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Biodiversity for Bioindustries

G. Tamayo, W.F. Nader and A. Sittenfeld

Instituto Nacional de Biodiversidad (INBio), Apartado Postal
22-3100, Santo Domingo, Heredia, Costa Rica

11.1. Biodiversity and its Benefits

Biodiversity refers to the variety and variability of living material and eco-
logical complexes in a given area and comprises species, genetic and
ecosystem diversity. Biodiversity is not only the basis of life on earth, but
also provides the goods and services essential to support every type of
human endeavour. Accordingly, biodiversity enables societies to adapt to
different needs and situations (US National Research Council, 1992).

Biodiversity generates economic value in different ways. Populations
are interconnected, for instance where predators and disease organisms
control populations of their prey, or when pollinators and seed dispensers
promote the growth of plant populations. Thus agriculture directly bene-
fits from a functioning ecosystem, allowing the extensive use of agro-
chemicals to be avoided. Biodiversity also generates economic value from
extractable products obtained from individual species (Wilson, 1992). For
centuries biodiversity has provided fuels, medicines, materials for shelter,
food and energy. The use of compounds, genes and species is essential to
meet industry needs. Furthermore, ecosystems contribute to climate regu-
lation, maintenance of hydrological cycles and nitrification of soils. In
addition, recreation, science and education also figure among the vast
array of social, ethical, spiritual, cultural and economic goods and services
provided by biodiversity that are recognized as fundamental for human
livelihoods and aspirations.

Bioprospecting links biodiversity and industry. Previously, this activ-
ity generated benefits almost exclusively for industry, leaving biodiversity
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conservation and source countries to generate benefits and returns else-
where. The rapid loss of biological diversity, with the extinction of 30 to
300 species per day (Japan Economic Newswire, 1995), has initiated a new
attitude towards the exploration of natural resources. Costa Rica’s Instituto
Nacional de Biodiversidad (the National Biodiversity Institute, INBio) has
pioneered a new concept of bioprospecting that integrates product dis-
covery with financial and intellectual returns to ‘nature’. INBio’s
Biodiversity Prospecting Department links the understanding and non-
damaging exploration of biodiversity to conservation activities and eco-
nomic development of the countries where bioresources were first
obtained (Sittenfeld and Villers, 1994). The exploration and conservation
of the world’s biotic resources require an approach involving bioindus-
tries, research centres and developing countries, all collaborating towards
a common goal, each participant benefiting from the relationship.
Presently, a natural resource conservation strategy based on the three over-
lapping steps – saving, knowing and using biodiversity – is paving the
way towards implementing joint activities for the benefit of industry, bio-
diversity conservation and source countries (Global Biodiversity Strategy,
1992; Janzen and INBio, 1992).

Gene technology opens a new dimension for bioprospecting.
However, because in its current stage of development it represents more
of a threat than a benefit to the primarily agricultural societies of the devel-
oping world, new strategies must be implemented to combine benefits to
the biotech industry with biodiversity conservation and the development
of biodiversity-rich nations.

11.2. Industry and Biodiversity

11.2.1. Development of drugs and pesticides

Up until the present, the primary beneficiaries of biodiversity have been
the pharmaceutical and agricultural industries. Sales of drugs based on
natural products from plants were estimated at $US43 billion in 1985
worldwide, accounting for approximately 40% of the total drug market
(Principe, 1989). Earnings from a single new successful pharmaceutical on
the market can be in the range of a billion dollars. The value of yet undis-
covered pharmaceuticals in tropical forests is estimated at $US3–4 billion
for a private pharmaceutical company, and as much as $US47 billion to
society as a whole (Mendelsohn and Balick, 1995).

On the other hand, sales of pesticides in the US by 18 major suppliers
were estimated at $US6.5 billion in 1992 (Frost & Sullivan Inc., 1992).
Although humans have traditionally used plant products like rotenone or
nicotine as agricultural insecticides, most industrial pesticides on the 
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market have not been derived from natural compounds (Wink, 1993).
However, the toxicity and ecological hazards created by most of these
chemicals have initiated intensive research for more specific and
biodegradable pesticides, including new biological pest control agents
based on natural compounds and microorganisms. The first results of
these screening efforts are already on the market. For example, aver-
mectins are macrolides derived from Streptomyces avermitilis and possess-
ing insecticidal properties (Babu, 1988). Dehydration of avermectins yields
the even more efficient ivermectins, which generate approximately $US1
billion in annual sales, and are useful not only for the treatment of infesta-
tions of parasitic worms and insects in livestock, but also in humans.
Pyrethroids, on the other hand, were derived by chemical synthesis from
pyrethrins as lead structures as natural insecticides found in chrysanthe-
mum flowers (Wink, 1993). Pyrethrins are more stable and active than their
natural precursors (by a factor of 1000), but also produce more side-effects
in mammals. These  side-effects have led Germany to consider banning
pyrethrins from the market (Wink, 1993). Still undergoing development is
a nematocide, the pyrrolidine alkaloid 2R,5R-dihydroxymethyl-3R,4R-
dihydroxypyrrolidine from Lonchocarpus species, developed through a col-
laboration between the  British Technology Group, the Royal Botanical
Garden at Kew and INBio (Janzen et al., 1990; Birch et al., 1993).

Many of the technical aspects of screening and developmental
processes involved in creating new drugs or pesticides are related to more
general issues like biodiversity, technology transfer and biodiversity con-
servation, and will be described in more detail below.

Sources for new drugs or pesticides
Three major sources for the screening of new compounds, suitable for
drug or pesticide development, are available: (i) molecule libraries created
by combinatorial chemistry; (ii) fermentation broths of microorganisms;
and (iii) plant and animal extracts. Modern automated methods have cre-
ated high-throughput screening, allowing thousands of substances to be
tested for their biological activity rapidly and inexpensively. Therefore,
access to these three sources can be regarded as a prerequisite rather than
a privilege. The goal is the discovery of a ‘leading structure’ that will guide
the development of new drugs, pesticides or fine chemicals.

Although combinatorial chemistry plays an increasingly important
role, half of the ten best-selling drugs are derived from secondary metabo-
lites originally isolated from microorganisms or plants (O’Neill and Lewis,
1993). Obviously, organic chemistry has not yet caught up with the capac-
ity of nature to create new structures with a complex molecular diversity
(for review see Ecker and Crooke, 1995).

Screening for natural compounds has traditionally concentrated on
plants and microorganisms, identifying a huge variety of pharmacologically
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active alkaloids, terpenoids, aromatics and glycosides. Fungi and bacteria can
easily be isolated from soil samples and other sources. Once in a strain col-
lection, microorganisms and their products are readily accessible. Plants, on
the other hand, are more difficult to collect, but offer a higher molecular com-
plexity and diversity. Marine organisms yield new structures with high mol-
ecular diversity and important biological activities (König et al., 1994). For
example, briostatin and didemnin B are compounds found in molluscs and
shown to have strong antitumour activity; they have reached preclinical and
clinical trials, respectively. Shark and tunicate alkaloids are also currently
undergoing intensive investigations (Moore et al., 1993; Research Foundation
of the State University of New York, 1994). In contrast, insects, spiders and
other invertebrates have mainly been examined for their potential to produce
bioactive peptides and proteins rather than small molecules (see below). The
same applies to vertebrates like frogs, snakes and bats. Certain alkaloids
obtained from the skin of frogs (see below), and insect hormones and
pheromones useful for pest control are the exceptions. Nevertheless, drug
research is also heading in this direction. In collaboration with Merck & Co.
and Bristol-Myers Squibb (within an International Cooperative Biodiversity
Group together with Cornell University), INBio is screening insects for small
bioactive compounds (Sittenfeld and Lovejoy, 1995).

However, years of research may fail if the initial collection and docu-
mentation of biological material are not done properly. Problems may arise
if further material from the same species or subspecies, from the same
environment or even from the same location, is not available for later
investigation. Calanolides, for example, were isolated from Calophyllum
lanigerum var. austrocoriaceum (Kashman et al., 1992). These compounds
inhibit HIV in vitro. Although fully characterized (Cardellina et al., 1993a)
material from the same tree is now unavailable because the tree was sub-
sequently cut down. There is a lesson to be learned from this event as other
specimens from the same area did not yield even trace amounts of the
desired compounds.

The collection strategy
Natural compounds can be accessed through ethnobiological information,
evaluation of chemotaxonomic relationships, random sampling or bio-
rational observations.

Approximately 3000 million people use traditional medicines (Balick,
1994). Many of today’s multinational giants in the pharmaceutical indus-
try made their first millions with products derived from ethnobotany. Prior
to Bayer’s aspirin, American and Eurasian peoples treated fevers, inflam-
mation and pain with salicin-containing plants like willows and poplars.
The worldwide market for phytomedicines derived from ethnobotany is
estimated at $US12.4 billion, headed by products derived from ginseng,
ginkgo, garlic, horse chestnut and echinacea (Grünwald, 1995). Today 

258 G. Tamayo et al.



ethnobotanical information is readily accessible through Internet’s data-
bases, e.g. NAPRALERT or AGIS. But most companies avoid the search for
new compounds on the basis of ethnobiological information. An evalua-
tion of ‘hits’ during the Natural Products Drug Discovery Program at the
National Cancer Institute revealed no appreciable differences between
samples collected at random and those screened on the basis of ethno-
botanical leads (Cragg et al., 1994). These results were obtained after
dereplication, which eliminates a substantial number of substances.
Interpretation of illness descriptions from the ‘native pharmacologists’ is
also problematic. However, ethnobotanical information can be extremely
useful when applied to diseases that can be translated into the language of
Western medicine, e.g. diabetes, skin infections, wounds, etc. Aspects of
intellectual property rights in relation to this approach are discussed in
more detail in a recent study of the Rural Advancement Foundation
International (1994).

Chemotaxonomy is based on the assumption that related species from
the same genus or family produce the same type of secondary metabolites.
For example, most members of the Asteraceae produce sesquiterpenelac-
tones. An example is artemisinin, isolated from Artemisia annua on the
basis of ethnobotanical information. Likewise, members of the Rubiaceae
may produce alkaloids (quina alkaloids, for example), and species of the
genus Taxus may contain taxanes, etc.

Most large pharmaceutical companies, not limited by their screening
capacity, collect biological material randomly. They may show a preference
for certain plant families, but in general only the taxonomic identification
and exact documentation of the collection site of the sample are required.

The biorational approach requires the systematic study of interactions
between organisms within the ecosystem. The leaf-cutter ant, Atta
cephalotes, for example, avoids feeding the symbiotic fungus found in its
nest with leaves from Hymenaea courbaril (Harborne, 1989). The tree con-
tains a terpenoid (caryophillene epoxide) that inhibits the growth of the
fungus. Observations like this may provide decisive information leading to
the discovery of antifungal or formicide compounds. Evaluation of larvae
or adult insect feeding preferences may lead to the discovery of new insec-
ticides.

Technological aspects
The amount of material that can be taken from a particular environment
without causing damage is a primary concern for biodiversity conserva-
tion. Bioassays can be performed on 10–100 mg of a compound mixture,
the usual yield from 10 g of dry plant material. For confirmatory assays
and further fractionation and isolation, amounts in the range 100–1000 g
must be collected. Depending on a given compound’s yield, preclinical 
trials to evaluate toxic side-effects and effectiveness in animals may require
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large amounts (tonnes) of dried plant material if the compound is too com-
plex to be synthesized. There is no doubt that the survival of certain
species has been threatened in the past by drug researchers. The exploita-
tion of pilocarpine, for example, threatened the survival of Pilocarpus 
pignatifolios, P. microfilla and P. jaburandi species in South America (Balick,
1994). In another case, clinical trials with taxol have affected the survival
of Taxus brevifolia in its natural habitat.

When considering the possibility of countering this danger through
sustainable breeding or planting, one must keep in mind that cultivation
of a desired species may lead to a loss of the desired compound. The iso-
lation and identification of epibatidine from Epipedobates tricolor, a frog
used by indigenous people to poison arrowheads, has been described
(Sapnde et al., 1992). Epibatidine is a remarkably simple, but highly effi-
cient alkaloid that is 200 to 500 times more potent than morphine in anal-
gesic assay systems. However, investigation of the alkaloid required the
skins of 750 frogs collected from the wild. Attempts to breed these frogs in
an artificial environment led to a loss of epibatidine in the skin of the sec-
ond generation of frogs. Therefore, the compound is probably produced
by complex interactions with other organisms in the environment.

Extraction of plant material is a philosophy in its own right. An effi-
cient protocol for organic extraction was developed at the National Cancer
Institute (McCloud et al., 1988). The decision whether to use raw extracts,
prepurified fractions or even randomly isolated pure compounds for
bioassay depends on a drug company’s philosophy. Depending on the
bioassay, natural compounds like polysaccharides, tannins, saponins or
fatty acid esters must be removed prior to testing. This is of particular
importance for bioassays involving cell cultures (Cardellina et al., 1993b).

In recent years, drug bioassays have become increasingly specific,
rapid, reproducible and sensitive. At the same time, they have become less
susceptible to matrix and other effects that tend to cause false positive or
negative reactions. Even during the 1970s, companies were screening with
receptors isolated from cell cultures, a technique that yielded various top-
selling drugs. Today, gene technology allows the cloning and expression of
receptors, enzymes and other proteins important for signal transduction,
metabolic conversions, or cell or viral structures. Once produced on a large
scale, they can be immobilized on ELISA (enzyme-linked immunosorbent
assay) plates and integrated into a chromogenic assay to measure lig-
and–receptor interactions. The end result is the introduction of a huge vari-
ety of new assays, which has increased the industry’s screening activities
and the overall demand for new compounds. Nevertheless, the develop-
ment of drugs against diseases not investigated down to the molecular
level still requires complex cell culture assays or even screening in animal
models. This is the case for most types of anticancer drug.

Drug development, from the collection and taxonomic classification of
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biological material to compound extraction and fractionation, bioassays,
structure elucidation and final clinical testing, is usually not performed by
a single drug company, but by various research partners, working under
contract. Therefore, the transfer of related technology to developing-world
source countries is a possible, and even logical, approach for the techno-
logical development of these regions. Collection, taxonomic classification
and extraction are not trivial tasks, but require a high standard of docu-
mentation and reliable and reproducible work that can easily be conducted
in Southern nations with the aid of technology transfer. Drug companies
would benefit from carrying out further bioassaying and chemical struc-
ture elucidation directly in the source countries, not only because of devel-
opmental issues and cheaper labour costs, but also because it would
ensure these companies gained more direct access to important markets.

11.2.2. Prospecting for genes

Genetic engineering opens a totally new dimension for bioprospecting.
The search for new genes and their applications is the primary objective
of the biotech industry. Today’s biotech products, already on the market,
are based on genes from humans, domesticated animals and cultivated
plants. Examples are human cytokines and growth factors like interfer-
ons, colony-stimulating factors, erythropoietin and bovine somatotropin,
and also Calgene’s Sav-R-Flavr tomato. The market value of erythropoi-
etin alone amounts to several billion dollars per year worldwide. Hence
the tremendous appetite of this new industry for novel genes; indeed, the
hunt for them in tropical rainforests is already on. In contrast to random
screening in natural compound research (see above), gene technology
allows a more straightforward approach, as illustrated by the following
examples.

The pharmaceutical biotech industry and biodiversity 
Biodiversity and protein engineering. Minor changes to the amino acid
sequences of pharmaceutical proteins and peptides (biologics) and
enzymes may lead to new or improved activities. Computer simulation in
combination with site-directed mutagenesis are the basis for a new tech-
nology, called protein engineering, which creates its own ‘molecular
diversity’. Nevertheless, the first successful examples of amino acid
sequence improvement are the result of screening genes from the wild.
Calcitonin is a peptide hormone that inhibits the release of calcium ions
and phosphate from the bones, and has therapeutic uses for osteoporosis
(MacIntyre et al., 1987). The investigation of related hormones from ani-
mals revealed that the calcitonin from salmon is more active and has a
longer half-life within the human body than the human peptide structure

Biodiversity for Bioindustries 261



(Epand et al., 1986). Today, chemically synthesized ‘salcatonin’ is on the
market under tradenames including Calsynar and Miacalcic.

Industrial enzymes, used to catalyse chemical processes, can be
improved to increase their heat stability, activity and specificity. Naturally
thermophilic bacteria have become a useful source of industrial enzymes.
Hydantoinase, for example, catalyses the conversion of chemically syn-
thesized hydantoins to precursors of D-amino acids. D-Amino acids, like 
D-hydroxyphenyglycine and D-phenylglycine, are needed to derive amox-
icillin and ampicillin from penicillin, just as D-serine is a precursor for pes-
ticide production. The first enzymes to be used for this conversion on an
industrial scale were isolated from common soil bacteria. The characteris-
tics of these enzymes limited the maximal temperature for the catalysis to
40°C (Kanegafuchi Co., 1978; Yamada et al., 1978), conditions which do not
permit hydantoins to dissolve well in water. Researchers at BASF screened
thermophilic bacteria from Yellowstone geysers and found two new
hydantoinases with much improved heat stability and specificity charac-
teristics (BASF AG, 1987). Through recombinant DNA technology, these
enzymes are now produced in Escherichia coli and already on the market.
The catalytic process can be performed more efficiently and more compet-
itively at temperatures reaching 75°C.

Protein engineering based on computer simulation is doubtless a very
powerful tool. However, the screening of natural products for improved
principles still has a higher success rate, proving again that the computer
cannot yet rival Mother Nature.

Animal defence and attack mechanisms as a source for biologics. For sev-
eral decades now spider, snake, frog and bee venoms and squid and leech
salivas have been investigated for pharmaceutically active peptides and
proteins. Leeches (e.g. Hirudo medicinalis) have been used in traditional
medicine to treat thrombosis since ancient times. The active principle from
their saliva, the protein hirudin is now an ingredient of numerous oint-
ments and gels and thus used against varicosis and haemorrhoids.
Hirudin was one of the first proteins isolated from wild biodiversity.
Recombinant hirudin has now been produced in Escherichia coli (Fortkamp
et al., 1986). Other leech species are currently under investigation to dis-
cover new hirudin variants with improved therapeutic applications
(Sacheri et al., 1993). Promotion of blood clotting during wound healing
can be achieved using proteins from snake venom (e.g. from the Egyptian
sand viper) that induce platelet aggregation (Baheer et al., 1995).

The mammalian enzyme tissue plasminogen activator (tPA) dissolves
thrombotic blood clots. Recombinant human tPA, developed and patented
by Genentech, has been approved as a therapeutic agent against heart
attack in the USA and Europe. Researchers at Schering AG found four sim-
ilar proteins in the saliva of Desmodus rotundus, the common vampire bat,
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that are more efficient and safer for therapeutic application than their
human counterparts (Schleuning et al., 1992). These products are presently
undergoing preclinical studies.

Eledoisin is a hendecapeptide isolated from the salivary gland of cer-
tain squids (Eledone spp.). Its physiological action resembles that of other
tachykinins. The peptide stimulates extravascular smooth muscles; it is a
potent vasodilator and hypotensive agent (Pisano, 1968), and has potential
therapeutic use to counter dry-eye syndrome.

Through combining common biological knowledge with simple obser-
vation and commonsense, a new biotech. company with millions of dol-
lars in venture capital may be formed. In the following case, common
knowledge of frogs and the Gram-negative bacteria found in wet environ-
ments was sufficient to launch a successful search for antibiotics. Although
frogs live in ponds infested with Gram-negative bacteria, they rarely
become infected by these pathogens. Based on their research, the biotech
company Magainin Sciences Inc. is named after a peptide (magainin) that
is highly effective against Gram-negative bacteria and occurs naturally in
the skin of frogs. Effective antibiotics against this type of bacteria are rare
and as a result this peptide is currently undergoing clinical trials (Jacob
and Zasloff, 1994). This same way of thinking led to the discovery of the
steroid squalamine, which has antibiotic properties and occurs in the stom-
ach, liver and other organs of the shark (Moore et al., 1993).

These few examples indicate that there is a whole new world to be
found in wild biodiversity, accessible by gene technology, and merely
awaiting exploration by the pharmaceutical biotech industry.

The agricultural biotech industry and biodiversity
Recombinant genes found in wild biodiversity may be even more impor-
tant for agriculture than for the pharmaceutical industry. Classical breed-
ing has quite successfully used genes from wild ancestors of cultivated
plants to promote pest resistance and develop new and improved crop
variations. Gene technology now enables humans to integrate revolution-
ary new properties into cultured plants through interspecific gene trans-
fer. As with recombinant pharmaceuticals, research and development does
not require random screening, but is rather a product-orientated engi-
neering approach.

Exploiting natural defence and attack mechanisms for pest control. Plants
protect themselves against pathogens through various enzymes, enzyme
inhibitors and lectins. For example, the basic chitinases from rice and the
acidic β-1,3-glucanase from alfalfa are directed against the cell walls of
fungi. Transfer of the genes encoding these compounds into tobacco has
yielded resistance against these pests (Zhu and Lamb, 1991; Maher et al.,
1994; Zhu et al., 1994). The α-amylase inhibitor in the common bean makes
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the starch of the seed indigestible for insects, and this property can be
transferred into the garden pea (Pisum sativum) (Shade et al., 1994).

The transfer into plants of genes from viruses, bacteria and animals is
becoming a standard procedure in crop protection. Numerous successful
field trials with recombinant crops expressing genes for the δ-endotoxins
of Bacillus thuringiensis prompted intensive screening of bacterial species
with insecticidal proteins (e.g. Koziel et al., 1993). Researchers at Monsanto
found a cholesterol oxidase in a streptomycete which lyses the midgut
epithelium of pest insects; expression of the gene in transgenic plants
could promote insect resistance (Corbin et al., 1994).

Spider, scorpion and mite venoms contain neurotoxic peptides which
specifically kill insects. The expression of their respective genes in plants
also leads to resistance against insect pests (FMC Corporation, 1993).

Resistance against bacterial infections can be achieved by the produc-
tion of peptides with antibiotic activities, such as cecropin B produced by
wounded silk moths (Florack et al., 1995). The production of viral coat or
nonstructural proteins in plants protects the plant not only against infec-
tion from that same virus, but also against related virus types (Murray et
al., 1993). Even mammalian enzymes can be useful. For instance, 2’-5’-
oligoadenylate synthetase from rats, when produced in potatoes, protects
the plant against virus X under field conditions (Truve et al., 1993).

Finally, resistance against herbicides can also be achieved through het-
erologous gene expression. A detoxification pathway for 2,4-dichlorophen-
oxyacetic acid, an agonist of indoleacetic acid, can be created in plants
through the expression of a monooxygenase gene from the bacterium
Alcaligenes eutrophus (Lyon et al., 1989).

Although only few of these examples deal with the transfer of genes
from wild biodiversity, there is no doubt that tropical environments, espe-
cially tropical rainforests, engender a multitude of defence and attack
mechanisms among their inhabitants. This might lead us to suspect that
these survival mechanisms must be highly sophisticated, and may repre-
sent a rewarding resource for the genetic engineer. It can be expected that
the investigation of novel defence mechanisms will increase dramatically
in the future as pest resistance develops to counter the first generation of
recombinant plant variations. However, DNA sequences coding for
defence proteins and peptides can be patented, and this may give cause for
socioeconomic problems in the source countries, many of which are devel-
oping countries. This issue will be discussed below.

Engineering of metaboIic pathways. Expression of recombinant genes in
cultivated plants is under intensive investigation to improve oils, proteins,
starch and other polymers for the food industry. A comprehensive
overview of the state of the art is given by Beck and Ulrich (1993).
However, it is not solely the food industry that stands to benefit: paper,
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packaging and chemical industries will also be greatly affected. For exam-
ple, Zeneca’s method (Zeneca Ltd., 1995) to suppress cinnamyl alcohol
dehydrogenase through antisense technology in trees facilitates the
removal of lignin from cellulose, and will therefore have an impact on the
aforementioned industries. In most cases, new plant variations are engi-
neered by interspecific transfer of genes, coding for enzymes, which alter
metabolic pathways. Examples based on genes from the wild biodiversity
are still rare, but already quite impressive. For the production of soaps,
chocolate and candies, medium-chain fatty acids found in coconut and
palm kernel oil have great economic importance. In 1992, the US alone
imported 600 000 tons of these oils, which contain up to 50% of trilaurin, a
medium-chain dodecanoic unsaturated fatty acid. Recently, the USDA
approved a high-laurate canola oil developed by the US ag-biotech com-
pany Calgene (PR Newswire, 1994). Calgene researchers investigated the
synthesis of lauric acid in certain plant families and found a thioesterase
which prematurely hydrolyses the growing acyl thioester of the fatty acid
with an acyl-carrier protein in the wild Californian bay (Umbellularia cali-
fornica). This 12:0-acyl-carrier protein thioesterase from the bay’s develop-
ing oilseeds was expressed in transgenic Arabidopsis thaliana and Brassica
napus ssp. napus, with the result that laurate and stearate became the most
abundant types of fatty acid found in the oil of these plants (Voelker et al.,
1992). Three of Calgene’s patents cover the purified enzyme, the recombi-
nant nucleic acid construct with the gene for the enzyme, and a method to
produce laurate in recombinant Brassica seeds (Calgene Inc., 1994a,b,c).
The socioeconomic consequences of these patents will be discussed below.

Long-chain wax esters are required for a variety of industrial applica-
tions including pharmaceuticals, cosmetics, detergents, plastics and lubri-
cants. Such products, especially long-chain wax esters, have previously
been available from endangered species such as the sperm whale, or more
recently, from the desert shrub, jojoba (Simmondsia chinensis or S. 
californica). Waxes are fatty alcohol and fatty acid esters, and their synthesis
requires a fatty acid reductase as well as a synthase. The jojoba genes for the
wax synthase (fatty acyl-CoA:fatty alcohol acyltransferase) and the fatty
acyl reductase have been cloned and patented by Calgene (Calgene Inc.,
1995a,b), and as a result, wax may be produced in rape seed in the future.

New biodegradable plastics produced from the bacterial storage com-
pound polyhydroxybutyrate have been developed and are already on the
market. However, production of the compound through fermentation is
not cost efficient. In recent development, the transfer of the entire anabolic
pathway, consisting of three enzymes from the bacterium Alcaligenes eutro-
phus, into Arabidopsis thalania (Nawrath et al., 1994) may transform the farm
field into a chemical factory for plastics in the near future. Examples for
pathway engineering do not yet involve genes from the tropical rainforest,
but a thorough and product-orientated survey of oils, fats, waxes and
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other polymers (formerly not of commercial interest because of low pro-
ductivity or abundance) from tropical plants, animals and microorganisms
may lead to new compounds for industrial applications. These new 
compounds would have the advantage of being both biodegradable and
available for farm production through genetic engineering.

Gene technology will also lead to the more efficient production of nat-
ural compounds presently used for pharmaceuticals and pesticides. The
chrysanthemyl diphosphate synthase gene from Chrysanthemum cinerariae-
folium was patented by Agridyne Technologies Inc. (1995) and promises to
open new paths for producing insecticidal pyrethrins, pyrethroids and
their derivatives with greater efficiency and higher purity levels in culti-
vated plants.

Metabolic engineering of medicinal plants has been performed suc-
cessfully with Atropa belladonna to produce the alkaloid scopolamine. The
naturally occurring alkaloid in this plant is hyoscyamine, known for its
anticholinergic activity, and an active ingredient in eye drops, antidotes
and spasmolytics (Yun et al., 1992). Scopolamine, found throughout the
Solanaceae, is an epoxy-derivative of hyoscyamine but with a broader ther-
apeutic spectrum, including, e.g., antiemetics and hypnotics. Expression of
the hyoscyamine 6-β-hydroxylase gene from Hyoscyamus niger in Atropa
led to an almost exclusive accumulation of scopolamine  in the plant’s leaf
and stem. Flux through a pathway to a plant secondary product can be ele-
vated by genetic engineering. For example, over-expression of the yeast
ornithine decarboxylase gene in transgenic roots of Nicotiana rustica led to
enhanced nicotine accumulation (Hamill et al., 1990). The same effect can
be obtained to produce sterols in plants by over-expressing 3-hydroxy-3-
methylglutaryl CoA reductase, which catalyses the production of the sterol
building block mevalonate (Amoco Corporation, 1994).

11.3. Modern Bioprospecting: Linking Industry, Biodiversity
Conservation and Developing Country Technology
Acquisition 

The rapid loss of biological diversity – indicated by the extinction of an
estimated 30 to 300 species per day (Japan Economic Newswire, 1995) –
together with the potential opportunities and threats of gene technology,
led to the United Nations Convention on Biological Diversity (UNEP,
1992). In light of the vast potential of biotic materials and the need to
ensure their survival, in addition to measures taken to improve biodiver-
sity conservation activities, it is imperative that industries move from the
passive role of simple users to the more active one of reinvesting part of
their revenues into conservation efforts. Companies should be aware that
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they are among the first to lose as a consequence of species extinction, and
indeed such an awareness is growing.

The principle of this modern approach to bioprospecting may be sim-
ple, but the link between biodiversity conservation and its sustainable use
requires a careful design and strategic planning. The goals are to maximize
those uses which generate information, and to reinvest part of the benefits
obtained from bioproducts into acquiring knowledge and improving bio-
logical resource management. As a consequence, wildland biodiversity can
be developed as part of a country’s national economy at the same time as
its preservation into perpetuity is guaranteed. The bioindustries are
thereby encouraged to initiate relationships with partners in biodiversity-
rich countries. Following the guidelines of the Biodiversity Convention
such partnership can facilitate sustainable and nondamaging biological
and genetic resource use for research and development, while taking care
to share economic and intellectual benefits with the owners of the biolog-
ical resources.

The process of collecting bioresources, extracting and testing con-
stituents (either chemicals or genes) for biological activity, and the further
development of a product is long and expensive (Reid et al., 1993). Based
on the research and development costs of 93 randomly selected new chem-
ical entities during the period 1970 to 1982, the development of a single
drug to the point of market approval was estimated at $US114 million for
the USA (DiMasi et al., 1991). Although rewards might be high, the
chances of failure are equally so: of 10 000 different products tested, only
one will make it to the market (Farnsworth, 1994).

However, the real challenge for this new generation of bioprospectors
is to find a way to capture part of the financial revenues for the source
country’s biodiversity conservation efforts and economic development. As
an example of this innovative approach to prospecting activities, INBio is
negotiating agreements with scientific research centres, universities and
private enterprise that are mutually beneficial to all parties (Sittenfeld and
Lovejoy, 1994). These pioneering agreements provide significant returns to
Costa Rica while simultaneously assigning economic value to natural
resources, and providing a new source of income to support the mainte-
nance and development of the country’s Conservation Areas (Sittenfeld
and Lovejoy, 1995).

11.3.1. Bioprospecting frameworks

Modern biodiversity prospecting requires the creation of appropriate
frameworks and the cooperation and involvement of governments, inter-
mediary institutions, private enterprise, academia, and local communities
and entities. This activity also requires the involvement of lawyers, 
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lawmakers, scientists, managers and economists from developing and
developed countries (Sittenfeld and Lovejoy, 1995).

The fundamental point of departure for a biodiversity prospecting
framework is macro-policy, the set of governmental and international reg-
ulations, laws and economic incentives that determine land use patterns,
access to and control of biological resources, intellectual property rights
regimes, technology promotion, and industrial development. Macro-poli-
cies are formed on the international, national and social levels. On the
international level, agreements, conventions and other mechanisms estab-
lish the relationships and protocols for sharing biological resources
between countries. Documents considered important in providing the
guidelines and regulations for biological resource use include: the
Biodiversity Convention, the Trade Related Intellectual Property Rights
(TRIPs) of the General Agreement on Tariffs and Trade (GATT), the Draft
Declaration on Indigenous Rights of the United Nations Working Group
on Indigenous Populations, and also subregional agreements, such as the
North American Free Trade Agreement (NAFTA), the Amazonian Treaty,
and the Pacto Andino. 

Nevertheless, conventions, agreements and organizations still leave
open the major responsibilities of designing adequate legislation and reg-
ulations regarding land ownership, land tenure rights, the creation of pro-
tected areas, the use of biological resources, nationally recognized
intellectual property rights, the definition of public-domain resources, and
the creation of market incentives or deterrents for private  enterprise and
research investments to each individual country. Such legislation and reg-
ulations promote stability and manoeuvrability of in-country partners,
characteristics considered attractive to private industry and academic
research counterparts.

Deterrents, such as national policy vacuums or legislation drafted out-
side the framework of the Biodiversity Convention, still exist in many
countries and continue to create obstacles to establishing collaborations
with academic and industrial research partners. In general, changes in
laws and policies governing the ownership of and access to genetic
resources are needed as well as changes in the way bio-business has
evolved to date. The importance of favourable national policies, regula-
tions and laws becomes obvious when considering international intellec-
tual property rights. Drug research within the source country itself is an
important step towards national economic development, but will only be
attractive to the industrial partner if results can be patented. It is for this
reason more than any other that international patent laws should be rec-
ognized by national law.

At the same time, there is concern within the industrial sector that
countries, spurred by the Biodiversity Convention, may promulgate new
laws restricting access to biological and genetic resources, and reducing
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renewed enthusiasm for natural products (Putterman, 1994). Yet the recog-
nition by the Convention of sovereign rights of nations over their genetic
resources is intended to encourage world trade in genetic resources, since
it commits countries to facilitate access, based on mutually agreed terms
(Putterman, 1994). National governments should implement rules, regu-
lations and policies that take advantage of Articles 15 and 16 of the
Convention. These Articles encourage source-country participation in
researching their own biological resources, transferring technologies to uti-
lize these resources and reaping a fair share of the benefits from their com-
mercial exploitation (Sittenfeld and Lovejoy, 1995).

Finally, on the social level, heavy investment in education and other
social services has created a scientific environment of qualified institutions,
researchers and educated personnel in Costa Rica. Such an environment is
a prerequisite for research collaborations with private enterprise and is
essential for integrating biodiversity into economic development
(Sittenfeld and Lovejoy, 1995).

11.3.2. Inventories, business development and technology access

Supported by a favourable international and national macro-policy, three
basic elements guide the rational and productive use of biological
resources in prospecting agreements: (i) biodiversity inventories and infor-
mation handling; (ii) business development; and (iii) technology access.

Inventories and information management
As pointed out in Section 11.2.1, screening for drugs and pesticides will
only be successful through the development and management of biologi-
cal, ecological, taxonomic, and related systematic information on living
species and systems. Even with these data, further information is required
for the more systematic screening approach used in gene technology. For
example, biochemical data must be evaluated for, e.g., the occurrence of
certain biopolymers, metabolic pathways, enzymes and defence or attack
mechanisms. Biodiversity inventories create catalogues of available
resources and their location. They prevent damage to ecosystems, areas,
species and populations by indicating what resources are available, and
where they can be collected without damaging the environment (Raven
and Wilson, 1992). Simultaneously, the source-country collaborator
becomes a more attractive, knowledgeable and reliable business partner
because the inventory-generated information reduces the uncertainties of
collecting further material should this prove necessary.

Business development
Building upon inventory-generated knowledge, business development
defines markets, market needs, major players, and national capacities in
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science and technology as well as institutional strategies and goals.
Important requirements include knowledge of one’s assets and drawbacks,
market surveys and evaluation of conservation needs. The key to business
development is interacting with international industry in order to
approach the market in a realistic and practical way. Because bioprospect-
ing should promote source-country economic development, business
development must encourage the sustainable use of biodiversity by local
entrepreneurs. However, this is a considerable challenge in developing
countries where industry normally cannot take the financial risk of apply-
ing innovative technologies, let alone those that are sustainable and non-
damaging to the environment.

Technology transfer
One of the major issues discussed in the Biodiversity Convention refers to
technology transfer, allowing source countries to convert raw biological
materials into products of greater value in exchange for access to their bio-
diversity (Putterman, 1994). This issue is of tremendous importance, par-
ticularly in a decade of patentable genes, and will be discussed in more
detail below. In the near future, genes isolated from tropical biodiversity
may provide the farmers in developed countries with advantages over the
farmers of the source countries. These advantages stem from the bioin-
dustries’ historical development and their physical proximity to the devel-
oped agricultural economies of the North. This may lead biotechnological
research and development to concentrate solely on improving the proper-
ties of crop and livestock in the North (for discussion, see Shand, 1993).
Technology transfer may enable source countries to keep pace with the
developed countries, and avoid being left out of important agricultural
developments (Lesser and Krattiger, 1993). This scenario is realistic
because gene technology, in contrast to natural compound chemistry, does
not particularly rely on expensive investments in laboratory equipment,
and would therefore be easier to implement.

11.3.3. Contract negotiations

In general, contract negotiation is divided into three basic sets of issues: sci-
entific issues, business issues and legal issues. To negotiate, an organization
must have a good sense of its own fundamental needs and those of its
potential collaborator. The typical source-country needs are: the generation
of income to support protected areas and conservation management activi-
ties through direct contributions as well as royalties; the transfer of process-
ing technologies and a guaranteed future profit-sharing if commercial
products are forthcoming. Sampling must be done under best ecological
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practice without damaging the ecosystem. For bilateral contracts with indus-
trial partners, exclusivity and time limitations are further requirements.

In summary, modern bioprospecting requires that the source country:

1. Creates an infrastructure guaranteeing a reliable supply of natural prod-
ucts (including correct taxonomic identification, quality control, full
support from government and adherence to national or local regula-
tions on access to resources).

2. Acquires technology that adds value to natural products wherever pos-
sible (from extracts to partially purified or pure compounds or gene
sequences).

3. Takes advantage of local capabilities using all types of organisms as bio-
logical resources attractive to industry (from plants and microbial
resources through marine or freshwater life forms to arthropods).

4. Develops a reputation as a reliable business partner over the time.
5. Reinvests part of the revenues in improving biodiversity management

and conservation.

In exchange for access to biological resources, the industrial partner
must agree to:

1. The fair and equitable sharing of benefits, both in intellectual and mon-
etary terms.

2. The implementation of collection and production methods with mini-
mum effects on biodiversity.

3. The use of equitable bioprospecting practices for further research on
tropical diseases and problems specifically associated with developing
countries.

11.4. How to Face the New Challenge of Gene Technology

With few exceptions classical bioprospecting for drugs has not proved eco-
nomically beneficial for developing nations, but nor has it directly dam-
aged these economies. In contrast, bioprospecting for genes may soon pose
a real threat to the economic survival of these biodiversity-rich countries.
The farmers of the North are currently suffering under low prices and
overproduction of certain traditional crops and livestock. As a result they
are looking for new markets and products.

Modern biotechnology promises to aid Northern farmers in this
endeavour, eliminating or displacing traditional export commodities from
developing countries and transferring production or substitutes from the
farm fields of the South to those of the North. Quite possibly the transfer
may even skip the Northern farms and jump straight into bioreactors. In
Africa alone, US$ 10 billion in exports are vulnerable to industry-induced
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changes in raw material prices and requirements (Shand, 1993). Most
developments in plant biotechnology have been achieved with crops 
cultivated mainly in industrialized countries. This denies the farmers of
developing countries the chance to benefit from the new agricultural
opportunities of gene technology.

As mentioned above, Calgene’s high-laurate canola oil may displace
coconut and palm kernel oil, posing a threat to the economic survival of
millions of farm families in the South. In the Golfito region of Costa Rica
the government has started a programme to grow oil palms on banana
fields deserted by the US fruit multinationals. All these efforts, which are
partially financed with Northern developmental aid, may vanish into thin
air as a result of Calgene’s new rape seed. Thaumatin, a sweet-tasting basic
protein from the tropical plant Thaumatococcus, has been traditionally used
in West Africa as a sweetener. With the collection of Thaumatococcus fruits
for the British food industry, the population in this region earned a large
part of its income. However, the thaumatin gene has now been cloned and
the sweetening protein can be produced by large-scale fermentation of
brewer’s yeast at low cost (Lee et al., 1988). The same applies to natural
compounds like indigo, which can now be produced by the fermentation
of Escherichia coli engineered with genes from a toluol-degrading sub-
species of the soil bacterium Pseudomonas putida (Ensley et al., 1983).
Products like vanilla, pyrethrum and rubber may follow this same path.

Along the same lines, the extension of patent laws to the developing
nations through the GATT could mean that the biotech industry obtains a
monopoly on genetically engineered livestock and crops, which farmers in
developing countries must cultivate under constraint in order to remain
competitive. For example, US-Patent No. 5 159 135 of Agracetus (a sub-
sidiary of W.R. Grace & Co.) covers all genetically engineered cotton. This
patent is a warning of potential future problems, and has already caused
an outcry in developing countries like India (Kidd and Dvorak, 1994). If
the biotech industry continues developing without adequate controls, the
consumers and farmers of developing countries may even end up paying
royalties on biotech products that were originally developed from their
very own resources and knowledge.

As a step in the right direction, the US Patent and Trademark Office
reversed its decision to grant the Agracetus patent at the end of 1994, but
primarily as a result of pressure from the US biotech industry which
argued that patents like this will inhibit research and development
(AGWEEK, 1994). Such issues bring important questions to light: How can
developing nations be motivated to conserve their biodiversity under
these threatening circumstances? Are the regulations and tools of modern
bioprospecting, as described above, sufficient to face this challenge?

The Biodiversity Convention attempts to address this new threat by
requiring that access to biodiversity’s genetic potential be combined with
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the biotechnology transfer to the South in order for those countries to
develop their own methods of sustainable biodiversity utilization.
Nevertheless, the Convention suffers from three major drawbacks.  

1. The treaty was not ratified by the USA, the leading country in biotech-
nological research, development and application.

2. It specifically excludes (under US pressure) ex situ genebank material
collected before the enactment of the treaty (Shand, 1993). As a result,
huge stocks of germplasm collected by the North, mostly in tropical and
subtropical countries, are not restricted by the Convention. The recent
transfer by the Consultative Group on International Agricultural
Research of its 12 genebanks to the auspices of the UN must be the first
step in keeping the access of developing countries open to their own
resources (Madeley, 1994).

3. It still remains nearly impossible to control the illegal transfer of genetic
material into the North. Genes can be cloned from minute amounts of
DNA or RNA and isolated from biological material that easily fits into
an airmail envelope. Genes do not have tags designating their country
of origin, and once they are cloned, they are no longer controlled by
their source country. This is quite different from the isolation of natural
compounds from plants, where larger amounts of plant material must
be collected and, for the process of isolation and structure elucidation,
must be re-collected. In this last case, controlling the flow of biological
material is possible simply because industry will eventually require
sample resupply at a given point, and for this the industry needs reli-
able partners in countries of origin.

These issues must be approached in an active and more aggressive
manner than traditionally used. During collaborations with traditional
pharmaceutical and biotech companies like Merck & Co., Bristol-Myers
Squibb and the British Technology Group, INBio used such an approach,
proving to industry that fair partnerships are mandatory and conducive to
success. More importantly, INBio demonstrated that reliable applied
research is possible in a developing country, and that technology transfer
to acquire necessary know-how and equipment works to the advantage of
the industrial partner as well.

The same applies to the biotech industry. In this case, the transfer of
gene technology is not critical, in contrast to natural compound chemistry,
because it does not require million-dollar investments in laboratory infra-
structure. Rather, the industry relies on the know-how already existing in
many source countries. Gene technology also represents a promising
development opportunity for countries that do not have large research
budgets at their disposal. Moreover, gene technology is a very straight-
forward approach, relying on natural history observations (e.g. whether 
certain plants show natural resistance to pathogens), and not involving 

Biodiversity for Bioindustries 273



the automated random screening of thousands of samples. Biodiversity
inventories, which are already in place in countries like Costa Rica, 
are a reasonable and advantageous prerequisite for successful ‘gene
prospecting’.

Costa Rica’s aggressive strategy to foster collaborations with the
international industry and academic institutions in drug research, gene
technology and agriculture actively seeks to develop and patent natural
compounds, proteins and genes in Costa Rica based on a foundation of
national research. Collaborations of this nature will help launch Costa
Rica onto a scientific and technological plane that offers services and
goods that are both competitive and compatible with those of industrial
nations.

Simultaneously, INBio works within this strategy to increase knowl-
edge about Costa Rican biodiversity in general, access revenues for further
conservation efforts, and to assign biodiversity a higher value than it has
had in the past. There is little doubt that such activities will encourage
society’s willingness to preserve biodiversity for future generations, by
making it worthwhile for the Costa Rican population to maintain tropical
forests and other ecosystems on their own.
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MAbs see monoclonal antibodies
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marker-assisted gene transfer 194
marker-assisted prediction of
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melon 140, 141
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31, 32
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molecular markers 81, 83, 88

see amplified fragment length 
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see expressed sequence tag 
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monoclonal antibodies 16, 18, 30, 31,
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mulberry 127, 136, 138
multiplex 35
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Musa 120, 122, 123, 124 
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nested PCR see polymerase chain reaction
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newsgroups 283
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orthodox seeds see orthodox seeds
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Phytophthora infestans 163
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plant breeding 2, 5, 175
plant collections 169
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polymerase chain reaction (PCR) 9, 13, 16,
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inter-repeat PCR 24, 26
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cryopreservation
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pyrethroids 257
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internal transcribed spacers (ITS) 30
nucleolar organizing regions (NORs)
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Rubiaceae 259
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see also duplicate safety collections
sampling procedures 61, 66, 67
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212
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see also alkaloid, terpenoid, pyrethroid
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seeds
ex situ seed collections 103 
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seed multiplication 69, 70
orthodox seeds 119, 120, 121
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sequence tagged sites (STS) 24, 31, 33, 35,
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sequencing see DNA sequencing
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steroid 263
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sunflower 215
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taxol 260
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technology transfer 270
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thermotherapy 237
tissue culture 5, 38, 120, 142, 235

cryopreservation 121, 127–143, 145, 165,
168, 172

embryo culture 90
embryo rescue 90
in vitro assays 6

Index 307



tissue culture continued
in vitro collections 103, 121, 122
in vitro fertilization 91
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somaclonal variation 121, 210, 212
somatic embryo 126, 129, 130, 137, 139,

140, 141, 143, 144, 145
vitrification 128, 130, 131–135, 137, 138,

139, 145
Tm 19
tobacco see Nicotiana
tomato see Lycopersicon
transcription factors 87
transformation 165, 204–213, 222, 223
transgenic plants see transformation, DNA

transfer and Agrobacterium
transposon tagging 86, 216, 217, 219 

see also Ac/Ds
Trifolium repens 60, 61, 65, 240
triple antibody sandwich (TAS-ELISA) see

ELISA 
Triticeae 285
Triticum aestivum 54, 77, 79, 80, 82, 86, 89,

90, 91, 92, 93, 112, 140, 203, 204, 
208, 210, 221, 222, 285

Tritordeum 92
trypsin inhibitor 214
turnip see Brassica oleracea

Umbellularia californica 265
universal (uniform) resource locator (URL)

287
utilization 91

variable number of tandem repeats (VNTR)
12, 13, 14, 22, 25, 30, 32, 104

Valeriana wallichii 126
Veitchia 140
Vicia faba 240 

see also bean
Vigna 83, 164, 214
viroids see viruses
virulence genes 207–210
virus 236–249

bioassays 239
resistance 205
viroids 236, 237, 241, 242
virus-free plants 120

vitrification 128, 130, 131–135, 137–139, 145
VNTR see variable number of tandem

repeats 

wasabi 138, 139
Western blots 248
wheat see Triticum 
white spruce 125
wild cherry 125 

see also Prunus
World Wide Web (WWW) 285–296

YAC see yeast artificial chromosome
yam 120, 123, 209 

see also Dioscorea
yeast 87
yeast artificial chromosome (YAC) 82, 86,

206, 220–222

Zea mays 28, 35, 77, 79, 82, 84, 86, 88, 89, 91,
140, 163, 182, 187, 197, 208, 209, 210,
213, 217, 221, 222, 288, 293 

see also teosinte
zygotic embryos see embryos
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