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Abstract

By exploiting the relation between Fredholm modules and the Segal–Shale–Stinespring ver-
sion of canonical quantization, and taking as starting point the first-quantized fields described
by Connes’ axioms for noncommutative spin geometries, a Hamiltonian framework for fermion
quantum fields over noncommutative manifolds is introduced. We analyze the ultraviolet be-
haviour of second-quantized fields over noncommutative three-tori, and discuss what behaviour
should be expected on other noncommutative spin manifolds.

1 Introduction
This article considers quantum fields over noncommutative spaces. The fact that compactification of
matrix models in M-theory leads to noncommutative tori [1,2] provides some motivation. But here
we address questions of principle, open since Connes characterized the noncommutative manifolds
able to sustain matter [3].

First-quantized fermion fields live on noncommutative spin manifolds, in particular NC tori. An
odd spin geometry consists of four objects (A,H, 𝐽, 𝐷), where: (1) A is a unital pre-𝐶∗-algebra;
(2) H is a Hilbert space carrying a representation of A by bounded operators; (3) 𝐽 is an antilinear
isometry of H onto itself; (4) 𝐷 is a selfadjoint operator on H, with compact resolvent. From such
a structure, plus some appropriate compatibility conditions formulated as axioms, Connes was able
to derive ordinary spin geometry – in which 𝐷 is the standard Dirac operator /𝐷 – including all of
the Riemannian structure. Leaving out the condition that A be commutative, we are left with a
handle on the vast new realm of noncommutative spin geometries.

Noncommutative geometry is also a language of choice for the formal aspects of quantum field
theory. For instance, Wick ordering is intimately related to Connes’ Fredholm modules [4–6],
reviewed here. The structure of anomalies in gauge field theories can be recast in terms of cyclic
cohomology; this was pointed out by Araki [7,8] and put forward by Mickelsson and Langmann in a
splendid series of papers [9]. Very recently, it has been found that the quasi-Hopf algebra structure
of Feynman graphs [10] is directly related to Hopf algebras relevant to the general index formula in
noncommutative geometry [11].
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These facts can be better put into perspective by taking the step proposed in this paper. Indeed,
it has long been known that quantum field theory possesses an algebraic core independent of the
nature of spacetime [12]. For instance, the description of fermions coupled to external gauge
fields is a problem in representation theory of the infinite dimensional orthogonal group. From the
latter, with the input of an appropriate single-particle space, it is possible to derive all quantities of
interest: current algebra, anomalous transformation terms, Feynman rules [13]. Now, the process
is fundamentally unchanged if the “matter field” evolves on a noncommutative space. In a nutshell:
we endeavour to apply the canonical quantization machinery to a noncommutative kind of single-
particle space.

We couple our proposal here with a description of the simplest imaginable model, generalizing
the textbook field quantization with periodic boundary conditions; i.e., we quantize chiral fermions
in a 3-dimensional “noncommutative box”. (We readily admit to a lingering prejudice in favour of
the physical number of dimensions.)

The ultraviolet behaviour of fermion fields depends critically on the dimension of the space. We
assume, to minimize infrared troubles, that the latter is compact. The simplest case corresponds to
1 + 1 field theory, with chiral fermions living on an ℝ × 𝕋 1 spacetime. Let 𝐹 be the ordinary Dirac
phase operator defining the Wick ordering prescription and let 𝑋 denote a gauge transformation.
Choose the associated Fock space representation of the CAR algebra. Then [𝐹, 𝑋] is Hilbert–
Schmidt, and so the loop groups of arbitrary Yang–Mills theories are contained in the group of
Bogoliubov transformations, and the ordering prescription by itself regularizes the theory. This
fact is behind the success of second-quantization methods in the construction of representations of
the Virasoro and Kac–Moody algebras [14], and partly behind the development of conformal field
theory [15]. In the next odd case, 1 + 3 field theory, which mainly concerns us, the ultraviolet
behaviour, as gauged by the summability of [𝐹, 𝑋], is much worse, and extra renormalizations are
needed in order to regularize the theory.

A long-standing hope, now amenable to rigorous scrutiny, is that giving up locality, one of the
basic tenets of rigorous quantum field theory [16] – and indeed, one of the main selling points by the
forefathers [17] – will be rewarded with a better ultraviolet behaviour. After all, noncommutative
manifolds – with NC tori with irrational parameters as a case in point – usually are much more
disconnected that ordinary ones. We shall see that this hope is not borne out.

The content of the paper is as follows. First, we describe a general framework for fermion
fields on noncommutative spaces, in the presence of background fields treated adynamically. For
that, we recall in Section 2 Connes’ axioms for noncommutative fermionic single-particle spaces.
We check the axioms and exhibit the spin structure effecting the neutrino paradigm [18] over
the noncommutative 3-torus. In Section 3 we discuss the Fredholm module structure. With the
(general) Dirac phase operator 𝐹 in hand, we proceed to second quantization. The space of spinors
on the algebra is an infinite dimensional linear spinor space; we recall in Section 4 the definition of
the spin representation for its orthogonal group, whose infinitesimal version yields the quantization
prescription for the currents. The construction of the scattering matrix is left for another day, our
main purpose here being to show how simple noncommutative quantum field theory really is –
and why it belongs in the toolkit of every theorist. We then examine the issue of the ultraviolet
behaviour by means of our example. In Section 5 we see by direct computation that, as “measured”
by the stick considered in this paper, the ultraviolet behaviour of the theory is the same as for a
commutative torus. Finally, in Section 6 we discuss why such behaviour of NC tori should be
expected, on general grounds, on any noncommutative manifold. This is related to some of the

2



deeper issues in noncommutative geometry.
The next logical step is to quantize bosonic actions for (noncommutative) gauge fields, perhaps

in the presence of external currents. Then it would be time to tackle the full-blown renormalization
theory for nonlinear field configurations.

2 First quantization on noncommutative tori
Our method of work in this section is the following: each time that we introduce basic data or
axioms, we illustrate/comment on the commutative case and verify them for the noncommutative
3-torus. We rely heavily on our Ref. [19]. We begin, then, by making explicit the objects of a spin
geometry (A,H, 𝐷, 𝐽) for 3-tori.

Let 𝜃 be a real skewsymmetric 𝑛 × 𝑛 matrix with entries 𝜃 𝑗 𝑘 . The 𝐶∗-algebra determined by 𝑛
unitary generators, with the relations

𝑢𝑘𝑢 𝑗 = 𝑒
2𝜋𝑖𝜃 𝑗𝑘𝑢 𝑗𝑢𝑘 ,

is called the 𝑛-torus algebra 𝐴𝜃 . We focus on the 𝑛 = 3 case with irrational entries 𝜃 𝑗 𝑘 . It is very
convenient – and suggested by consideration of the Weyl algebra – to introduce the unitary elements

𝑢𝑟 := exp{𝜋𝑖(𝑟1𝜃12𝑟2 + 𝑟1𝜃13𝑟3 + 𝑟2𝜃23𝑟3)} 𝑢𝑟1
1 𝑢

𝑟2
2 𝑢

𝑟3
3

for each 𝑟 ∈ ℤ3; the coefficient is chosen so that (𝑢𝑟)∗ = 𝑢−𝑟 in all cases. They obey the product
rule:

𝑢𝑟 𝑢𝑠 = 𝜆(𝑟, 𝑠) 𝑢𝑟+𝑠, 𝜆(𝑟, 𝑠) := exp{−𝜋𝑖 𝑟 𝑗𝜃 𝑗 𝑘 𝑠𝑘 }.
The noncommutative torus proper A𝜃 := 𝕋 3

𝜃
is the dense subalgebra of 𝐴𝜃 of “noncommutative

Fourier series”:
𝕋 3
𝜃 := { 𝑎 = 𝑎𝑟 𝑢

𝑟 : {𝑎𝑟} ∈ S(ℤ3) },
where the coefficients belong to the space S(ℤ3) of rapidly decreasing sequences, namely, those for
which (1 + |𝑟 |2)𝑘 |𝑎𝑟 |2 is bounded for all 𝑘 = 1, 2, 3, . . . . In the commutative case 𝜃 = 0, and then
𝕋 3

0 ≃ 𝐶∞(𝕋 3).
On each torus algebra 𝐴𝜃 there is a faithful tracial state 𝜏, given by 𝜏(𝑎𝑟𝑢𝑟) := 𝑎0. If 𝜃 is

irrational, the tracial state 𝜏 on 𝐴𝜃 is unique. Any state on a 𝐶∗-algebra 𝐴𝜃 gives rise to a Hilbert
space by the well-known Gelfand–Naı̆mark–Segal construction. So we introduce the auxiliary
Hilbert space H0 given as the completion of the vector space 𝐴𝜃 in the Hilbert norm

∥𝑎∥2 :=
√︁
𝜏(𝑎∗𝑎).

Since 𝜏 is a faithful state, the obvious map 𝐴𝜃 → H0 is injective; we shall denote by 𝑎 the vector
in H0 corresponding to 𝑎 ∈ 𝐴𝜃 . The GNS representation of 𝐴𝜃 is just

𝜋(𝑎) : 𝑏 ↦→ 𝑎𝑏.

We now look for the involution 𝐽. The obvious candidate to try is

𝐽0(𝑎) := 𝑎∗.
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(This is in fact the Tomita involution [20] determined by the cyclic and separating vector 1 for the
algebra 𝐴𝜃 .) Notice, however, that 𝐽2

0 = +1, whereas we require 𝐽2 = −1 in three dimensions (see
Axiom 1 below). A simple device allows us to modify the sign: we double the GNS Hilbert space
by taking H := H0 ⊕ H0 and define

𝐽 :=
(

0 −𝐽0
𝐽0 0

)
.

The torus algebra acts on H by the representation

𝜋(𝑎) :=
(
𝑎 0
0 𝑎

)
.

When 𝑎 ∈ A and 𝜉 ∈ H, we shall usually write 𝑎𝜉 := 𝜋(𝑎)𝜉. The vectors 𝜓𝑚 = 𝑢𝑚 ⊕ 0 and
𝜓′
𝑚 = 0 ⊕ 𝑢𝑚, for 𝑚 ∈ ℤ3, form a convenient orthonormal basis of H.

Finally, we produce 𝐷. Let us consider the usual Pauli matrices 𝜎𝑗 , and the derivations 𝛿1, 𝛿2,
𝛿3 given by

𝛿 𝑗 (𝑎𝑟𝑢𝑟) := 2𝜋𝑖 𝑟 𝑗 𝑎𝑟𝑢𝑟 , ( 𝑗 = 1, 2, 3).
We define

𝐷 := −𝑖(𝜎1 𝛿1 + 𝜎2 𝛿2 + 𝜎3 𝛿3) = −𝑖
(

𝛿3 𝛿1 − 𝑖𝛿2
𝛿1 + 𝑖𝛿2 −𝛿3

)
Then 𝐷2 = −(𝜎 · 𝛿)2 = (−𝛿2

1 − 𝛿
2
2 − 𝛿

2
3)

(
1 0
0 1

)
. This operator is diagonalized by the orthonormal

basis {𝜓𝑚, 𝜓′
𝑚} of H, with eigenvalues 4𝜋2 |𝑚 |2. Using this basis we may express 𝐷, its absolute

value |𝐷 | and the phase operator 𝐹 := 𝐷 |𝐷 |−1 as (matrix) multiplication operators in the index 𝑚:

𝐷 = 2𝜋 𝑚 · 𝜎, |𝐷 | = 2𝜋 |𝑚 |, 𝐹 =
𝑚 · 𝜎
|𝑚 | .

The eigenvalues are then the same as for the ordinary Dirac operator on the ordinary torus (with
untwisted boundary conditions). One can even introduce “coherent spin states” as eigenvectors
of 𝐹: our geometry looks like, and is, a spin one-half system on the NC tori.

Before introducing the further relations and properties that the objects of a spin geometry, in
particular for 𝕋 3

𝜃
, must satisfy, we make some precisions of a general nature on the data themselves.

(1) A pre-𝐶∗-algebra A is a dense involutive subalgebra of a 𝐶∗-algebra 𝐴 that is stable under
the holomorphic functional calculus; or, more simply, such that the inverse (in 𝐴) of any invertible
element of A lies also in A. This happens, for instance, whenever A is the smooth domain of a
Lie algebra of densely defined derivations of 𝐴, since 𝛿(𝑎−1) = −𝑎−1 𝛿(𝑎) 𝑎−1 for any derivation.
The major consequence of stability under the holomorphic functional calculus is that the 𝐾-theories
of A and of 𝐴 are the same [21].

For the algebra 𝐴𝜃 , the common domain of the powers 𝛿𝑘
𝑗

of the commuting derivations 𝛿1, 𝛿2, 𝛿3

is precisely the subalgebra 𝕋 3
𝜃

; it is clear then that 𝕋 3
𝜃

is a pre-𝐶∗-algebra.
(2) That (𝐷 − 𝜆)−1 is compact implies that 𝐷 has a discrete spectrum of eigenvalues of finite

multiplicity. This is assured for the Dirac operator on a compact spin manifold. In most circum-
stances the finite-dimensional kernel of 𝐷 is of no consequence, and we have felt free to use the
notation 𝐷−1 when convenient.
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In the noncommutative case, we shall also refer to 𝐷 as the Dirac operator. Connes’ axioms
are reorganized as follows: three with algebraic flavour, three “analytical” axioms and lastly a
“topological” one. (Such labels are a bit deceptive, of course.)

Axiom 1 (Reality). The antilinear isometry 𝐽 : H → H is such that the representation given by
𝜋0(𝑏) := 𝐽𝜋(𝑏∗)𝐽† commutes with 𝜋(A). Moreover the isometry satisfies

𝐽2 = ±1, 𝐽𝐷 = ±𝐷𝐽,

where the signs are precisely given by the following table:

𝑛 mod 8 1 3 5 7
𝐽2 = ±1 + − − +
𝐽𝐷 = ±𝐷𝐽 − + − +

This table arises from the structure of real Clifford algebra representations that underlie 𝐾𝑅-
theory. It is well known that, in the commutative case of Riemannian spin manifolds, one can find
conjugation operators 𝐽 on spinors that satisfy these sign rules.

In the noncommutative case, the antilinear operator 𝐽 comes from the Tomita involution on a
Hilbert space: 𝜋0 is a representation of the opposite algebraA0, consisting of elements { 𝑎0 : 𝑎 ∈ A }
with product 𝑎0𝑏0 = (𝑏𝑎)0 – we can write 𝑏0 = 𝐽𝑏∗𝐽†. We have thus required that the representations
𝜋 and 𝜋0 commute. When A is commutative, we may also require 𝐽𝜋(𝑏∗)𝐽† = 𝜋(𝑏), whereupon
the commutation of representations is automatic.

For 3-tori, the opposite algebra 𝐴0
𝜃

is just 𝐴−𝜃 , and the commuting representation of 𝐴−𝜃 on H0
is given by right multiplication by elements of 𝐴𝜃:

𝑎0 𝑏 = 𝐽0𝑎
∗𝐽†0 𝑏 = 𝐽0 𝑎

∗𝑏∗ = 𝑏𝑎.

From that, verification of the reality axiom is immediate.

Axiom 2 (First-order property). For all 𝑎, 𝑏 ∈ A, the following commutation relation moreover
holds:

[[𝐷, 𝑎], 𝐽𝑏∗𝐽†] = 0.

That can be rewritten as [[𝐷, 𝜋(𝑎)], 𝜋0(𝑏)] = 0. In view of this condition, the bimodule over A
given by 𝐶𝑛 (A,A ⊗ A0) := (A ⊗ A0) ⊗ A⊗𝑛 is represented by operators on H:

𝜋𝐷 ((𝑎 ⊗ 𝑏0) ⊗ 𝑎1 ⊗ 𝑎2 ⊗ · · · ⊗ 𝑎𝑛) := 𝜋(𝑎)𝜋0(𝑏) [𝐷, 𝜋(𝑎1)] [𝐷, 𝜋(𝑎2)] · · · [𝐷, 𝜋(𝑎𝑛)] .

The elements of 𝐶𝑛 (A,A ⊗ A0) are called Hochschild 𝑛-chains with coefficients in A ⊗ A0.
In the commutative case, we may replace A ⊗A0 simply by A, and the axiom expresses that the

Dirac operator /𝐷 is a first-order differential operator.
The first-order axiom for our NC 3-torus geometry can be readily checked, using that 𝐷 comes

from a derivation of the algebra.

Axiom 3 (Orientability). There exists a Hochschild cycle 𝒄 ∈ 𝑍𝑛 (A,A ⊗A0) whose representative
on H fulfils

𝜋𝐷 (𝒄) = 1.
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We say that the Hochschild 𝑛-chain 𝒄 is a cycle when its boundary is zero, where the Hochschild
boundary operator for 𝑛 = 3 is

𝑏(𝑚0 ⊗ 𝑎1 ⊗ 𝑎2 ⊗ 𝑎3) := 𝑚0𝑎1 ⊗ 𝑎2 ⊗ 𝑎3 − 𝑚0 ⊗ 𝑎1𝑎2 ⊗ 𝑎3

+ 𝑚0 ⊗ 𝑎1 ⊗ 𝑎2𝑎3 − 𝑎3𝑚0 ⊗ 𝑎1 ⊗ 𝑎2,

for 𝑚0 ∈ A ⊗ A0; and similarly for other 𝑛. Then 𝑏2 = 0, making 𝐶•(A,A ⊗ A0) a chain complex.
The Hochschild cycle 𝒄 is the algebraic equivalent of a volume form, on a noncommutative

manifold. Indeed, in the commutative case, a volume form is a sum of terms 𝑎0 𝑑𝑎1 ∧ · · · ∧ 𝑑𝑎𝑛,
which we represent by an antisymmetric sum:

𝒄′ :=
∑︁
𝜎

(−)𝜎𝑎0 ⊗ 𝑎𝜎(1) ⊗ · · · ⊗ 𝑎𝜎(𝑛)

in A⊗(𝑛+1) = 𝐶𝑛 (A,A). Then 𝑏𝒄′ = 0 by cancellation since A is commutative. When A = 𝐶∞(𝑀),
chains are represented by Clifford products: 𝜋 /𝐷 (𝑎0 ⊗ 𝑎1 ⊗ · · · ⊗ 𝑎𝑛) = 𝑎0 𝛾(𝑑𝑎1) · · · 𝛾(𝑑𝑎𝑛), with
𝛾(𝑑𝑎) := 𝛾 𝑗 𝜕𝑗𝑎, where the 𝛾 𝑗 are essentially the Dirac matrices.

For our 3-torus geometries, consider the Hochschild chain:

𝒄 :=
1

6(2𝜋𝑖)3 𝜀
𝑖 𝑗 𝑘𝑢−1

𝑖 𝑢
−1
𝑗 𝑢

−1
𝑘 ⊗ 𝑢𝑘 ⊗ 𝑢 𝑗 ⊗ 𝑢𝑖 .

(The first tensor factor can lie in A, since A ≃ A ⊗ 10 ⊂ A ⊗ A0.) We check that this 𝒄 is a
Hochschild 3-cycle on any 𝕋 3

𝜃
. In fact,

6(2𝜋𝑖)3 𝑏𝒄 = 𝜀𝑖 𝑗 𝑘 (𝑢−1
𝑖 𝑢

−1
𝑗 ⊗ 𝑢 𝑗 ⊗ 𝑢𝑖 − 𝑢−1

𝑖 𝑢
−1
𝑗 𝑢

−1
𝑘 ⊗ 𝑢𝑘𝑢 𝑗 ⊗ 𝑢𝑖

+ 𝑢−1
𝑖 𝑢

−1
𝑗 𝑢

−1
𝑘 ⊗ 𝑢𝑘 ⊗ 𝑢 𝑗𝑢𝑖 − 𝑢−1

𝑗 𝑢
−1
𝑘 ⊗ 𝑢𝑘 ⊗ 𝑢 𝑗 )

and the first and fourth terms cancel after cyclic permutation of the indices. Therefore

6(2𝜋𝑖)3 𝑏𝒄 = 𝜀𝑖 𝑗 𝑘 (𝑢−1
𝑖 𝑢

−1
𝑗 𝑢

−1
𝑘 ⊗ 𝑢𝑘 ⊗ 𝑢 𝑗𝑢𝑖 − 𝑢−1

𝑖 𝑢
−1
𝑗 𝑢

−1
𝑘 ⊗ 𝑢𝑘𝑢 𝑗 ⊗ 𝑢𝑖).

The remaining term 𝜀𝑖 𝑗 𝑘 𝑢−1
𝑖
𝑢−1
𝑗
𝑢−1
𝑘

⊗ 𝑢𝑘 ⊗ 𝑢 𝑗𝑢𝑖 vanishes by antisymmetrization, since the commu-
tation relations imply

𝑢−1
𝑖 𝑢

−1
𝑗 𝑢

−1
𝑘 ⊗ 𝑢𝑘 ⊗ 𝑢 𝑗𝑢𝑖 = 𝑢−1

𝑗 𝑢
−1
𝑖 𝑢

−1
𝑘 ⊗ 𝑢𝑘 ⊗ 𝑢𝑖𝑢 𝑗 .

Likewise the second remaining term vanishes by antisymmetrization.
The representative onH given by the geometry is the identity; in effect, [𝐷, 𝑢 𝑗 ] = −𝑖𝜎𝑗 𝛿 𝑗 (𝑢 𝑗 ) =

2𝜋𝜎𝑗 𝑢 𝑗 , and therefore

𝜋𝐷 (𝒄) =
(2𝜋)3

6(2𝜋𝑖)3 𝜀
𝑖 𝑗 𝑘 𝜎𝑘𝜎𝑗𝜎𝑖 =

−6𝑖 (2𝜋)3

6(2𝜋𝑖)3 = 1.

Axiom 4 (Classical dimension). There is an integer 𝑛, the classical dimension of the spin geometry,
for which the singular values of |𝐷 |−𝑛 form a logarithmically divergent series. The coefficient of
logarithmic divergence will be denoted by

⨏
𝑑𝑠𝑛.
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In our case, since 𝐷2 = 4𝜋2 |𝑚 |2 on a 2-dimensional eigenspace for each 𝑚, we see that⨏
𝑑𝑠𝑛 = 2 lim

𝑅→∞

1
3 log 𝑅

∑︁
1⩽ |𝑚 |⩽𝑅

(2𝜋 |𝑚 |)−𝑛 = 2 lim
𝑅→∞

1
3 log 𝑅

∫ 𝑅

1

4𝜋𝑟2 𝑑𝑟

(2𝜋𝑟)𝑛 ,

which is zero for 𝑛 > 3, diverges for 𝑛 < 3 and is positive finite (equal to (3𝜋2)−1) for 𝑛 = 3; so
indeed the dimension is 3.

Once we know what the correct dimension for a noncommutative manifoldA is, we write
⨏
𝑎 𝑑𝑠𝑛

for the coefficient of logarithmic divergence of 𝑎 |𝐷 |−𝑛, that exists for 𝑎 ∈ 𝐴. In the commutative
case, denoting by 𝜇 the canonical measure, Connes’ trace theorem (see Section 6) shows that⨏
𝑎 𝑑𝑠𝑛 = 𝐶𝑛

∫
𝑎(𝑥) 𝑑𝜇(𝑥), with 𝐶𝑛 a normalization factor. In dimension 3, the normalization

factor is precisely 1/3𝜋2 [22].
Note that for 3-tori:

⨏
𝑢𝑟 𝑑𝑠3 = 0 unless 𝑟 = 0. This can be proved, for instance, by using

the zeta-function recipe [23] for the computation of the noncommutative integral:
⨏
𝑢𝑟 𝑑𝑠3 =

Res𝑠=1 Tr(𝑢𝑟 |𝐷 |−3𝑠) = 0 since, for any 𝑟 ≠ 0 and 𝑠 > 1, 𝑢𝑟 |𝐷 |−3𝑠 is a traceclass operator with an
off-diagonal matrix.

Axiom 5 (Regularity). For any 𝑎 ∈ A, the operator [𝐷, 𝑎] is bounded on H, and both 𝑎 and
[𝐷, 𝑎] belong to the domain of smoothness

⋂∞
𝑘=1 Dom(𝛿𝑘 ) of the derivation 𝛿 on 𝐿 (H) given by

𝛿(𝑇) := [|𝐷 |, 𝑇].

The regularity axiom has far-reaching implications. As shown by Cipriani et al [24], it implies,
in particular, that

⨏
is a trace on the algebra A; i.e.,

⨏
𝑎𝑏 𝑑𝑠𝑛 =

⨏
𝑏𝑎 𝑑𝑠𝑛 for all 𝑎, 𝑏 ∈ A. This

finite trace on A extends to a finite normal trace on the von Neumann algebra A′′ generated by A;
therefore A′′ can only have components of types I𝑛 and II1 [20].

In the commutative case, where [ /𝐷, 𝑎] = 𝛾(𝑑𝑎), this axiom amounts to saying that 𝑎 has
derivatives of all orders, i.e., that A ⊆ 𝐶∞(𝑀). This is proved with the pseudodifferential cal-
culus. Consequently, all multiplication operators in

⋂∞
𝑘=1 Dom(𝛿𝑘 ) are multiplications by smooth

functions.
Verification of the regularity axiom for our noncommutative torus is straightforward.

Axiom 6 (Finiteness). Denote by ⟨· | ·⟩ the inner product on H. The space of smooth vectors
H∞ :=

⋂∞
𝑘=1 Dom(𝐷𝑘 ) is a finite projective left A-module with a Hermitian structure (· | ·) defined

by ⨏
(𝜉 | 𝜂) 𝑑𝑠𝑛 = 𝐶𝑛 ⟨𝜉 | 𝜂⟩.

The axiom assumes the trace property for the noncommutative integral, as we see from the
following manipulation:⨏

𝑎 (𝜉 | 𝜂) 𝑑𝑠𝑛 =
⨏

(𝜉 | 𝑎𝜂) 𝑑𝑠𝑛 = 𝐶𝑛 ⟨𝜉 | 𝑎𝜂⟩

= 𝐶𝑛 ⟨𝑎∗𝜉 | 𝜂⟩ =
⨏

(𝑎∗𝜉 | 𝜂) 𝑑𝑠𝑛 =
⨏

(𝜉 | 𝜂) 𝑎 𝑑𝑠𝑛.

In the commutative case, Connes’s trace theorem shows that (𝜉 | 𝜂) is just the hermitian product
of spinors given by the metric on the spinor bundle. For our 3-torus, plainly H∞ = 𝕋 3

𝜃
⊕ 𝕋 3

𝜃
is a

projective (indeed, free) left module over 𝕋 3
𝜃

, and the hermitian structure is also manifest.
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Axiom 7 (P-duality). The Fredholm index of the operator 𝐷 yields a nondegenerate intersection
form on the 𝐾-theory of the algebra A ⊗ A0.

We shall not discuss it here for the NC 3-torus, except to say that the 𝐾-theory groups of the
3-tori are 𝐾 𝑗 (𝕋 3

𝜃
) ≃ ℤ4 for 𝑗 = 0, 1, and all 𝜃.

If we add an “Axiom 0”, establishing that A is the commutative algebra 𝐶∞(𝑀) of smooth
functions on a compact manifold 𝑀 , then 𝑀 is spin, and there is a distinguished representation
of the geometry for which 𝜋 is unitarily equivalent to the representation of A by multiplication
operators on the canonical spinor space, and 𝐷 to the canonical Dirac operator /𝐷 [3]. Also,𝐶∞(𝑀)
is Morita equivalent to the Clifford algebra over 𝑀 [25].

Of course, Axiom 7 is then redundant. It is to be hoped that the same conclusions may be
obtained by just stipulating commutativity of the algebra; but we know no proof of that yet.

At any rate, it transpires that the previous axioms constitute an appropriate description of
noncommutative spin manifolds. To be sure, much work remains to be done: we do not have
classification results.

In general, the fermions will be coupled to a given “external” Yang–Mills configuration, that
may be time-dependent, but whose dynamics is not involved in the problem. For the commutative
geometry (𝐶∞(𝑀), 𝐿2(𝑀, 𝑆), /𝐷, 𝐽), we may have a nonabelian gauge theory, formulated on a Her-
mitian𝐺-vector bundle 𝐸 over 𝑀 . The Dirac operator then acts on the Hilbert space 𝐿2(𝑀, 𝑆 ⊗ 𝐸).
Gauge transformations are elements of the group 𝐶∞(Aut 𝐸) [26]. Pointwise multiplication gives
the representation of𝐶∞(Aut 𝐸) on the Hilbert space. When 𝐸 is trivial,𝐶∞(Aut 𝐸) ≃ Map(𝑀,𝐺).
Infinitesimal gauge transformations are accordingly defined. Gauge potentials, in the commutative
case, are 𝐸-valued 1-forms on 𝑀 , represented on spinor space as Clifford multiplication operators.
In the noncommutative case, vector bundles are translated into finitely generated projective (right)
modules over the algebra A. The vector bundles over noncommutative 𝑛-tori have been all con-
structed [27] and partially classified up to Morita equivalence [28], and the corresponding gauge
transformations are easily determined. Gauge potentials can also be translated to the noncommu-
tative case [19]. In what follows, we leave aside all geometrical complications extraneous to the
analytical problem at hand.

3 A Fredholm module interlude
A cycle is a complex graded associative algebra Ω• =

⊕∞
𝑘=0 Ω

𝑘 , endowed with a differential
𝑑 : Ω• → Ω•, i.e., a linear map of degree +1 such that 𝑑2 = 0 and

𝑑 (𝜔𝑘𝜔𝑙) = (𝑑𝜔𝑘 ) 𝜔𝑙 + (−)𝑘𝜔𝑘 𝑑𝜔𝑙

when 𝜔𝑘 , 𝜔𝑙 are homogeneous elements of respective degrees 𝑘, 𝑙; and with an integral
∫

, namely,
a linear map

∫
: Ω• → ℂ such that∫

𝜔𝑘𝜔𝑙 = (−)𝑘𝑙
∫

𝜔𝑙𝜔𝑘 and
∫

𝑑𝜔 = 0 for any 𝜔 ∈ Ω•.

We refer to the last property as closedness of the integral. A cycle over an algebra A is a cycle(
Ω•, 𝑑,

∫ )
together with a homomorphism from A to Ω0. The simplest examples are afforded by

de Rham complexes.
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A truly interesting class of examples comes from Fredholm modules over a given algebra A. An
odd Fredholm module over A is given by an involutive representation 𝜋 of A on a Hilbert space
H and a symmetry (selfadjoint unitary operator) 𝐹 such that [𝐹, 𝜋(𝑎)] is a compact operator for
all 𝑎 ∈ A. Let H± denote the eigenspaces for the ±1 eigenvalues of 𝐹. Then we may write any
operator 𝑇 as

𝑇 =

(
𝛼 𝛽

𝛾 𝛿

)
,

where 𝛼 : H+ → H+, 𝛽 : H− → H+ and so on. For a given 𝐹, 𝑇 is thus decomposed into “linear”
and “antilinear” parts:

𝑇 = 𝑇+ + 𝑇− := 1
2 (𝑇 + 𝐹𝑇𝐹) + 1

2 (𝑇 − 𝐹𝑇𝐹) =
(
𝛼 0
0 𝛿

)
+
(
0 𝛽

𝛾 0

)
.

To define an integral, let us postulate a summability condition on the algebra: for all 𝑎 ∈ A and
for some chosen nonnegative integer 𝑛, we assume that 𝑎− belongs to the Schatten class L𝑛+1(H).
The graded differential algebra structure is introduced as follows: defineΩ𝑘 (A) as the space spanned
by forms 𝑎0 d𝑎1 . . . d𝑎𝑘 with 𝑎0, 𝑎1, . . . , 𝑎𝑘 ∈ 𝐴, where d𝑎 := [𝐹, 𝑎]. The algebra multiplication is
the operator product. Given an operator 𝑇 on H, we introduce its conditional trace:

Tr𝐶 𝑇 := Tr𝑇+.
Note that Tr𝐶 (𝐴𝐵) = Tr𝐶 (𝐵𝐴) when both sides make sense, and that Tr𝐶 𝑇 := Tr𝑇 , if 𝑇 ∈ L1, by
cyclicity of the trace. Assuming that 𝑛 is odd, (𝜔𝑛)+ ∈ L1 [4,6]. Therefore, it makes sense to define
the integral by ∫

𝜔𝑛 := Tr𝐶 𝜔𝑛 = 1
2 Tr 𝐹 d𝜔𝑛.

We shall then say that (the cycle associated to) the Fredholm module has dimension 𝑛. The Chern
character of that cycle is defined to be the (𝑛 + 1)-linear functional on A given by

𝜏(𝑎0, 𝑎1, . . . , 𝑎𝑛) := Tr𝐶 (𝑎0 d𝑎1 d𝑎2 · · · d𝑎𝑛).
Now 𝑏𝜏 = 0, since

Tr𝐶 ((𝑎0𝑎1 d𝑎2 · · · d𝑎𝑛+1) +
𝑛∑︁
𝑖=1

(−)𝑖 Tr𝐶
(
𝑎0 d𝑎1 · · · (d𝑎𝑖 𝑎𝑖+1 + 𝑎𝑖 d𝑎𝑖+1) · · · d𝑎𝑛+1

)
+ (−)𝑛+1 Tr𝐶 (𝑎𝑛+1𝑎0 d𝑎1 · · · d𝑎𝑛)

= (−)𝑛 Tr𝐶 ((𝑎0 d𝑎1 · · · d𝑎𝑛)𝑎𝑛+1) + (−)𝑛+1 Tr𝐶 (𝑎𝑛+1𝑎0 d𝑎1 · · · d𝑎𝑛) = 0,

by telescoping; the last equality is just the trace property
∫
𝑎𝜔 =

∫
𝜔𝑎 for 𝑎 ∈ Ω0, 𝜔 ∈ Ω𝑛. Thus

𝜏 is an 𝑛-cocycle. Moreover, 𝜏 is cyclic:
𝜏(𝑎0, 𝑎1, . . . , 𝑎𝑛) = (−)𝑛−1 Tr𝐶 (d𝑎2 · · · d𝑎𝑛 𝑎0 d𝑎1)

= (−)𝑛 Tr𝐶 (d𝑎2 · · · d𝑎𝑛 d𝑎0 𝑎1)
= (−)𝑛 Tr𝐶 (𝑎1 d𝑎2 · · · d𝑎𝑛 d𝑎0) = (−)𝑛𝜏(𝑎1, . . . , 𝑎𝑛, 𝑎0),

where we have used that d𝑎0 𝑎1 + 𝑎0 d𝑎1 = d(𝑎0𝑎1) and the closedness of Tr𝐶 .
Given a Dirac operator 𝐷 on a spin geometry of dimension 𝑛 (e.g., an 𝑛-torus), there is a God-

given Fredholm module coming from the phase operator 𝐷/|𝐷 |. The minimal integer for which the
character exists, for this Fredholm module structure, we call the “quantum dimension” of the spin
space. Note that (non)commutativity of A does not play any role in the foregoing.
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4 Second quantization
We now review the algebraic machinery of canonical quantization, and investigate its general
properties of application. It is important to realize that the basic ingredient of the construction is just
a real Hilbert space. So suppose an infinite-dimensional real vector space𝑉 and a symmetric bilinear
form 𝑑 are given, the metric space (𝑉, 𝑑) being complete. The first object in quantization is the field
algebra over the space (𝑉, 𝑑), which is just the complexified Clifford algebra A(𝑉) := Cℓ(𝑉, 𝑑) ⊗ℂ,
complete in the (inductive limit) 𝐶∗-norm [29]. The fermion field is a linear map 𝐵 : 𝑉 → A(𝑉)
satisfying [𝐵(𝑣), 𝐵(𝑣′)]+ = 2 𝑑 (𝑣, 𝑣′) for all 𝑣, 𝑣′ ∈ 𝑉 . Any two 𝐶∗-algebras generated by two sets
of operators obeying the same rules are isomorphic [7].

The orthogonal group O(𝑉) is { 𝑔 ∈ GLℝ(𝑉) : 𝑑 (𝑔𝑢, 𝑔𝑣) = 𝑑 (𝑢, 𝑣) for all 𝑢, 𝑣 ∈ 𝑉 }. A
complex structure 𝐾 is an orthogonal operator on 𝑉 satisfying 𝐾2 = −1. Now, introducing the rule
(𝛼 + 𝑖𝛽)𝑣 := 𝛼𝑣 + 𝛽𝐾𝑣 for 𝛼, 𝛽 real, the hermitian form

⟨𝑢 | 𝑣⟩𝐾 := 𝑑 (𝑢, 𝑣) + 𝑖𝑑 (𝐾𝑢, 𝑣)

makes (𝑉, 𝑑, 𝐾) a complex Hilbert space. Once a particular complex structure 𝐾 has been selected,
one can decompose elements of O(𝑉) as 𝑔 = 𝑝𝑔 + 𝑞𝑔 where 𝑝𝑔, 𝑞𝑔 are its linear and antilinear parts:
𝑝𝑔 := 1

2 (𝑔 − 𝐾𝑔𝐾), 𝑞𝑔 := 1
2 (𝑔 + 𝐾𝑔𝐾). The “restricted orthogonal group” O𝐾 (𝑉) is the subgroup

of O(𝑉) consisting of those 𝑔 for which 𝑞𝑔 is Hilbert–Schmidt.
One can construct a faithful irreducible representation 𝜋𝐾 of A(𝑉) by the GNS construction

with respect to the “Fock state” 𝜔𝐾 determined by 𝜔𝐾 (𝐵(𝑢)𝐵(𝑣)) := ⟨𝑢 | 𝑣⟩𝐾 ; this is the standard
representation on the fermion Fock space F𝐾 (𝑉), with vacuum Ω, in which the creation and
annihilation operators are defined as real-linear operators:

𝑎
†
𝐾
(𝑣) := 𝜋𝐾𝐵(𝑃𝐾𝑣), 𝑎𝐾 (𝑣) := 𝜋𝐾𝐵(𝑃−𝐾𝑣),

where 𝑃𝐾 := 1
2 (1 − 𝑖𝐾).

For 𝑔 orthogonal, the map 𝑤 ↦→ 𝐵(𝑔𝑤) extends to a ∗-automorphism of the CAR algebra A(𝑉).
We then ask when these two quantizations are unitarily equivalent, i.e., whether this ∗-automorphism
is unitarily implementable on F𝐾 (𝑉). For a given 𝑔 ∈ O(𝑉), we seek a unitary operator 𝜇(𝑔)
on F𝐾 (𝑉) so that

𝜇(𝑔)𝐵(𝑣) = 𝐵(𝑔𝑣)𝜇(𝑔), for all 𝑣 ∈ 𝑉.
The complex structure 𝐾 is transformed to 𝑔𝐾𝑔−1; the creation and annihiliation operators

undergo a Bogoliubov transformation:

𝑎
†
𝑔𝐾𝑔−1 (𝑔𝑣) = 𝑎𝐾 (𝑞𝑔𝑣) + 𝑎†𝐾 (𝑝𝑔𝑣),

𝑎𝑔𝐾𝑔−1 (𝑔𝑣) = 𝑎𝐾 (𝑝𝑔𝑣) + 𝑎†𝐾 (𝑞𝑔𝑣).

Were 𝜇(𝑔) to exist, we would then have

𝜇(𝑔)𝑎†
𝐾
(𝑣) = 𝑎†

𝑔𝐾𝑔−1 (𝑔𝑣)𝜇(𝑔),

𝜇(𝑔)𝑎𝐾 (𝑣) = 𝑎𝑔𝐾𝑔−1 (𝑔𝑣)𝜇(𝑔).

The out-vacuum 𝜇(𝑔)Ω is annihilated by 𝑎𝑔𝐾𝑔−1 (𝑔𝑣), for all 𝑣 ∈ 𝑉 . From there the Shale–
Stinespring criterion [30] for implementability is easily established: the operator 𝜇(𝑔) exists if
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and only if 𝑔 belongs to the restricted orthogonal group. Naturally, the map 𝑔 ↦→ 𝜇(𝑔) is only a
projective representation of O𝐾 (𝑉). The explicit construction of 𝜇 was performed in our Ref. [13],
on which we mostly rely for this section.

The spin representation allows us to quantize all elements of the Lie algebra o𝐾 (𝑉) of the group
O𝐾 (𝑉). Define the infinitesimal spin representation ¤𝜇(𝑋) of 𝑋 ∈ o𝐾 (𝑉) by:

¤𝜇(𝑋) Ψ :=
𝑑

𝑑𝑡

����
𝑡=0
𝑒𝑖𝜃𝑋 (𝑡)𝜇(exp 𝑡𝑋) Ψ

for Ψ ∈ F𝐾 (𝑉), where 𝜃𝑋 (𝑡) is such that 𝑡 ↦→ 𝑒𝑖𝜃𝑋 (𝑡)𝜇(exp 𝑡𝑋) is a homomorphism. The vacuum
expectation value of ¤𝜇(𝑋) is ⟨Ω | ¤𝜇(𝑋)Ω⟩ = 𝑖𝜃′

𝑋
(0). We set 𝜃′

𝑋
(0) = 0 for all 𝑋 ∈ o𝐾 (𝑉). The

quantization rule 𝑋 ↦→ ¤𝜇(𝑋) then is uniquely specified by the condition of vanishing vacuum
expectation values.

The fundamental property of the infinitesimal spin representation is the commutation relations:

[ ¤𝜇(𝑋), 𝐵(𝑣)] = 𝐵(𝑋𝑣),

an operator-valued equation valid on a dense domain in F𝐾 (𝑉), that justifies the name “currents”
for the quantized observables. An easy computation [13] gives

[ ¤𝜇(𝑋), ¤𝜇(𝑌 )] − ¤𝜇( [𝑋,𝑌 ]) = 1
4 Tr(𝐾 [𝐾, 𝑋] [𝐾,𝑌 ])

when 𝑋,𝑌 ∈ o𝐾 (𝑉), for the Schwinger terms.
We reexpress the quantization prescription in the language of creation and annihilation operators.

Given orthonormal bases {𝑒 𝑗 }, { 𝑓𝑘 } of (𝑉, 𝑑, 𝐾), the quadratic expressions:

𝑎†𝑇𝑎† :=
∑︁
𝑗 ,𝑘

𝑎
†
𝐾
( 𝑓𝑘 ) ⟨ 𝑓𝑘 | 𝑇𝑒 𝑗 ⟩ 𝑎†𝐾 (𝑒 𝑗 ),

𝑎𝑇𝑎 :=
∑︁
𝑗 ,𝑘

𝑎𝐾 (𝑒 𝑗 ) ⟨𝑇𝑒 𝑗 | 𝑓𝑘⟩ 𝑎𝐾 ( 𝑓𝑘 ),

𝑎†𝐶𝑎 :=
∑︁
𝑗 ,𝑘

𝑎
†
𝐾
( 𝑓𝑘 ) ⟨ 𝑓𝑘 | 𝐶𝑒 𝑗 ⟩ 𝑎𝐾 (𝑒 𝑗 ),

are independent of the orthonormal bases used; 𝑇 is antilinear and skew, and𝐶 is linear, as operators
on 𝑉 . The series 𝑎†𝑇𝑎†, 𝑎𝑇𝑎 are meaningful in Fock space if and only if 𝑇 is Hilbert–Schmidt. If
𝐶𝑋 is the linear part of 𝑋 and 𝐴𝑋 the antilinear part, we thus get:

¤𝜇(𝑋) = 1
2 (𝑎

†𝐴𝑋𝑎
† + 2𝑎†𝐶𝑋𝑎 − 𝑎𝐴𝑋𝑎). (1)

In most cases, including our neutrino fields over noncommutative tori, 𝑉 is a complex Hilbert
space to start with. The original complex structure contains important physical information; but we
have seen that the first step of second quantization is to forego and replace it with a new complex
structure adapted to the dynamical problem at hand. If 𝑉 has this additional structure, then unitary
elements of Lℂ(𝑉) are obviously orthogonal; and selfadjoint elements of Lℂ(𝑉) are of the form
𝑖𝑋 , with 𝑋 ∈ o𝐾 (𝑉). In this context, it is plain that if 𝐹 is a symmetry defining a Fredholm module,
then 𝑖𝐹 becomes a complex structure on the realification of H.
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Suppose, moreover, that 𝐹 is the phase of the Dirac operator on a spin geometry, commutative if
one wishes, and let 𝑀 denote the underlying manifold, with dimension 𝑛. Then 𝐹 defines the very
complex structure we naturally use to quantize fermions over 𝑀: we can think of the 𝐹-eigenspaces
H+ and H− as the spaces of positive and negative energy solutions, respectively, of the Dirac
equation

𝑖

(
𝜕

𝜕𝑡
− 𝐷

)
𝜓 = 0,

so the construction of the new Hilbert space with complex structure 𝑖𝐹 is equivalent to filling up
the Dirac sea. In fact, 𝑖𝐷/|𝐷 | is the unique complex structure for which 𝐷 becomes a positive
generator. Then the quantization prescription (1) effects normal ordering; it is equivalent to the one
defined in [9] – although our formalism is more general.

The outcome of the previous discussion is that an orthogonal operator 𝑂 on the single-particle
space can be second-quantized (by means of the spin representation) to an operator on the Fock space
associated to the “free” evolution iff [𝐹,𝑂] is Hilbert–Schmidt, and an infinitesimally orthogonal
operator 𝑍 on the single-particle space can be second-quantized (by means of the infinitesimal spin
representation) to an operator on the same Fock space iff [𝐹, 𝑍] is Hilbert–Schmidt. In the complex
context, the orthogonal operator will be actually in most cases unitary with respect to the original
or fiducial complex structure, and the infinitesimally orthogonal one actually skewadjoint.

In the commutative case, if 𝑔 is a multiplication operator, then [𝐹, 𝑔] ∈ L𝑛+1(H). The proof
relies on pseudodifferential operators: if 𝑇 is pseudodifferential of order 𝑚 < 0, then it belongs
to the Schatten class L𝑝 for all 𝑝 > −𝑛/𝑚. This can be deduced from the Cesàro asymptotic
development of the spectral density of such operators [31]. Now, 𝐹 and 𝑔 are of order 0, so [𝐹, 𝑔]
is of order −1. Therefore [𝐹, 𝑔] ∈ L𝑝 (H) for all 𝑝 > 𝑛, in particular for 𝑝 = 𝑛 + 1. As hinted
at the end of Section 2, this conclusion is not altered when 𝑔 is replaced by an element of a more
complicated projective module over 𝐶∞(𝑀), representing a gauge theory on 𝑀 .

The Schatten class of [𝐹, 𝑔], thus the “quantum dimension”, measures the degree of ultraviolet
divergence of the theory. We have seen that, at least for commutative manifolds, the classical and
quantum dimensions coincide. For 1 + 1 quantum field theory, the character is identical to the
Schwinger term; the Shale–Stinespring criterion is satisfied for any 𝑔, and so normal ordering is
sufficient to regularize the theory. In fact, it is even sufficient to regularize the fully interacting
gauged Wess–Zumino–Witten model! [32]. This is not so for 1 + 3 quantum field theory, where the
gauge transformations themselves cannot be unitarily implemented in general.

5 Quantum dimension = classical dimension for NC tori
A gauge transformation for the trivial line bundle over 𝕋 3

𝜃
is just a unitary element 𝑋 of this algebra.

For irrational 𝜃, 𝕋 3
𝜃

is a highly nonlocal algebra, and one might expect that its quantum dimension
would be less than 3, namely, that typically [𝐹, 𝑋] ∈ L𝑝 for some 𝑝 ⩽ 3. But this is not the
case: indeed, the nonlocality of the irrational 3-torus does nothing to improve that particular test of
ultraviolet behaviour.

We may write 𝑋 = 𝑎𝑟𝑢
𝑟 with {𝑎𝑟} ∈ S(ℤ3); then 𝑋∗ = 𝑎̄𝑟𝑢

−𝑟 = 𝑎̄−𝑠𝑢𝑠 and 𝑋∗𝑋 =

𝜆(𝑚, 𝑟) 𝑎̄𝑟𝑎𝑟+𝑚 𝑢𝑚, so that 𝑋 is unitary if and only if∑
𝑟 |𝑎𝑟 |2 = 1,

∑
𝑟 𝜆(𝑚, 𝑟) 𝑎̄𝑟𝑎𝑟+𝑚 = 0 for 𝑚 ≠ 0.
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The unitarity conditions in particular imply that a finite sum 𝑋 = 𝑎𝑟𝑢
𝑟 can be unitary only if it

contains just one summand, i.e., 𝑋 is a multiple of some 𝑢𝑟 .
We start from the computation carried out by Mickelsson and Rajeev [33] ten years ago for

commutative tori. With respect to the orthonormal basis { 𝜓𝑛, 𝜓′
𝑛 : 𝑛 ∈ ℤ3 } for H, the matrix

entries of the operator 𝐴 = [𝐹, 𝑋] are given by

[𝐹, 𝑋]𝜓𝑛 =
∑︁
𝑟

𝜆(𝑟, 𝑛)𝑎𝑟
(
(𝑛 + 𝑟) · 𝜎
|𝑛 + 𝑟 | − 𝑛 · 𝜎

|𝑛|

)
𝜓𝑛+𝑟 ,

and similarly for the 𝜓′
𝑛. To obtain the Schatten class of 𝐴, we must determine the finiteness of the

𝑝-norm
∥𝐴∥𝑝 :=

(
Tr(𝐴∗𝐴)𝑝/2)1/𝑝

,

which is in general hard to compute. A simpler alternative is to calculate

|||𝐴|||𝑝 :=
(∑︁
𝑛

∥𝐴𝜓𝑛∥𝑝 + ∥𝐴𝜓′
𝑛∥𝑝

)1/𝑝
,

or its analogue with any other orthonormal basis of H. However, these are not equivalent norms
unless 𝑝 = 2, pace Ref. [33]. It is known [34] that ∥𝐴∥𝑝 ⩽ |||𝐴|||𝑝 if 1 ⩽ 𝑝 ⩽ 2, whereas
|||𝐴|||𝑝 ⩽ ∥𝐴∥𝑝 if 𝑝 ⩾ 2. Thus, in general, for 𝑝 > 2 the divergence of |||𝐴|||𝑝 implies that 𝐴 ∉ L𝑝,
but not conversely.

For the particular case 𝐴 = [𝐹, 𝑢𝑟] this does not matter, since 𝐴∗𝐴 is diagonal in the chosen
basis. Indeed,

[𝐹, 𝑢𝑟]∗ [𝐹, 𝑢𝑟]𝜓𝑛 = 𝜆̄(𝑟, 𝑛 + 𝑟) 𝜆(𝑟, 𝑛)
(
(𝑛 + 𝑟) · 𝜎
|𝑛 + 𝑟 | − 𝑛 · 𝜎

|𝑛|

)2
𝜓𝑛

= 2
(
1 − (𝑛 + 𝑟) · 𝑛

|𝑛 + 𝑟 | |𝑛|

)
𝜓𝑛,

since 𝜆(𝑟, 𝑛) 𝜆̄(𝑟, 𝑛 + 𝑟) = |𝜆(𝑟, 𝑛) |2 = 1 (using the antisymmetry of 𝜃). Similar formulas obtain for
[𝐹, 𝑢𝑟]∗ [𝐹, 𝑢𝑟]𝜓′

𝑛. Thus

∥ [𝐹, 𝑢𝑟] ∥𝑝𝑝 = ||| [𝐹, 𝑢𝑟] |||𝑝𝑝 = 21+𝑝/2
∑︁
𝑛

(
1 − (𝑛 + 𝑟) · 𝑛

|𝑛 + 𝑟 | |𝑛|

)𝑝/2

= 2
∑︁
𝑛

(
|𝑟 |2
|𝑛|2

− (𝑟 · 𝑛)2

|𝑛|4
+𝑂 ( |𝑛|−3)

) 𝑝/2
,

so that [𝐹, 𝑢𝑟] ∈ L𝑝 if and only if
∑
𝑛≠0 |𝑛|−𝑝 converges, if and only if

∫ ∞
1 𝜌2−𝑝 𝑑𝜌 converges, if

and only if 𝑝 > 3.
For the general case 𝐴 = [𝐹, 𝑋], the matrix of 𝐴∗𝐴 has off-diagonal terms, but one generally

finds that ||| [𝐹, 𝑋] |||𝑝𝑝 diverges for 𝑝 ⩽ 3, so that [𝐹, 𝑋] ∉ L3. But we can show, with the same type
of arguments, that [𝐹, 𝑋] ∈ L4 for any 𝑋 = 𝑎𝑟𝑢

𝑟 ∈ 𝕋 3
𝜃

. Since

[𝐹, 𝑋]∗ [𝐹, 𝑋]𝜓𝑛 =
∑︁
𝑟,𝑠

𝜆̄(𝑟, 𝑠) 𝑎̄𝑟𝑎𝑠
(
(𝑛 + 𝑠) · 𝜎
|𝑛 + 𝑠 | − (𝑛 − 𝑟 + 𝑠) · 𝜎

|𝑛 − 𝑟 + 𝑠 |

)
×

(
(𝑛 + 𝑠) · 𝜎
|𝑛 + 𝑠 | − 𝑛 · 𝜎

|𝑛|

)
𝜓𝑛−𝑟+𝑠,
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and ∥ [𝐹, 𝑋] ∥4
4 = ∥𝐵∥2

2 =
∑
𝑛 ∥𝐵𝜓𝑛∥2 + ∥𝐵𝜓′

𝑛∥2 with 𝐵 = [𝐹, 𝑋]∗ [𝐹, 𝑋], and furtheremore since
∥(𝑝 · 𝜎) (𝑞 · 𝜎)𝜓𝑛∥2 + ∥(𝑝 · 𝜎) (𝑞 · 𝜎)𝜓′

𝑛∥2 = 2|𝑝 |2 |𝑞 |2, we obtain, after replacing 𝑛 by 𝑛 − 𝑠,

∥ [𝐹, 𝑋] ∥4
4 = 2

∑︁
𝑛,𝑟,𝑠

|𝜆̄(𝑟, 𝑠) 𝑎̄𝑟𝑎𝑠 |2
���� 𝑛|𝑛| − (𝑛 − 𝑟)

|𝑛 − 𝑟 |

����2 ���� 𝑛|𝑛| − (𝑛 − 𝑠)
|𝑛 − 𝑠 |

����2
= 8

∑︁
𝑛,𝑟,𝑠

|𝑎̄𝑟𝑎𝑠 |2
(
1 − 𝑛 · (𝑛 − 𝑟)

|𝑛| |𝑛 − 𝑟 |

) (
1 − 𝑛 · (𝑛 − 𝑠)

|𝑛| |𝑛 − 𝑠 |

)
= 2

∑︁
𝑛,𝑟,𝑠

(
|𝑟 |2
|𝑛|2

− (𝑟 · 𝑛)2

|𝑛|4

)
|𝑎𝑟 |2

(
|𝑠 |2
|𝑛|2

− (𝑠 · 𝑛)2

|𝑛|4

)
|𝑎𝑠 |2 +𝑂 ( |𝑛|−5),

which converges since |𝑟 | 𝑎𝑟 is a square-summable sequence because 𝑎 ∈ S(ℤ3). Thus the quantum
dimension of 𝕋 3

𝜃
is 3.

Results of this kind are independent of the torus parameters 𝜃 𝑗 𝑘 , so from the dimensional
standpoint the ultraviolet behaviour is exactly the same for all 3-tori, commutative or not.

6 The noncommutative Chern character theorem
We have seen that for NC tori, the quantum dimension, as measured by the character given by the
phase operator 𝐹, equals the quantum dimension. (It should be clear that the calculations for 𝑛 = 3
yield analogous results for higher odd 𝑛.) What is the underlying reason for this?

One of the deepest results in noncommutative geometry is that the noncommutative integral
defined by a generalized Dirac operator 𝐷 and the character given by its phase operator 𝐹 have the
same values on “volume forms”. This is the content of Connes’ Hauptsatz [6, p. 308]: if 𝑛 is odd,

Tr𝐶
(∑

𝑗 𝑎
𝑗

0 [𝐹, 𝑎
𝑗

1] · · · [𝐹, 𝑎
𝑗
𝑛]
)
=

⨏ ∑
𝑗 𝑎

𝑗

0 [𝐷, 𝑎
𝑗

1] · · · [𝐷, 𝑎
𝑗
𝑛] 𝑑𝑠𝑛, (2)

whenever
∑
𝑗 𝑎

𝑗

0 ⊗ 𝑎
𝑗

1 ⊗ · · · ⊗ 𝑎 𝑗𝑛 is a Hochschild 𝑛-cycle on the algebra A.
Assume that the classical dimension of a spin geometry is 𝑛, and that Hochschild cohomology

of A is the dual of its Hochschild homology. If the cohomological dimension of the character
(what we have called the “quantum dimension” of the geometry) were lower, say (𝑛 − 2) – it
must still be an odd integer – then the character 𝜏𝑛 would necessarily [6, p. 294] be of the form
(−2/𝑛) 𝑆𝜏𝑛−2, where 𝜏𝑛−2 is the analogous character in degree (𝑛 − 2) and the periodicity operator
𝑆 promotes cyclic (𝑛 − 2)-cocycles to cyclic 𝑛-cocycles. However, promoted cyclic cocycles are
always Hochschild-cohomologous to zero; if 𝒄 denotes the cycle whose representative on H fulfils
𝜋𝐷 (𝒄) = 1 (Axiom 3 in Section 2), this would imply

⨏
𝑑𝑠𝑛 =

⨏
𝜋𝐷 (𝒄) 𝑑𝑠𝑛 = (−2/𝑛) 𝑆𝜏𝑛−2(𝒄) = 0,

which is not possible in classical dimension 𝑛. In fine, the quantum dimension is not lower than 𝑛.
On the other hand [35], the summability of [𝐹, 𝑎] is no worse than that of [𝐷, 𝑎] |𝐷 |−1, which
implies the converse inequality.

By direct computation, Langmann found [36], for the usual spin geometry on ℝ𝑛, that the
character determined by the phase operator 𝐹 = /𝐷/| /𝐷 | is given, up to a constant factor, by an
ordinary de Rham integral:

Tr𝐶 (𝑎0 [𝐹, 𝑎1] · · · [𝐹, 𝑎𝑛]) = 𝐶𝑛
∫
ℝ𝑛

tr(𝑎0 𝑑𝑎1 · · · 𝑑𝑎𝑛)
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of smooth, compactly supported matrix-valued functions on ℝ𝑛. (The constant 𝐶𝑛 and the 𝐶𝑛 of
Section 2 differ only by a factor of modulus 1.) The integral on the right hand side is in fact a
noncommutative integral, due to the trace theorem of Connes [37]: on a spin manifold 𝑀 , the
following identity holds:⨏

𝑎0 [ /𝐷, 𝑎1] · · · [ /𝐷, 𝑎𝑛] 𝑑𝑠𝑛 = 𝐶𝑛
∫
𝑀

𝑎0 𝑑𝑎1 · · · 𝑑𝑎𝑛. (3)

This is proved for compact manifolds by use of the Wodzicki residue [22,23,37]. Our results in [31]
extend the validity of (3) to ℝ𝑛, for compactly supported functions. Therefore, in the commutative
case, the integral identity (2) subsumes the formula given by Langmann.

To summarize, the Fredholm character and the integral give equal results when evaluated on a
volume form. Commutativity has nothing to do with the matter – except to allow the noncommutative
integral to be rewritten as an ordinary integral.

While a proof of (2) is not given in [6], it is a special case of an even more general index
theorem proved in [38]. Thus, at the very heart of NCG, there is a barrier to the improvement of
ultraviolet behaviour by abandoning locality of the fields. This is perhaps not a bad thing, given
that spacetime behaves at long distances as a commutative manifold of fixed dimension. Of course,
time is still counted as a 𝑐-number here, both before and after quantization. It may still happen
that in fully interacting theories, the noncommutativity of space introduces couplings that soften
the ultraviolet divergences. At any rate, we expect fermion fields over noncommutative spaces – in
particular over Kronecker foliation algebras, that may prove the more pertinent ones in M-theory –
to be regularizable by a direct generalization of the methods developed in [9], which go beyond the
1 + 1 case; to our mind, this is one of the outstanding issues.

7 Conclusion
Quantization, in the Hamiltonian formalism, amounts to substituting 𝑞-numbers for the canonical
variables. Connes’ mathematical theory leads to consider 𝑛𝑐-numbers generalizing 𝑐-numbers,
probing singular geometries (in fact, one can argue that the Standard Model encodes the true,
noncommutative geometry of the world [39–41]). We have shown a conceptually consistent way of
making 𝑛𝑐-numbers into 𝑞-numbers. This points to a fusion of quantum field theory and geometry,
and promises to widen the present-day scope of both.
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