

α(k) if k 6= n,

B if k = n.

With this we define the probability measures qn =
∑

k pkδβn(k). In a similar way as

above, we can see that for all n these measures belong to P1(SL(2,R)). We proceed

to show that qn converges to q in the Wasserstein topology. This follows since

W (qn, q) ≤ pnd(α(n), B) ∼ ne−√
n

which goes to 0 if n goes to ∞.

It remains to proof that λ+(qn) = 0 for every n. This could be seen as a direct con-

sequence of a result presented by Bougerol and Lacroix in [11]. Before enunciate

this result let us recall a few definitions. We say that a measure q is irreducible if

there is no proper subspace of R2 invariant under all the matrices in the support of

q. Moreover q is strongly irreducible if there does not exist a finite family of proper

linear subspaces of R2 invariant under the support of q.

Proposition 4.2.1. [11, Theorem 6.1] Assume that the measure q is irreducible. Then,

if λ+(q) > λ−(q) one must have q strongly irreducible.

Here we present a more synthesized proof based on the ideas used by Bougerol

and Lacroix on the proof of the result mention above. We proceed by contradiction.

Suppose there exist N such that λ+(qN ) > 0 > λ−(qN ). We will consider the

distance in the projective space P
1 given by

δ([v], [w]) :=
‖v ∧ w‖

‖v‖‖w‖
= sin(∠(v,w)).

Consider the family F = {V,H}, where V = [e2] and H = [e1] are the vertical

and horizontal axis respectively. By the definition of the measure qN , it is clear that

this family is invariant by every matrix in the support of this measure. Moreover, if

x = (xk)k ∈ M then we can see that for every m

δ(Am(x)H,Am(x)V ) ≥ δ(H,V ) = 1. (4.9)

On the other hand, we have for every unit vectors v and w

‖Am(x)v ∧Am(x)w‖ ≤ ‖ ∧2 Am(x)‖.
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It is widely known that, for qN -almost every x ∈ M

λ+(qN ) + λ−(qN ) = lim
m

1

m
log ‖ ∧2 Am(x)‖.

Notice that qN is irreducible. Therefore, we have

λ+(qN ) = lim
m

1

m
log ‖Am(x)w‖,

for every unit vector w. For a deeper discussion of the two results mention above

we refer the reader to [11, Section III.5].

Thus, we have for every unit vectors v and w

lim
m

1

m
log

‖ ∧2 Am(x)‖

‖Am(x)v‖‖Am(x)w‖
= λ−(qN ) − λ+(qN ) < 0,

and hence

lim
m
δ(Am(x)H,Am(x)V ) ≤ lim

m

‖ ∧2 Am(x)‖

‖Am(x)e1‖‖Am(x)e2‖

= lim
m

exp

(

m ·
1

m
log

‖ ∧2 Am(x)‖

‖Am(x)e1‖‖Am(x)e2‖

)

= 0,

which is a contradiction with (4.9) and, we finish our proof.

Notice that this example shows that the Wasserstein topology is not enough to guar-

antee continuity of the Lyapunov exponents. The main problem is that the support

of the measures qn move further apart from the support of q. Thus, this suggest that

we need to add some hypothesis guaranteeing the “convergence” of the supports.

An assumption of this type was made by Bocker, Viana in [9] in order to prove the

continuity for measures with compact support.

In the next two sections we are going to describe a construction of points of dis-

continuity of the Lyapunov exponents as functions of the measure, relative to the

Wasserstein topology. However, in each of them the support of the measures are

arbitrarily close. These constructions were inspired by the discontinuity example

presented by Bocker Viana in [9, Section 7.1].

4.2.2 Discontinuity example in SL(2,R)5

Let us recall that M = (SL(2,R))Z, f : M → M is the shift map over M defined

by

(αn)n 7→ (αn+1)n.
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And the linear cocycle A is the product of random matrices which is defined by

A : M → SL(2,R), (αn)n 7→ α0.

Given an invariant measure p in SL(2,R) we can define µ = pZ which is an invariant

measure in M .

Now consider X = SL(2,R)5 with the product metric

d∞((α1, ..., α5), (β1, ..., β5)) = max{d(α1, β1), ..., d(α5, β5)}.

Let N = XZ be the space of sequences over X and g : N → N the shift map over

N . We can identify N with M using the function ι : M → N by ι((αn)n) = (βn)n

where

βn = (α5n, α5n+1, α5n+2, α5n+3, α5n+4).

It is easy to see that ι defines a bijection between N and M . Moreover, we have the

following identity

g(ι((αn)n)) = f5((αn)n).

Also we can consider the linear cocycle induced by A in N , that is the function

B : N → SL(2,R) given by

B((ι((αn)n)) = A5((αn)n).

So in this context we have the following result.

Theorem 4.2.2. There exist a measure q and a sequence of measures (qn)n on X

converging to q in the Warssestein topology, such that

λ+(B, qn) 9 λ+(B, q).

The main idea of the proof is to construct a measure on N whose Lyapunov expo-

nents are positive and approximate it, in the Warssestein topology, by measures with

zero Lyapunov exponents. In order to do that, define the function α : N → SL(2,R)

as

α(2k − 1) =

(

k 0

0 k−1

)

α(2k) =

(

k−1 0

0 k

)
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As in the example before take m ∈ N the smallest natural (odd) number bigger than

3 such that
∑

k≥m e−
√

k < 1, which exist since
∑

k e
−

√
k is convergent, and define

p2k = p2k−1 =
1

2
e−

√
k, if 2k − 1 ≥ m,

p3 = 1 −
∑

n≥m

e−√
n,

pk = 0, otherwise.

Let µ = q̃Z be a measure in M where q̃ is the measure on SL(2,R) given by

q̃ =
∑

k∈N

pkδα(k).

Let us consider the space Ω = N
5 and define the measure on X by

q =
∑

w∈Ω

pwδα(w),

where α(w) = (α(w1), · · · , α(w5)) and, pw = pw1
· · · pw5

if w = (w1, ..., w5).

Now consider the measure ν = qZ on N . First, we need to ensure that the measure

q belong to P1(X). This is a direct consequence of the fact that
∑

e−√
n(n − 1) is

convergent equal to some positive constant c. Indeed, if α0 = (id, ..., id) and the

notation p1 · · · p̂i · · · p5 denotes the product of p1 through p5 except pi then
∫

d∞(α,α0)dq =
∑

w

pwd∞(α(w), α0)

<
5
∑

i=1

∑

wj ,j 6=i

pw1
· · · p̂wi

· · · pw5

(

∑

wi

pwi
d(α(wi), id)

)

< c
5
∑

i=1

∑

wj ,j 6=i

pw1
· · · p̂wi

· · · pw5

= 5c

which proves our claim. Remember that this also guarantees the existence of

λ±(B, q) as mention in Section 4.1.2.

It is easy to see that ν = ι∗µ. Using this we have

λ+(B, q) = lim
n

1

n

∫

M
log ‖Bn(i(x))‖dµ

= lim
n

1

n

∫

M
log ‖A5n(x)‖dµ

= 5λ+(A, q̃)

= 5p3 log 2 > 0.
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The task is now to construct the sequence (qn)n. In order to do this, for each n ∈ N

consider wn = (2n, 2n + 2, 2n + 1, 2n − 1, 2n − 1) and define

β(wn) = (α(2n)Rǫ, α(2n + 2), α(2n + 1)Rδ , α(2n − 1), α(2n − 1)Rǫ),

where ǫ = n−1(n+ 1)−1, δ = arctan(ǫ) and,

Rǫ =

(

1 0

ǫ 1

)

, Rδ =

(

cos(δ) − sin(δ)

sin(δ) cos(δ)

)

.

We proceed to define the sequence by

qn =
∑

w 6=wn

pwδα(w) + pwnδβ(wn).

We claim that W (qn, q) → 0 if n goes to infinite. Our proof starts with the observa-

tion that

πn =
∑

w 6=wn

pwδ(α(w),α(w)) + pwnδ(α(wn),β(wn))

is a coupling of q and qn. Then,

W (qn, q) ≤
∫

d∞(u, v)πk(u, v)

= pwnd(α(wn), β(wn))

< max{‖α(2n) − α(2n)Rǫ‖, ‖α(2n − 1) − α(2n − 1)Rδ‖, ‖α(2n + 1) − α(2n + 1)Rǫ‖}

≤ ǫ(n+ 1) = n−1

which proofs our claim.

What is left is to show that λ+(B, qn) = 0 for all n. The method of proof follows the

same arguments as the Bocker-Viana example, we present it here for completeness.

The key idea is to prove the following lemma.

Lemma 4.2.3. Let Hx = R(1, 0) and Vx = R(0, 1). If Zn = [0 : β(wn)] then, for all

x ∈ Zn we have B(x)Hx = Vg(x) and B(x)Vx = Hg(x)

Proof. Notice that for any x ∈ Zn

B(x) =

(

0 −ǫ−2 sin(δ)

ǫ2 sin(δ) + ǫ cos(δ) 0

)

.

Which completes the proof.
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Let µn = qZn and consider ηn its normalized restriction to Zn. Also consider gn :

Zn → Zn be the first return map. Note that Zn can be describe by

Zn =
⊔

b∈B
[0 : wn, b, wn]

where the union is over the set B of all finite words b = (b1, ..., bs) with bj 6= wn for

every j = 1, ..., s. Moreover,

gn|[0:wn,b,wn] = gs|[0:wn,b,wn]

for each b ∈ B. Therefore, (gn, ηn) is a Bernoulli shift with alphabet B and probabil-

ity determined by pb = ηk([0 : wn, b, wn]).

Let B̃ : Zn → SL(2,R) the cocycle induced by B over gn. The next lemma es-

tablishes that the Lyapunov exponents of B̃ are obtained by multiplying the Lya-

punov exponents of B by the average return time. For its proof see [24, Proposition

4.18].

Proposition 4.2.4. For ηn-almost every x ∈ Zn there exist c(x) ≥ 1 such that the

Lyapunov exponents satisfy

λ±(B̃, x) = c(x)λ±(B,x),

for ηn-almost every x ∈ Zn. Moreover, by the ergodicity we have

λ±(B̃, qn) =
1

ηn(Zn)
λ±(B, qn).

Then it is is sufficient to proof that λ±(B̃, qn) = 0 for every n.

Suppose that the Lyapunov exponents of B̃ are different from zero and let R2 =

Eu
x

⊕

Es
x be the Oseledets decomposition. Note that, by Lemma (4.2.3), we have

B̃(x)Hx = Vgn(x) and B̃(x)Vx = Hgn(x) (4.10)

for ηn-almost every x ∈ Zn.

Let mn be the probability measure on N × P
1 defined by

mn(D) =
1

2
ηn ({x ∈ Zn : Hx ∈ D}) +

1

2
ηn ({x ∈ Zn : Vx ∈ D}) .

Thus, mn is the measure that projects down to ηn and whose disintegration is given

by

x 7→
1

2
(δHx + δVx).
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From (4.10) it follows easily that mn is B̃-invariant. It is a well-known fact that this

implies mn is a linear combination of the measures

mu
n(E) = ηn({x ∈ Zn : (x,Eu

x ) ∈ E}),

ms
n(E) = ηn({x ∈ Zn : (x,Es

x) ∈ E}).

The best general reference here is [24, Lemma 5.25].

The only point remaining concerns the ergodicity of mn. If mn is ergodic then it

must coincide with ms
n or mu

n. However, the conditional probability measures of mn

are supported on exactly two points while ms
n and mu

n have a single point in their

support. This contradiction proves that the Lyapunov exponents of B̃, and hence of

B, with respect to qn vanish for every n. Consequently, the proof is completed by

showing that mn is ergodic.

Suppose by contradiction that mn is not ergodic. Then, there is an invariant set

D ⊂ N × P
1 with 0 < mn(D) < 1. Let D0 be the set of points x ∈ Zn whose

fiber restricted to D, that is D ∩
(

{x} × P
1
)

, contains neither Hx nor Vx. This set

is (gn, ηn)-invariant on account of (4.10). Thus, since ηn is ergodic then the ηn-

measure of D0 is either 0 or 1. Since mn(D) > 0 then, by the definition of mn, we

must have ηn(D0) = 0. By the same method, since mn(D) < 1, it follows that the

ηn-measure of D2, the set of points x ∈ Zn whose fiber contains both Hx and Vx, is

zero.

Consider DH the set of points x ∈ Zn whose fiber contains only Hx but not Vx,

and let DV be the set of points in Zn whose fiber contains Vx but not Hx. The

results above show that DH ∪ DV has full ηn-measure. By 4.10, it follows that

gn(DH) = DV and gn(DV ) = DH . Therefore,

ηn(DH) = ηn(DV ) =
1

2
.

However, since gn is Bernoulli, g2
n is also ergodic which is a contradiction because,

g2
n(DH) = DH and g2

n(DV ) = DV .

4.2.3 Discontinuity example in GL(2,R)2

Let M = (GL(2,R))Z let f : M → M be the shift map over M and A : M →

GL(2,R) the product of random matrices. Now consider X = GL(2,R)2 with the

maximum norm, and let N = XZ be the space of sequences over X and g : N → N

the shift map over N . As before, we can identify N with M using the function

ι : M → N defined by ι((αn)n) = (βn)n where βn = (α2n, α2n+1) which is a

bijection between N and M .
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With the above definition we can see that

g(ι((αn)n)) = f2((αn)n

and definedB : N → GL(2,R) the linear cocycle induced byA inN byB(ι((αn)n)) =

A2((αn)n). In a similar way as the previous example there exist a measure p and a

sequence of measures (pk)k on X converging to p in the Warssestein topology, such

that λ+(A, pk) 9 λ+(A, p).

Indeed, let α : N → GL(2,R) be defined by

α(2k − 1) =

(

k 0

0 k−2

)

α(2k) =

(

k−2 0

0 k

)

.

Takingm ∈ N the smallest natural (odd) number bigger than 3 such that
∑

n≥m e−√
n

is less than 1, which exist since
∑

k e
−

√
k is convergent, and define

p2k = p2k−1 =
1

2
e−

√
k, if 2k − 1 ≥ m,

p3 = 1 −
∑

n≥m

e−√
n,

pk = 0, otherwise.

and let q̃ =
∑

k∈N pkδα(k), . Consider the space Ω = N
2 and define the measure on X

by q =
∑

w∈Ω pwδα(w), where α(w) = (α(w1), α(w2)) and, pw = p1p2 if w = (w1, w2).

Let ν = qZ a measure on N .

Analysis similar to that in Section 4.2.2 shows that q ∈ P1(X), and using that

ν = i∗µ we have

λ+(B, q) = lim
n

1

n

∫

N
log ‖Bn(x)‖dν

= lim
n

1

n

∫

M
log ‖A2n(x)‖dµ

= 2λ+(A, q̃)

= 2p3 log 2 > 0.

For each n ∈ N consider wn = (2n, 2n − 1) and define β(wn) = (β(2n), β(2n − 1)),

by

β(2n) =

(

1 −δ

0 1

)

α(2n)

(

1 0

ǫ 1

)

=

(

0 −nδ

ǫn n

)
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β(2n − 1) =

(

1 0

ǫ 1

)

α(2n − 1) =

(

n 0

ǫn n−1

)

,

where δ = n−(1+γ) with 0 < γ < 1, ǫ = n−3δ−1 = nγ−2.

We proceed to define the sequence by

qn =
∑

w 6=wn

pwδα(w) + pwnδβ(wn).

To prove that W (qn, q) → 0 if n goes to infinite we consider the diagonal coupling

of qn and q

πn =
∑

w 6=wn

pwδ(α(w),α(w)) + pwnδ(α(wn),β(wn))

Hence, we have

W (qn, q) ≤
∫

d∞(u, v)πn(u, v)

= pwnd∞(α(wn), β(wn))

< max{‖β(2n) − α(2n)‖, ‖β(2n − 1) − α(2n − 1)‖}

≤ max{ǫσn, n
−2 + nδ}

= max{nγ−1, n−2 + n−γ}

≤ 2n−l

where l = min{γ, 1 − γ} > 0, which proofs our claim.

The rest of the proof, that is proving that λ+(B, qn) = 0 for all n, runs as before by

noticing that for any x ∈ Zn = [0 : β(wn)]

B(x) =

(

0 −n2δ

ǫn−1 0

)

.

Indeed, this guarantees that B(x)Hx = Vg(x) and B(x)Vx = Hg(x) where Hx =

R(1, 0) and Vx = R(0, 1). Finally, applying the argument of the first return map as

in Section 4.2.2 we conclude our proof.
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