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Abstract

We give an introductory survey to the use of Hopf algebras in several problems of noncom-
mutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected
Hopf algebra arising from a universal construction. We show its relation to the algebra of
transverse differential operators introduced by Connes and Moscovici in order to compute a
local index formula in cyclic cohomology, and to the several Hopf algebras defined by Connes
and Kreimer to simplify the combinatorics of perturbative renormalization. We explain how
characteristic classes for a Hopf module algebra can be obtained from the cyclic cohomology of
the Hopf algebra which acts on it. Finally, we discuss the theory of noncommutative spherical
manifolds and show how they arise as homogeneous spaces of certain compact quantum groups.
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Introduction

These are lecture notes for a course given at the Summer School on Geometric and Topological
Methods for Quantum Field Theory, sponsored by the Centre International de Mathématiques Pures
et Appliquées (CIMPA) and the Universidad de Los Andes, at Villa de Leyva, Colombia, from the
9th to the 27th of July, 2001.

These notes explore some recent developments which place Hopf algebras at the heart of the
noncommutative approach to geometry and physics. Many examples of Hopf algebras are known
from the literature on “quantum groups”, some of which provide algebraic deformations of the
classical transformation groups. The main emphasis here, however, is on certain other Hopf
algebras which have recently appeared in two seemingly unrelated contexts: in the combinatorics of
perturbative renormalization in quantum field theories, and in connection with local index formulas
in noncommutative geometry.

These Hopf algebras act on “noncommutative spaces”, and certain characteristic classes for
these spaces can be obtained, by a canonical procedure, from corresponding invariants of the Hopf
algebras. This comes about by pulling back the cyclic cohomology of the algebra representing the
noncommutative space, which is the receptacle of Chern characters, to another cohomology of the
Hopf algebra.

Recently, some interesting spaces have been discovered, the noncommutative spheres, which are
completely specified by certain algebraic relations. They turn out to be homogeneous spaces under
the action of certain Hopf algebras: in this way, these Hopf algebras appear as “quantum symmetry
groups”. We shall show how these symmetries arise from a class of quantum groups built from
Moyal products on group manifolds.

Section 1 is introductory: it offers a snapshot of noncommutative geometry and the basic theory
of Hopf algebras; as an example of how both theories interact, we exhibit the Connes–Moscovici
Hopf algebra of differential operators in the one-dimensional case. Section 2 concerns the Hopf
algebras which have been found useful in the perturbative approach to renormalization. We develop
at length a universal construction, the Connes–Kreimer algebra of rooted trees, which is a graded,
commutative, but highly noncocommutative Hopf algebra. Particular quantum field theories give
rise to related Hopf algebras of Feynman graphs; we discuss briefly how these give a conceptual
approach to the renormalization problem.

The third section gives an overview of cyclic cohomology for both associative and Hopf algebras,
indicating how the latter provide characteristic classes for associative algebras on which they act.
The final Section 4 explains how cyclic-homology Chern characters lead to new examples of
noncommutative spin geometries, whose symmetry groups are compact quantum groups obtained
from the Moyal approach to prequantization.

1 Noncommutative Geometry and Hopf Algebras
Noncommutative geometry, in the broadest sense, is the study of geometrical properties of singular
spaces, by means of suitable “coordinate algebras” which need not be commutative. If the space in
question is a differential manifold, its coordinates form a commutative algebra of smooth functions;
but even in this case, adding a metric structure may involve operators which do not commute with
the coordinates. One learns to replace the usual calculus of points, paths, integration domains, etc.,
by an alternative language involving the algebra of coordinates; by focusing only on those features
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which do not require that the coordinates commute, one arrives at an algebraic (or operatorial)
approach which is applicable to many singular spaces also.

1.1 The algebraic tools of noncommutative geometry

The first step is to replace a topological space 𝑋 by its algebra of complex-valued continuous
functions 𝐶 (𝑋). If 𝑋 is a compact (Hausdorff) space, then 𝐶 (𝑋) is a commutative 𝐶∗-algebra
with unit 1 and its norm ∥ 𝑓 ∥ := sup𝑥∈𝑋 | 𝑓 (𝑥) | satisfies the 𝐶∗-property ∥ 𝑓 ∥2 = ∥ 𝑓 ∗ 𝑓 ∥. The first
Gelfand–Naı̆mark theorem [48] says that any commutative unital 𝐶∗-algebra 𝐴 is of this form:
𝐴 = 𝐶 (𝑋) where 𝑋 = 𝑀 (𝐴) is the space of characters (nonzero homomorphisms) 𝜇 : 𝐴 → ℂ,
which is compact in the weak* topology determined by the maps 𝜇 ↦→ 𝜇(𝑎), for 𝑎 ∈ ℂ. Indeed, the
characters of 𝐶 (𝑋) are precisely the evaluation maps 𝜀𝑥 : 𝑓 ↦→ 𝑓 (𝑥) at each point 𝑥 ∈ 𝑋 .

We shall mainly deal with the compact case in what follows. A locally compact, but noncompact,
space 𝑌 can be handled by passing to a compactification (that is, a compact space in which 𝑌 can
be densely embedded). For instance, we can adjoin one “point at infinity”: if 𝑋 = 𝑌 ⊎ {∞}, then
{ 𝑓 ∈ 𝐶 (𝑋) : 𝑓 (∞) = 0 } is isomorphic to 𝐶0(𝑌 ), the commutative 𝐶∗-algebra of continuous
functions on 𝑌 “vanishing at infinity”; thus, by dropping the constant functions from 𝐶 (𝑋), we get
the commutative nonunital 𝐶∗-algebra 𝐶0(𝑌 ) as a stand-in for the locally compact space 𝑌 . There
is also a maximal compactification 𝛽𝑌 := 𝑀 (𝐶𝑏 (𝑌 )), called the Stone–Čech compactification,
namely, the character space of the (unital) 𝐶∗-algebra of bounded continuous functions on 𝑌 .

The construction 𝑋 ↦→ 𝐶 (𝑋) yields a contravariant functor: to each continuous map ℎ : 𝑋1 → 𝑋2
between compact spaces there is a morphism1 𝜑ℎ : 𝐶 (𝑋2) → 𝐶 (𝑋1) given by 𝜑ℎ ( 𝑓 ) := 𝑓 ◦ ℎ.

By relaxing the commutativity requirement, we can regard noncommutative 𝐶∗-algebras (unital
or not) as proxies for “noncommutative locally compact spaces”. The characters, if any, of such
an algebra may be said to label “classical points” of the corresponding noncommutative space.
However, noncommutative 𝐶∗-algebras generally have few characters, so these putative spaces
will have correspondingly few points. The recommended course of action, then, is to leave these
pointless spaces behind and to adopt the language and techniques of algebras instead.

There is a second Gelfand–Naı̆mark theorem [48], which states that any𝐶∗-algebra, commutative
or not, can be faithfully represented as a (norm-closed) algebra of bounded operators on a Hilbert
space. The data for a “noncommutative topology” consist, then, of a pair (𝐴,H) where H is a
Hilbert space and 𝐴 is a closed subalgebra of L(H).
▶ Vector bundles over a compact space also have algebraic counterparts. If 𝑋 is compact and
𝐸

𝜋−→ 𝑋 is a complex vector bundle, the space Γ(𝑋, 𝐸) of continuous sections is naturally a module
over 𝐶 (𝑋), which is necessarily of the form 𝑒𝐶 (𝑋)𝑚, where 𝑒 = 𝑒2 ∈ 𝑀𝑚 (𝐶 (𝑋)) is an idempotent
matrix of elements of 𝐶 (𝑋). More generally, if 𝐴 is any algebra over ℂ, a right 𝐴-module of
the form 𝑒𝐴𝑚 with 𝑒 = 𝑒2 ∈ 𝑀𝑚 (𝐴) is called a finitely generated projective module over 𝐴. The
Serre–Swan theorem [99] matches vector bundles over 𝑋 with finitely generated projective modules
over 𝐶 (𝑋). The idempotent 𝑒 may be constructed from the transition functions of the vector bundle
by pulling back a standard idempotent from a Grassmannian bundle: see [45, §1.1] or [52, §2.1] for
details.

A more concrete example is that of the tangent bundle over a compact Riemannian manifold
𝑀: by the Nash embedding theorem [101, Thm 14.5.1], one can embed 𝑀 in some ℝ𝑚 so that the

1By a morphism of unital 𝐶∗-algebras we mean a ∗-homomorphism preserving the units.
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metric on 𝑇𝑀 is obtained from the ambient Euclidean metric; if 𝑒(𝑥) is the orthogonal projector
on ℝ𝑛 with range 𝑇𝑥𝑀 , then 𝑒 = 𝑒2 ∈ 𝑀𝑚 (𝐶 (𝑀)) and the module Γ(𝑀,𝑇𝑀) of vector fields on 𝑀
may be identified with the range of 𝑒.

In the noncompact case, one can use Rennie’s nonunital version of the Serre–Swan theorem [84]:
𝐶0(𝑌 )-modules of the form 𝑒𝐶 (𝑋)𝑚, where 𝑋 is some compactification of 𝑌 and 𝑒 = 𝑒2 ∈
𝑀𝑚 (𝐶 (𝑋)), consist of sections vanishing at infinity (i.e., outside of 𝑌 ) of vector bundles 𝐸 → 𝑋 .
One can take 𝑋 to be the one-point compactification of 𝑌 only if 𝐸 is trivial at infinity; as a rule,
the compactification to be used depends on the problem at hand.

If 𝐴 is a𝐶∗-algebra, we may replace 𝑒 by an orthogonal projector (i.e., a selfadjoint idempotent)
𝑝 = 𝑝∗ = 𝑝2 so that 𝑒𝐴𝑚 ≃ 𝑝𝐴𝑚 as right 𝐴-modules. If 𝐴 is faithfully represented by bounded
operators on a Hilbert spaceH, then𝑀𝑚 (𝐴) is an algebra of bounded operators onH𝑚 = H⊕· · ·⊕H

(𝑚 times), so we can schematically write 𝑒 =

(
1 𝑥

0 0

)
as an operator on 𝑒H𝑚 ⊕ (1 − 𝑒)H𝑚; then

𝑝 :=
(
1 0
0 0

)
is the range projector on 𝑒H𝑚.

The correspondence 𝐸 ↦→ Γ(𝑋, 𝐸) is a covariant functor which carries topological invariants
of 𝑋 to algebraic invariants of 𝐶 (𝑋). In particular, it identifies the 𝐾-theory group 𝐾0(𝑋),
formed by stable equivalence classes of vector bundles where [𝐸] + [𝐹] := [𝐸 ⊕ 𝐹] —here ⊕
denotes Whitney sum of vector bundles over 𝑋— with the group 𝐾0(𝐶 (𝑋)) formed by stable
isomorphism classes of matrix projectors over 𝐶 (𝑋) where [𝑝] + [𝑞] := [𝑝 ⊕ 𝑞] and ⊕ now
denotes direct sum of projectors. The 𝐾-theory of 𝐶∗-algebras may be developed in an operator-
theoretic way, see [8, 76, 108] and [52, Chap. 3], for instance; or purely algebraically, and the
group 𝐾0(𝐴) turns out to be the same in both approaches. (However, the group 𝐾1(𝐴), formed by
classes of unitaries in 𝑀𝑚 (𝐴), does not coincide with the algebraic 𝐾1-group in general: see, for
instance, [95] or [52, p. 131].) The salient feature of both topological and 𝐶∗-algebraic 𝐾-theories
is Bott periodicity, which says that two 𝐾-groups are enough: although one can define 𝐾 𝑗 (𝐴) is
a systematic way for any 𝑗 ∈ ℕ, it turns out that 𝐾 𝑗+2(𝐴) ≃ 𝐾 𝑗 (𝐴) by natural isomorphisms (in
marked contrast to the case of purely algebraic 𝐾-theory).

▶ To deal with a (compact) differential manifold 𝑀 (in these notes, we only treat differential
manifolds without boundary), we replace the continuous functions in𝐶 (𝑀) by the dense subalgebra
of smooth functions A = 𝐶∞(𝑀). This is no longer a 𝐶∗-algebra, but it is complete in its natural
topology (that of uniform convergence of functions, together with their derivatives of all orders),
so it is a Fréchet algebra with a 𝐶∗-completion. Likewise, given a vector bundle 𝐸 −→𝑀 , we
replace the continuous sections in Γ(𝑀, 𝐸) by the A-module of smooth sections Γ∞(𝑀, 𝐸). The
Serre–Swan theorem continues to hold, mutatis mutandis, in the smooth category.

In the noncommutative case, with no differential structure a priori, we need to replace the
𝐶∗-algebra 𝐴 by a subalgebra A which should (a) be dense in A; (b) be a Fréchet algebra, that is,
it should be complete under some countable family of seminorms including the original 𝐶∗-norm
of 𝐴; and (c) satisfy 𝐾0(A) ≃ 𝐾0(𝐴). This last condition is not automatic: it is necessary that A
be a pre-𝐶∗-algebra, that is to say, it should be stable under the holomorphic functional calculus
(which is defined in the larger algebra 𝐴). The proof of (c) for pre-𝐶∗-algebras is given in [10]; see
also [52, §3.8].

▶ The next step is to find an algebraic description of a Riemannian metric on a smooth manifold.
This can be done in a principled way through a theory of “noncommutative metric spaces” at present
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under construction by Rieffel [91–94]. But here we shall take a short cut, by defining metrics only
over spin manifolds, using the Dirac operator as our instrument; this was, indeed, the original insight
of Connes [23].

A metric 𝑔 = [𝑔𝑖 𝑗 ] on the tangent bundle 𝑇𝑀 of a (compact) manifold 𝑀 yields a contragredient
metric 𝑔−1 = [𝑔𝑟𝑠] on the cotangent bundle 𝑇∗𝑀; so we can build a Clifford algebra bundle
ℂℓ(𝑀) −→𝑀 , whose fibre at 𝑥 is Cℓ((𝑇∗

𝑥 𝑀)ℂ, 𝑔−1
𝑥 ), by imposing a suitable product structure on

the complexified exterior bundle (Λ•𝑇∗𝑀)ℂ. We assume that 𝑀 supports a spinor bundle 𝑆 −→𝑀 ,
on which ℂℓ(𝑀) acts fibrewise and irreducibly; on passing to smooth sections, we may write
𝑐(𝛼) for the Clifford action of a 1-form 𝛼 on spinors. The spinor bundle comes equipped with a
Hermitian metric, so the squared norm ∥𝜓∥2 :=

∫
𝑀
|𝜓(𝑥) |2

√︁
det 𝑔 𝑑𝑥 makes sense; the completion

of Γ∞(𝑀, 𝑆) in this norm is the Hilbert space H = 𝐿2(𝑀, 𝑆) of square-integrable spinors. Locally,
we may write the Clifford action of 1-forms as 𝑐(𝑑𝑥𝑟) := ℎ𝑟𝛼 𝛾

𝛼, where the “gamma matrices” 𝛾𝛼
satisfy 𝛾𝛼𝛾𝛽 + 𝛾𝛽𝛾𝛼 = 2 𝛿𝛼𝛽 and the coefficients ℎ𝑟𝛼 are real and obey ℎ𝑟𝛼𝛿𝛼𝛽ℎ𝑠𝛽 = 𝑔𝑟𝑠. The Dirac
operator is locally defined as

/𝐷 := −𝑖 𝑐(𝑑𝑥𝑟)
( 𝜕
𝜕𝑥𝑟

− 𝜔𝑟
)
, (1.1)

where 𝜔𝑟 = 1
4 Γ̃

𝛽
𝑟𝛼 𝛾

𝛼𝛾𝛽 are components of the spin connection, obtained from the Christoffel
symbols Γ̃

𝛽
𝑟𝛼 (in an orthogonal basis) of the Levi-Civita connection. The manifold 𝑀 is spin

whenever these local formulae patch together to give a well-defined spinor bundle. There is a
well-known topological condition for this to happen (the second Stiefel–Whitney class 𝑤2(𝑇𝑀) ∈
𝐻2(𝑀,ℤ2) must vanish [67]), and when it is fulfilled /𝐷 extends to a selfadjoint operator on H with
compact resolvent [52, 67].

Apart from these local formulas, the Dirac operator has a fundamental algebraic property. If 𝜓
is a spinor and 𝑎 ∈ 𝐶∞(𝑀) is regarded as a multiplication operator on spinors, it can be checked
that

/𝐷 (𝑎𝜓) = −𝑖 𝑐(𝑑𝑎) 𝜓 + 𝑎 /𝐷𝜓,
or, more simply,

[ /𝐷, 𝑎] = −𝑖 𝑐(𝑑𝑎). (1.2)

Following [6], we call a “generalized Dirac operator” any selfadjoint operator 𝐷 on H satisfying
[𝐷, 𝑎] = −𝑖 𝑐(𝑑𝑎) for 𝑎 ∈ 𝐶∞(𝑀). Now 𝑐(𝑑𝑎) is a bounded operator on 𝐿2(𝑀, 𝑆) whenever 𝑎 is
smooth, and its norm is that of the gradient of 𝑎, i.e., the vector field determined by 𝑔(grad 𝑎, 𝑋) :=
𝑑𝑎(𝑋) = 𝑋 (𝑎). A continuous function 𝑎 ∈ 𝐶 (𝑀) is called Lipschitz (with respect to the metric 𝑔)
if its gradient is defined, almost everywhere, as an essentially bounded measurable vector field, i.e.,
∥ grad 𝑎∥∞ is finite. Now the Riemannian distance 𝑑𝑔 (𝑝, 𝑞) between two points 𝑝, 𝑞 ∈ 𝑀 is usually
defined as the infimum of the lengths of (piecewise smooth) paths from 𝑝 to 𝑞; but it is not hard to
show (see [52, §9.3], for instance) that the distance can also be defined as a supremum:

𝑑𝑔 (𝑝, 𝑞) = sup{ |𝑎(𝑝) − 𝑎(𝑞) | : 𝑎 ∈ 𝐶 (𝑀), ∥ grad 𝑎∥∞ ⩽ 1 }. (1.3)

The basic equation (1.2) allows to replace the gradient by a commutator with the Dirac operator:

𝑑𝑔 (𝑝, 𝑞) = sup{ |𝑎(𝑝) − 𝑎(𝑞) | : 𝑎 ∈ 𝐶 (𝑀), ∥ [ /𝐷, 𝑎] ∥ ⩽ 1 }. (1.4)

Thus, the Riemannian distance function 𝑑𝑔 is entirely determined by /𝐷. Moreover, the metric 𝑔 is in
turn determined by 𝑑𝑔, according to the Myers–Steenrod theorem [77]. From the noncommutative
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point of view, then, the Dirac operator assumes the role of the metric. This leads to the following
basic concept.

Definition 1.1. A spectral triple is a triple (A,H, 𝐷), where A is a pre-𝐶∗-algebra, H is a Hilbert
space carrying a representation of A by bounded operators, and 𝐷 is a selfadjoint operator on A,
with compact resolvent, such that the commutator [𝐷, 𝑎] is a bounded operator on H, for each
𝑎 ∈ A.

Spectral triples comes in two parities, odd and even. In the odd case, there is nothing new; in
the even case, there is a grading operator 𝜒 on H (a bounded selfadjoint operator satisfying 𝜒2 = 1,
making a splitting H = H+ ⊕H−), such that the representation of A is even (𝜒𝑎 = 𝑎𝜒 for all 𝑎 ∈ A)
and the operator 𝐷 is odd, i.e., 𝜒𝐷 = −𝐷𝜒; thus each [𝐷, 𝑎] is a bounded odd operator on H.

A noncommutative spin geometry is a spectral triple satisfying several extra conditions, which
were first laid out by Connes in the seminal paper [25]. These conditions (or “axioms”, as they are
sometimes called) arise from a careful consideration of the algebraic properties of ordinary metric
geometry. Seven such properties are put forward in [25]; here, we shall just outline the list. Some of
the terminology will be clarified later on; a more complete account, with all prerequisites, is given
in [52, §10.5].

1. Classical dimension: There is a unique nonnegative integer 𝑛, the “classical dimension”
of the geometry, for which the eigenvalue sums 𝜎𝑁 :=

∑
0⩽𝑘<𝑁 𝜇𝑘 of the compact positive

operator |𝐷 |−𝑛 satisfy 𝜎𝑁 ∼ 𝐶 log 𝑁 as 𝑁 → ∞, with 0 < 𝐶 < ∞; the coefficient is written
𝐶 =

⨏
|𝐷 |−𝑛, where

⨏
denotes the “Dixmier trace” if 𝑛 ⩾ 1. This 𝑛 is even if and only if the

spectral triple is even. (When A = 𝐶∞(𝑀) and 𝐷 is a Dirac operator, 𝑛 equals the ordinary
dimension of the spin manifold 𝑀).

2. Regularity: Not only are the operators 𝑎 and [𝐷, 𝑎] bounded, but they lie in the smooth
domain of the derivation 𝛿(𝑇) := [|𝐷 |, 𝑇]. (When A is an algebra of functions and 𝐷 is a
Dirac operator, this smooth domain consists exactly of the 𝐶∞ functions.)

3. Finiteness: The algebra A is a pre-𝐶∗-algebra, and the space of smooth vectors H∞ :=⋂
𝑘 Dom(𝐷𝑘 ) is a finitely generated projective left A-module. (In the commutative case, this

yields the smooth spinors.)

4. Reality: There is an antiunitary operator 𝐶 on H, such that [𝑎, 𝐶𝑏∗𝐶−1] = 0 for all 𝑎, 𝑏 ∈ A

(thus 𝑏 ↦→ 𝐶𝑏∗𝐶−1 is a commuting representation on H of the “opposite algebra” A◦, with
the product reversed); and moreover, 𝐶2 = ±1, 𝐶𝐷 = ±𝐷𝐶, and 𝐶𝜒 = ±𝜒𝐶 in the even
case, where the signs depend only on 𝑛 mod 8. (In the commutative case, 𝐶 is the charge
conjugation operator on spinors.)

5. First order: The bounded operators [𝐷, 𝑎] commute with the opposite algebra representation:
[[𝐷, 𝑎], 𝐶𝑏∗𝐶−1] = 0 for all 𝑎, 𝑏 ∈ A.

6. Orientation: There is a Hochschild 𝑛-cycle c on A whose natural representative is 𝜋𝐷 (c) = 𝜒
(even case) or 𝜋𝐷 (c) = 1 (odd case). More on this later: such an 𝑛-cycle is usually a finite
sum of terms like 𝑎0 ⊗ 𝑎1 ⊗ · · · ⊗ 𝑎𝑛 which map to operators

𝜋𝐷 (𝑎0 ⊗ 𝑎1 ⊗ · · · ⊗ 𝑎𝑛) := 𝑎0 [𝐷, 𝑎1] . . . [𝐷, 𝑎𝑛],

and c is the algebraic expression of the volume form for the metric determined by 𝐷.
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7. Poincaré duality: The index map of 𝐷 determines a nondegenerate pairing on the 𝐾-theory of
the algebra A. (We shall not go into details, except to mention that in the commutative case,
the Chern homomorphism matches this nondegeneracy with Poincaré duality in de Rham
co/homology.)

It is very important to know that when 𝐴 = 𝐶∞(𝑀) the usual apparatus of geometry on
spin manifolds (spin structure, metric, Dirac operator) can be fully recovered from these seven
conditions: for the full proof of this theorem, see [52, Chap. 11]. Another proof, assuming only
that A is commutative, is developed by Rennie in [83].

1.2 Hopf algebras: introduction

The general scheme of replacing point spaces by function algebras and then moving on to noncom-
mutative algebras also works for symmetry groups. Now, however, the interplay of algebra and
topology is much more delicate. There are at least two ways of handling this issue. One is to leave
topology aside and develop a purely algebraic theory of symmetry-bearing algebras: these are the
Hopf algebras, sometimes called “quantum groups”, about which there is already a vast literature.
At the other extreme, one may insist on using𝐶∗-algebras with special properties; in the unital case,
there has emerged a useful theory of “compact quantum groups” [113], which only recently has
been extended to the locally compact case also [66].

We begin with the more algebraic treatment, keeping to the compact case, i.e., all algebras will
be unital unless indicated otherwise. The field of scalars may be taken as ℂ, ℝ or ℚ, according
to convenience; to cover all cases, we shall denote it by 𝔽 . In this section, ⊗ always means the
algebraic tensor product.

Definition 1.2. A bialgebra is a vector space 𝐴 over 𝔽 which is both an algebra and a coalgebra in a
compatible way. The algebra structure is given by 𝔽 -linear maps 𝑚 : 𝐴 ⊗ 𝐴→ 𝐴 (the product) and
𝜂 : 𝔽 → 𝐴 (the unit map) where 𝑥𝑦 := 𝑚(𝑥, 𝑦) and 𝜂(1) = 1𝐴. The coalgebra structure is likewise
given by linear maps Δ : 𝐴 → 𝐴 ⊗ 𝐴 (the coproduct) and 𝜀 : 𝐴 → 𝔽 (the counit map). We write
𝜄 : 𝐴→ 𝐴, or sometimes 𝜄𝐴, to denote the identity map on 𝐴. The required properties are:

1. Associativity: 𝑚(𝑚 ⊗ 𝜄) = 𝑚(𝜄 ⊗ 𝑚) : 𝐴 ⊗ 𝐴 ⊗ 𝐴→ 𝐴;

2. Unity: 𝑚(𝜂 ⊗ 𝜄) = 𝑚(𝜄 ⊗ 𝜂) = 𝜄 : 𝐴→ 𝐴;

3. Coassociativity: (Δ ⊗ 𝜄)Δ = (𝜄 ⊗ Δ)Δ : 𝐴→ 𝐴 ⊗ 𝐴 ⊗ 𝐴;

4. Counity: (𝜀 ⊗ 𝜄)Δ = (𝜄 ⊗ 𝜀)Δ = 𝜄 : 𝐴→ 𝐴;

5. Compatibility: Δ and 𝜀 are unital algebra homomorphisms.

The first two conditions, expressed in terms of elements 𝑥, 𝑦, 𝑧 of 𝐴, say that (𝑥𝑦)𝑧 = 𝑥(𝑦𝑧) and
1𝐴𝑥 = 𝑥1𝐴 = 𝑥. The next two properties are obtained by “reversing the arrows”. Commutativity
may be formulated by using the “flip map” 𝜎 : 𝐴 ⊗ 𝐴 → 𝐴 ⊗ 𝐴 : 𝑥 ⊗ 𝑦 ↦→ 𝑦 ⊗ 𝑥: the bialgebra
is commutative if 𝑚𝜎 = 𝑚 : 𝐴 ⊗ 𝐴 → 𝐴. Likewise, the bialgebra is called cocommutative if
𝜎Δ = Δ : 𝐴→ 𝐴 ⊗ 𝐴.

The (co)associativity rules suggest the abbreviations

𝑚2 := 𝑚(𝑚 ⊗ 𝜄) = 𝑚(𝜄 ⊗ 𝑚), Δ2 := (Δ ⊗ 𝜄)Δ = (𝜄 ⊗ Δ)Δ,
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with obvious iterations 𝑚3 : 𝐴⊗4 → 𝐴, Δ3 : 𝐴→ 𝐴⊗4; 𝑚𝑟 : 𝐴⊗(𝑟+1) → 𝐴, Δ𝑟 : 𝐴→ 𝐴⊗(𝑟+1) .

Exercise 1.1. If (𝐶,Δ, 𝜀) and (𝐶′,Δ′, 𝜀′) are coalgebras, a counital coalgebra morphism between
them is an 𝔽 -linear map ℓ : 𝐶 → 𝐶′ such thatΔ′ℓ = (ℓ⊗ℓ)Δ and 𝜀′ℓ = 𝜀. Show that the compatibility
condition is equivalent to the condition that 𝑚 and 𝑢 are counital coalgebra morphisms. ♢

Definition 1.3. The vector space Hom(𝐶, 𝐴) of 𝔽 -linear maps from a coalgebra (𝐶,Δ, 𝜀) to an
algebra (𝐴, 𝑚, 𝜂) has an operation of convolution: given two elements 𝑓 , 𝑔 of this space, the map
𝑓 ∗ 𝑔 ∈ Hom(𝐶, 𝐴) is defined as

𝑓 ∗ 𝑔 := 𝑚( 𝑓 ⊗ 𝑔)Δ : 𝐶 → 𝐴.

Convolution is associative because

( 𝑓 ∗ 𝑔) ∗ ℎ = 𝑚(( 𝑓 ∗ 𝑔) ⊗ ℎ)Δ = 𝑚(𝑚 ⊗ 𝜄) ( 𝑓 ⊗ 𝑔 ⊗ ℎ) (Δ ⊗ 𝜄)Δ
= 𝑚(𝜄 ⊗ 𝑚) ( 𝑓 ⊗ 𝑔 ⊗ ℎ) (𝜄 ⊗ Δ)Δ = 𝑚( 𝑓 ⊗ (𝑔 ∗ ℎ))Δ = 𝑓 ∗ (𝑔 ∗ ℎ).

This makes Hom(𝐶, 𝐴) an algebra, whose unit is 𝜂𝐴𝜀𝐶 :

𝑓 ∗ 𝜂𝐴𝜀𝐶 = 𝑚( 𝑓 ⊗ 𝜂𝐴𝜀𝐶)Δ = 𝑚(𝜄𝐴 ⊗ 𝜂𝐴) ( 𝑓 ⊗ 𝜄𝔽 ) (𝜄𝐶 ⊗ 𝜀𝐶)Δ = 𝜄𝐴 𝑓 𝜄𝐶 = 𝑓 ,

𝜂𝐴𝜀𝐶 ∗ 𝑓 = 𝑚(𝜂𝐴𝜀𝐶 ⊗ 𝑓 )Δ = 𝑚(𝜂𝐴 ⊗ 𝜄𝐴) (𝜄𝔽 ⊗ 𝑓 ) (𝜀𝐶 ⊗ 𝜄𝐶)Δ = 𝜄𝐴 𝑓 𝜄𝐶 = 𝑓 .

A bialgebra morphism is a linear map ℓ : 𝐻 → 𝐻′ between two bialgebras, which is both a
unital algebra homomorphism and a counital coalgebra homomorphism; that is, ℓ satisfies the four
identities

ℓ𝑚 = 𝑚′(ℓ ⊗ ℓ), ℓ𝜂 = 𝜂′, Δ′ℓ = (ℓ ⊗ ℓ)Δ, 𝜀′ℓ = 𝜀,

where the primes indicate coalgebra operations for 𝐻′.
A bialgebra morphism respects convolution, in the following ways; if 𝑓 , 𝑔 ∈ Hom(𝐶, 𝐻) and

ℎ, 𝑘 ∈ Hom(𝐻′, 𝐴) for some coalgebra 𝐶 and some algebra 𝐴, then

ℓ( 𝑓 ∗ 𝑔) = ℓ𝑚( 𝑓 ⊗ 𝑔)Δ𝐶 = 𝑚′(ℓ ⊗ ℓ) ( 𝑓 ⊗ 𝑔)Δ𝐶 = 𝑚′(ℓ 𝑓 ⊗ ℓ𝑔)Δ𝐶 = ℓ 𝑓 ∗ ℓ𝑔,
(ℎ ∗ 𝑘)ℓ = 𝑚𝐴 (ℎ ⊗ 𝑘)Δ′ℓ = 𝑚𝐴 (ℎ ⊗ 𝑘) (ℓ ⊗ ℓ)Δ = 𝑚𝐴 (ℎℓ ⊗ 𝑘ℓ)Δ = ℎℓ ∗ 𝑘ℓ.

Definition 1.4. A Hopf algebra is a bialgebra 𝐻 together with a (necessarily unique) convolution
inverse 𝑆 for the identity map 𝜄 = 𝜄𝐻; the map 𝑆 is called the antipode of 𝐻. Thus,

𝜄 ∗ 𝑆 = 𝑚(𝜄 ⊗ 𝑆)Δ = 𝜂𝜀, 𝑆 ∗ 𝜄 = 𝑚(𝑆 ⊗ 𝜄)Δ = 𝜂𝜀.

A bialgebra morphism between Hopf algebras is automatically a Hopf algebra morphism, i.e.,
it exchanges the antipodes: ℓ𝑆 = 𝑆′ℓ. For that, it suffices to prove that these maps provide a left
inverse and a right inverse for ℓ in Hom(𝐻, 𝐻′). Indeed, since the identity in Hom(𝐻, 𝐻′) is 𝜂′𝜀, it
is enough to notice that

ℓ𝑆 ∗ ℓ = ℓ(𝑆 ∗ 𝜄) = ℓ𝜂𝜀 = 𝜂′𝜀 = 𝜂′𝜀′ℓ = (𝜄′ ∗ 𝑆′)ℓ = ℓ ∗ 𝑆′ℓ,

and associativity of convolution then yields

𝑆′ℓ = 𝜂′𝜀 ∗ 𝑆′ℓ = ℓ𝑆 ∗ ℓ ∗ 𝑆′ℓ = ℓ𝑆 ∗ 𝜂′𝜀 = ℓ𝑆.
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The antipode has an important pair of algebraic properties: it is an antihomomorphism for both
the algebra and the coalgebra structures. Formally, this means

𝑆𝑚 = 𝑚𝜎(𝑆 ⊗ 𝑆) and Δ𝑆 = (𝑆 ⊗ 𝑆)𝜎Δ. (1.5)

The first relation, evaluated on 𝑎 ⊗ 𝑏, becomes the familiar antihomomorphism property 𝑆(𝑎𝑏) =
𝑆(𝑏)𝑆(𝑎). We postpone its proof until a little later.
Example 1.1. The simplest example of a Hopf algebra is the “group algebra” 𝔽𝐺 of a finite group𝐺.
This is just the vector space over 𝔽 with a basis labelled by the elements of 𝐺; the necessary linear
maps are specified on this basis. The product is given by 𝑚(𝑥 ⊗ 𝑦) := 𝑥𝑦, linearly extending the
group multiplication, and 𝜂(1) := 1𝐺 gives the unit map. The coproduct, counit and antipode satisfy
Δ(𝑥) := 𝑥 ⊗ 𝑥, 𝜀(𝑥) := 1 and 𝑆(𝑥) := 𝑥−1, for each 𝑥 ∈ 𝐺.

Exercise 1.2. In a general Hopf algebra 𝐻, a nonzero element 𝑔 is called grouplike if Δ(𝑔) := 𝑔 ⊗ 𝑔.
Show that this condition entails that 𝑔 is invertible and that 𝜀(𝑔) = 1 and 𝑆(𝑔) = 𝑔−1. ♢

There are two main “classical” examples of Hopf algebras: representative functions on a compact
group and the enveloping algebra of a Lie algebra.
Example 1.2. Now let𝐺 be a compact topological group (most often, a Lie group), and let the scalar
field 𝔽 be either ℝ or ℂ. The Peter–Weyl theorem [13, III.3] shows that any unitary irreducible
representation 𝜋 of 𝐺 is finite-dimensional, any matrix element 𝑓 (𝑥) := ⟨𝑢 | 𝜋(𝑥)𝑣⟩ is a continuous
function on 𝐺, and the vector space R(𝐺) generated by these matrix elements is a dense subalgebra
(∗-subalgebra in the complex case) of 𝐶 (𝐺). Elements of R(𝐺) can be characterized as those
continuous functions 𝑓 : 𝐺 → 𝔽 whose translates 𝑓𝑡 : 𝑥 ↦→ 𝑓 (𝑡−1𝑥) generate a finite-dimensional
subspace of 𝐶 (𝐺); they are called representative functions on 𝐺.

The algebra R(𝐺) is a 𝐺-bimodule in the sense of Wildberger [110] under left and right trans-
lation; indeed, it is the algebraic direct sum of the finite-dimensional irreducible 𝐺-subbimodules
of 𝐶 (𝐺).

The group structure of𝐺 makes R(𝐺) a coalgebra. Indeed, we can identify the algebraic tensor
product R(𝐺) ⊗R(𝐺) with R(𝐺 ×𝐺) in the obvious way —here is where the finite-dimensionality
of the translates is used [52, Lemma 1.27]— by ( 𝑓 ⊗ 𝑔) (𝑥, 𝑦) := 𝑓 (𝑥)𝑔(𝑦), and then

Δ 𝑓 (𝑥, 𝑦) := 𝑓 (𝑥𝑦) (1.6)

defines a coproduct on R(𝐺). The counit is 𝜀( 𝑓 ) := 𝑓 (1), and the antipode is given by 𝑆 𝑓 (𝑥) :=
𝑓 (𝑥−1).
Example 1.3. The universal enveloping algebra U(g) of a Lie algebra g is the quotient of the
tensor algebra T(g) by the two sided ideal 𝐼 generated by the elements 𝑋𝑌 − 𝑌𝑋 − [𝑋,𝑌 ], for all
𝑋,𝑌 ∈ g. (Here we write 𝑋𝑌 instead of 𝑋 ⊗ 𝑌 , to distinguish products within T(g) from elements
of T(g) ⊗ T(g).) The coproduct and counit are defined on g by

Δ(𝑋) := 𝑋 ⊗ 1 + 1 ⊗ 𝑋, (1.7)

and 𝜀(𝑋) := 0. These linear maps on g extend to homomorphisms of the tensor algebra; for instance,

Δ(𝑋𝑌 ) = Δ(𝑋)Δ(𝑌 ) = 𝑋𝑌 ⊗ 1 + 𝑋 ⊗ 𝑌 + 𝑌 ⊗ 𝑋 + 1 ⊗ 𝑋𝑌,
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and thus

Δ(𝑋𝑌 − 𝑌𝑋 − [𝑋,𝑌 ]) = (𝑋𝑌 − 𝑌𝑋 − [𝑋,𝑌 ]) ⊗ 1 + 1 ⊗ (𝑋𝑌 − 𝑌𝑋 − [𝑋,𝑌 ]),

so Δ(𝐼) ⊆ 𝐼 ⊗U(g) +U(g) ⊗ 𝐼. Clearly, 𝜀(𝐼) = 0, too. Therefore, 𝐼 is both an ideal and a “coideal”
in the full tensor algebra, so the quotient U(g) is a bialgebra, in fact a Hopf algebra: the antipode is
given by 𝑆(𝑋) := −𝑋 .

From (1.7), the Hopf algebraU(g) is clearly cocommutative. The word “universal” is appropriate
because any Lie algebra homomorphism𝜓 : g → 𝐴, where 𝐴 is an unital associative algebra, extends
uniquely (in the obvious way) to a unital algebra homomorphism Ψ : U(g) → 𝐴.
Example 1.4. Historically, an important example of a Hopf algebra is Woronowicz’ 𝑞-deformation

of SU(2). The compact group SU(2) consists of complex matrices 𝑔 =

(
𝑎 −𝑐∗
𝑐 𝑎∗

)
, subject to

the unimodularity condition 𝑎∗𝑎 + 𝑐∗𝑐 = 1. The matrix elements 𝑎 and 𝑐, regarded as functions
of 𝑔, generate the ∗-algebra R(SU(2)): that is, any matrix element of a unitary irreducible (hence
finite-dimensional) representation of SU(2) is a polynomial in 𝑎, 𝑎∗, 𝑐, 𝑐∗.

Woronowicz found [111] a noncommutative ∗-algebra with two generators 𝑎 and 𝑐, subject to
the relations

𝑎𝑐 = 𝑞𝑐𝑎, 𝑎𝑐∗ = 𝑞𝑐∗𝑎, 𝑐𝑐∗ = 𝑐∗𝑐, 𝑎∗𝑎 + 𝑐∗𝑐 = 1, 𝑎𝑎∗ + 𝑞2𝑐𝑐∗ = 1,

where 𝑞 is a real number, which can be taken in the range 0 < 𝑞 ⩽ 1. For the coalgebra structure,
take Δ and 𝜀 be ∗-homomorphisms determined by

Δ𝑎 := 𝑎 ⊗ 𝑎 − 𝑞𝑐∗ ⊗ 𝑐, Δ𝑐 := 𝑐 ⊗ 𝑎 + 𝑎∗ ⊗ 𝑐,

and 𝜀(𝑎) := 1, 𝜀(𝑐) := 0. One can check that, by applyingΔ elementwise, the matrix 𝑔 :=
(
𝑎 −𝑞𝑐∗
𝑐 𝑎∗

)
satisfies Δ(𝑔) = 𝑔 ⊗ 𝑔. The antipode 𝑆 is the linear antihomomorphism determined by

𝑆(𝑎) := 𝑎∗, 𝑆(𝑎∗) := 𝑎, 𝑆(𝑐) := −𝑞𝑐, 𝑆(𝑐∗) := −𝑞−1𝑐∗,

so that 𝑥 ↦→ 𝑆(𝑥∗) is an antilinear homomorphism, indeed an involution: 𝑆(𝑆(𝑥∗)∗) = 𝑥 for all 𝑥.
This last relation is a general property of Hopf algebras with an involution.

The initial interest of this example was that it could be represented by a ∗-algebra of bounded
operators on a Hilbert space, whose closure was a 𝐶∗-algebra which could legitimately be called a
deformation of 𝐶 (SU(2)); it has become known as 𝐶 (SU𝑞 (2)). In this way, the “quantum group”
SU𝑞 (2) was born. Nowadays, many 𝑞-deformations of the classical groups are known, although 𝑞
may not always be real: for example, to define 𝑆𝐿𝑞 (2,ℝ), one needs selfadjoint generators 𝑎 and 𝑐
satisfying 𝑎𝑐 = 𝑞𝑐𝑎, which is only possible if 𝑞 is a complex number of modulus 1.

▶ If 𝑢𝑖 𝑗 (𝑥) := ⟨𝑒𝑖 | 𝜋(𝑥)𝑒 𝑗 ⟩, for 𝑖, 𝑗 = 1, . . . , 𝑛, are the matrix elements of an 𝑛-dimensional
irreducible representation of a compact group 𝐺 with respect to an orthonormal basis {𝑒1, . . . , 𝑒𝑛},
then (1.6) and 𝜋(𝑥𝑦) = 𝜋(𝑥)𝜋(𝑦) show that

Δ𝑢𝑖 𝑗 =
∑𝑛
𝑘=1 𝑢𝑖𝑘 ⊗ 𝑢𝑘 𝑗 , (1.8a)
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and the coassociativity of Δ is manifested as

Δ2𝑢𝑖 𝑗 =
∑
𝑘,𝑙 𝑢𝑖𝑘 ⊗ 𝑢𝑘𝑙 ⊗ 𝑢𝑙 𝑗 , (1.8b)

reflecting the associativity of matrix multiplication. This may be generalized by a notational trick
due to Sweedler [100]: if 𝑎 is an element of any Hopf algebra, we write

Δ𝑎 =:
∑
𝑎:1 ⊗ 𝑎:2 (finite sum).

(The prevalent custom is to write Δ𝑎 =
∑
𝑎 (1) ⊗ 𝑎 (2) , leading to a surfeit of parentheses.) The

equality of (Δ ⊗ 𝜄) (Δ𝑎) = ∑
𝑎:1:1 ⊗ 𝑎:1:2 ⊗ 𝑎:2 and (𝜄 ⊗ Δ) (Δ𝑎) = ∑

𝑎:1 ⊗ 𝑎:2:1 ⊗ 𝑎:2:2 is expressed
by rewriting both sums as

Δ2𝑎 =
∑
𝑎:1 ⊗ 𝑎:2 ⊗ 𝑎:3.

The matricial coproduct (1.8b) is a particular instance of this notation. The counit and antipode
properties can now be rewritten as∑

𝜀(𝑎:1) 𝑎:2 =
∑
𝑎:1 𝜀(𝑎:2) = 𝑎, (1.9a)∑

𝑆(𝑎:1) 𝑎:2 =
∑
𝑎:1 𝑆(𝑎:2) = 𝜀(𝑎) 1. (1.9b)

The coalgebra antihomomorphism property of 𝑆 is expressed as

Δ(𝑆(𝑎)) = ∑
𝑆(𝑎:2) ⊗ 𝑆(𝑎:1). (1.10)

We can now prove the antipode properties (1.5). We show that 𝑆𝑚 : 𝑎 ⊗ 𝑏 ↦→ 𝑆(𝑎𝑏) and
𝑚𝜎(𝑆 ⊗ 𝑆) : 𝑎 ⊗ 𝑏 ↦→ 𝑆(𝑏)𝑆(𝑎) are one-sided convolution inverses for 𝑚 in Hom(𝐻 ⊗ 𝐻, 𝐻), so
they must coincide. The coproduct in 𝐻 ⊗𝐻 is (𝜄⊗𝜎 ⊗ 𝜄) (Δ⊗Δ) : 𝑎 ⊗ 𝑏 ↦→ ∑

𝑎:1 ⊗ 𝑏:1 ⊗ 𝑎:2 ⊗ 𝑏:2,
and so

(𝑆𝑚 ∗ 𝑚) (𝑎 ⊗ 𝑏) = 𝑚(𝑆𝑚 ⊗ 𝑚)
(∑
𝑎:1 ⊗ 𝑏:1 ⊗ 𝑎:2 ⊗ 𝑏:2

)
=
∑
𝑆(𝑎:1𝑏:1)𝑎:2𝑏:2

= (𝑆 ∗ 𝜄) (𝑎𝑏) = 𝜂𝜀(𝑎𝑏) = 𝜂𝜀𝐻⊗𝐻 (𝑎 ⊗ 𝑏).

On the other hand, writing 𝜏 := 𝑚𝜎(𝑆 ⊗ 𝑆),

(𝑚 ∗ 𝜏) (𝑎 ⊗ 𝑏) = 𝑚(𝑚 ⊗ 𝜏)
(∑
𝑎:1 ⊗ 𝑏:1 ⊗ 𝑎:2 ⊗ 𝑏:2

)
=
∑
𝑎:1𝑏:1𝑆(𝑏:2)𝑆(𝑎:2)

= 𝜀(𝑏)∑ 𝑎:1𝑆(𝑎:2) = 𝜀(𝑎)𝜀(𝑏) 1𝐻 = 𝜂𝜀(𝑎𝑏) = 𝜂𝜀𝐻⊗𝐻 (𝑎 ⊗ 𝑏).

Thus, 𝑆𝑚 ∗ 𝑚 = 𝜂𝐻𝜀𝐻⊗𝐻 = 𝑚 ∗ 𝜏, as claimed. In like fashion, one can verify (1.10) by showing
that Δ𝑆 ∗ Δ = 𝜂𝐻⊗𝐻𝜀 = Δ ∗ ((𝑆 ⊗ 𝑆)𝜎Δ) in Hom(𝐻, 𝐻 ⊗ 𝐻); we leave the details to the reader.

Exercise 1.3. Carry out the verification of Δ𝑆 = (𝑆 ⊗ 𝑆)𝜎Δ. ♢

Notice that in the examples 𝐻 = R(𝐺) and 𝐻 = U(g), the antipode satisfies 𝑆2 = 𝜄𝐻 , but this
does not hold in the SU𝑞 (2) case. We owe the following remark to Matthias Mertens [72, Satz 2.4.2]:
𝑆2 = 𝜄𝐻 if and only if ∑

𝑆(𝑎:2) 𝑎:1 =
∑
𝑎:2 𝑆(𝑎:1) = 𝜀(𝑎) 1 for all 𝑎 ∈ 𝐻. (1.11)
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Indeed, if 𝑆2 = 𝜄𝐻 , then∑
𝑆(𝑎:2) 𝑎:1 =

∑
𝑆(𝑎:2) 𝑆2(𝑎:1) = 𝑆

(∑
𝑆(𝑎:1) 𝑎:2

)
= 𝑆(𝜀(𝑎) 1) = 𝜀(𝑎) 1,

while the relation
∑
𝑆(𝑎:2) 𝑎:1 = 𝜀(𝑎) 1 implies that

(𝑆 ∗ 𝑆2) (𝑎) = ∑
𝑆(𝑎:1) 𝑆2(𝑎:2) = 𝑆

(∑
𝑆(𝑎:2) 𝑎:1

)
= 𝑆(𝜀(𝑎) 1) = 𝜀(𝑎) 1,

so that (1.11) entails 𝑆 ∗ 𝑆2 = 𝑆2 ∗ 𝑆 = 𝜂𝜀, hence 𝑆2 = 𝜄𝐻 is the (unique) convolution inverse for 𝑆.
Now, the relations (1.11) clearly follow from (1.9b) if 𝐻 is either commutative or cocommutative
(in the latter case, Δ𝑎 =

∑
𝑎:1 ⊗ 𝑎:2 =

∑
𝑎:2 ⊗ 𝑎:1). It follows that 𝑆2 = 𝜄𝐻 if 𝐻 is either commutative

or cocommutative.

▶ Just as locally compact but noncompact spaces are described by nonunital function algebras, one
may expect that locally compact but noncompact groups correspond to some sort of “nonunital Hopf
algebras”. The lack of a unit requires substantial changes in the formalism. At the purely algebraic
level, an attractive alternative is the concept of “multiplier Hopf algebra” due to van Daele [103,104].

If 𝐴 is an algebra whose product is nondegenerate, that is, 𝑎𝑏 = 0 for all 𝑏 only if 𝑎 = 0,
and 𝑎𝑏 = 0 for all 𝑎 only if 𝑏 = 0, then there is a unital algebra 𝑀 (𝐴) such that 𝐴 ⊆ 𝑀 (𝐴),
called the multiplier algebra of 𝐴, characterized by the property that 𝑥𝑎 ∈ 𝐴 and 𝑎𝑥 ∈ 𝐴 whenever
𝑥 ∈ 𝑀 (𝐴) and 𝑎 ∈ 𝐴. Here, 𝑀 (𝐴) = 𝐴 if and only if 𝐴 is unital. A coproduct on 𝐴 is defined as a
homomorphism Δ : 𝐴→ 𝑀 (𝐴 ⊗ 𝐴) such that, for all 𝑎, 𝑏, 𝑐 ∈ 𝐴,

(Δ𝑎) (1 ⊗ 𝑏) ∈ 𝐴 ⊗ 𝐴, and (𝑎 ⊗ 1) (Δ𝑏) ∈ 𝐴 ⊗ 𝐴,

and the following coassociativity property holds:

(𝑎 ⊗ 1 ⊗ 1) (Δ ⊗ 𝜄) ((Δ𝑏) (1 ⊗ 𝑐)) = (𝜄 ⊗ Δ) ((𝑎 ⊗ 1) (Δ𝑏)) (1 ⊗ 1 ⊗ 𝑐).

There are then two well-defined linear maps from 𝐴 ⊗ 𝐴 into itself:

𝑇1(𝑎 ⊗ 𝑏) := (Δ𝑎) (1 ⊗ 𝑏), and 𝑇2(𝑎 ⊗ 𝑏) := (𝑎 ⊗ 1) (Δ𝑏).

We say that 𝐴 is a multiplier Hopf algebra [103] if 𝑇1 and 𝑇2 are bijective.
When 𝐴 is a (unital) Hopf algebra, one finds that 𝑇−1

1 (𝑎 ⊗ 𝑏) = ((𝜄 ⊗ 𝑆)Δ𝑎) (1 ⊗ 𝑏) and
𝑇−1

2 (𝑎 ⊗ 𝑏) = (𝑎 ⊗ 1) ((𝑆 ⊗ 𝜄)Δ𝑏). In fact,

𝑇1(((𝜄 ⊗ 𝑆)Δ𝑎) (1 ⊗ 𝑏)) = ∑
𝑇1(𝑎:1 ⊗ 𝑆(𝑎:2)𝑏) =

∑
𝑎:1 ⊗ 𝑎:2𝑆(𝑎:3)𝑏

=
∑
𝑎:1 ⊗ 𝜀(𝑎:2)𝑏 = 𝑎 ⊗ 𝑏,

and 𝑇2((𝑎 ⊗ 1) ((𝑆 ⊗ 𝜄)Δ𝑏)) = 𝑎 ⊗ 𝑏 by a similar argument. The bijectivity of 𝑇1 and 𝑇2 is thus a
proxy for the existence of an antipode. It is shown in [103] that from the stated properties of Δ, 𝑇1
and 𝑇2, one can construct both a counit 𝜀 : 𝐴→ 𝔽 and an antipode 𝑆, though the latter need only be
an antihomomorphism from 𝐴 to 𝑀 (𝐴).

The motivating example is the case where 𝐴 is an algebra of functions on a locally compact group
𝐺 (with finite support, say, to keep the context algebraic), and Δ 𝑓 (𝑥, 𝑦) := 𝑓 (𝑥𝑦) as before. Then
𝑇1( 𝑓 ⊗ 𝑔) : (𝑥, 𝑦) ↦→ 𝑓 (𝑥𝑦)𝑔(𝑦) also has finite support and the formula (𝑇−1

1 𝐹) (𝑥, 𝑦) := 𝐹 (𝑥𝑦−1, 𝑦)
shows that 𝑇1 is bijective; similarly for 𝑇2. A fully topological theory, generalizing Hopf algebras to
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include 𝐶0(𝐺) for any locally compact group 𝐺 and satisfying Pontryagin duality, is now available:
the basic paper on that is [66].

▶ Duality is an important aspect of Hopf algebras. If (𝐶,Δ, 𝜀) is a coalgebra, the linear dual space
𝐶∗ := Hom(𝐶, 𝔽 ) is an algebra, as we have already seen, where the product 𝑓 ⊗ 𝑔 ↦→ ( 𝑓 ⊗ 𝑔)Δ is
just the restriction of Δ𝑡 to 𝐶∗ ⊗ 𝐶∗; the unit is 𝜀𝑡 , where 𝑡 denotes transpose. (By convention, we
do not write the multiplication in 𝔽 , implicit in the identification 𝔽 ⊗ 𝔽 ≃ 𝔽 .) However, if (𝐴, 𝑚, 𝑢)
is an algebra, then (𝐴∗, 𝑚𝑡 , 𝑢𝑡) need not be a coalgebra because 𝑚𝑡 takes 𝐴∗ to (𝐴 ⊗ 𝐴)∗ which is
generally much larger than 𝐴∗ ⊗ 𝐴∗. Given a Hopf algebra (𝐻, 𝑚, 𝑢,Δ, 𝜀, 𝑆), we can replace 𝐻∗

by the subspace 𝐻◦ := { 𝑓 ∈ 𝐻∗ : 𝑚𝑡 ( 𝑓 ) ∈ 𝐻∗ ⊗ 𝐻∗ }; one can check that (𝐻◦,Δ𝑡 , 𝜀𝑡 , 𝑚𝑡 , 𝑢𝑡 , 𝑆𝑡) is
again a Hopf algebra, called the finite dual (or “Sweedler dual”) of 𝐻.

To see why 𝐻◦ is a coalgebra, we must check that 𝑚𝑡 (𝐻◦) ⊆ 𝐻◦ ⊗ 𝐻◦. So suppose that 𝑓 ∈ 𝐻∗

satisfies 𝑚𝑡 ( 𝑓 ) =
∑𝑚
𝑗=1 𝑔 𝑗 ⊗ ℎ 𝑗 , a finite sum with 𝑔 𝑗 , ℎ 𝑗 ∈ 𝐻∗. We may suppose that the 𝑔 𝑗 are

linearly independent, so we can find elements 𝑎1, . . . , 𝑎𝑚 ∈ 𝐻 such that 𝑔 𝑗 (𝑎𝑘 ) = 𝛿 𝑗 𝑘 . Now

ℎ𝑘 (𝑎𝑏) =
𝑚∑︁
𝑗=1
𝑔 𝑗 (𝑎𝑘 )ℎ 𝑗 (𝑎𝑏) = 𝑓 (𝑎𝑘𝑎𝑏) =

𝑚∑︁
𝑗=1
𝑔 𝑗 (𝑎𝑘𝑎)ℎ 𝑗 (𝑏),

so 𝑚𝑡 (ℎ𝑘 ) =
∑𝑚
𝑗=1 𝑓 𝑗 𝑘 ⊗ ℎ 𝑗 , where 𝑓 𝑗 𝑘 (𝑎) := 𝑔 𝑗 (𝑎𝑘𝑎); thus ℎ𝑘 ∈ 𝐻◦. A similar argument shows

that each 𝑔 𝑗 ∈ 𝐻◦, too.
However, 𝐻◦ is often too small to be useful: in practice, one works with two Hopf algebras 𝐻

and 𝐻′, where each may be regarded as included in the dual of the other. That is to say, we can write
down a bilinear form ⟨𝑎, 𝑓 ⟩ := 𝑓 (𝑎) for 𝑎 ∈ 𝐻 and 𝑓 ∈ 𝐻′ with an implicit inclusion𝐻′ ↩→ 𝐻∗. The
transposing of operations between the two Hopf algebras boils down to the following five relations,
for 𝑎, 𝑏 ∈ 𝐻 and 𝑓 , 𝑔 ∈ 𝐻′:

⟨𝑎𝑏, 𝑓 ⟩ = ⟨𝑎 ⊗ 𝑏,Δ′ 𝑓 ⟩, ⟨𝑎, 𝑓 𝑔⟩ = ⟨Δ𝑎, 𝑓 ⊗ 𝑔⟩, ⟨𝑆(𝑎), 𝑓 ⟩ = ⟨𝑎, 𝑆′( 𝑓 )⟩,
𝜀(𝑎) = ⟨𝑎, 1𝐻′⟩, and 𝜀′( 𝑓 ) = ⟨1𝐻 , 𝑓 ⟩.

The nondegeneracy conditions which allow us to assume that 𝐻′ ⊆ 𝐻∗ and 𝐻 ⊆ 𝐻′∗ are: (i)
⟨𝑎, 𝑓 ⟩ = 0 for all 𝑓 ∈ 𝐻′ implies 𝑎 = 0, and (ii) ⟨𝑎, 𝑓 ⟩ = 0 for all 𝑎 ∈ 𝐻 implies 𝑓 = 0.

Let 𝐺 be a compact connected Lie group whose Lie algebra is g. The function algebra R(𝐺)
is a commutative Hopf algebra, whereas U(g) is a cocommutative Hopf algebra. On identifying g
with the space of left-invariant vector fields on the group manifold 𝐺, we can realize U(g) as the
algebra of left-invariant differential operators on 𝐺. If 𝑋 ∈ g, and 𝑓 ∈ R(𝐺), we define

⟨𝑋, 𝑓 ⟩ := 𝑋 𝑓 (1) = 𝑑

𝑑𝑡

����
𝑡=0
𝑓 (exp 𝑡𝑋),

and more generally, ⟨𝑋1 . . . 𝑋𝑛, 𝑓 ⟩ := 𝑋1(· · · (𝑋𝑛 𝑓 )) (1); we also set ⟨1, 𝑓 ⟩ := 𝑓 (1). This yields
a duality between R(𝐺) and U(g). Indeed, the Leibniz rule for vector fields, namely 𝑋 ( 𝑓 ℎ) =

(𝑋 𝑓 )ℎ + 𝑓 (𝑋ℎ), gives

⟨𝑋, 𝑓 ℎ⟩ = 𝑋 𝑓 (1)ℎ(1) + 𝑓 (1)𝑋ℎ(1) = (𝑋 ⊗ 1 + 1 ⊗ 𝑋) ( 𝑓 ⊗ ℎ) (1 ⊗ 1)
= Δ𝑋 ( 𝑓 ⊗ ℎ) (1 ⊗ 1) = ⟨Δ𝑋, 𝑓 ⊗ ℎ⟩, (1.12)
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while

⟨𝑋 ⊗ 𝑌,Δ 𝑓 ⟩ = 𝑑

𝑑𝑡

����
𝑡=0

𝑑

𝑑𝑠

����
𝑠=0

(Δ 𝑓 ) (exp 𝑡𝑋 ⊗ exp 𝑠𝑌 ) = 𝑑

𝑑𝑡

����
𝑡=0

𝑑

𝑑𝑠

����
𝑠=0
𝑓 (exp 𝑡𝑋 exp 𝑠𝑌 )

=
𝑑

𝑑𝑡

����
𝑡=0

(𝑌 𝑓 ) (exp 𝑡𝑋) = 𝑋 (𝑌 𝑓 ) (1) = ⟨𝑋𝑌, 𝑓 ⟩.

If ⟨𝐷, 𝑓 ⟩ = 0 for all 𝐷 ∈ U(g), then 𝑓 has a vanishing Taylor series at the identity of 𝐺. Since
representative functions are real-analytic [62], this forces 𝑓 = 0. On the other hand, if ⟨𝐷, 𝑓 ⟩ = 0
for all 𝑓 , the left-invariant differential operator determined by 𝐷 is null, so 𝐷 = 0 in U(g). The
remaining properties are easily checked.

Definition 1.5. The relation (1.12) shows that Δ𝑋 = 𝑋 ⊗ 1 + 1 ⊗ 𝑋 encodes the Leibniz rule for
vector fields. In any Hopf algebra 𝐻, an element ℎ ∈ 𝐻 for which Δℎ = ℎ ⊗ 1 + 1 ⊗ ℎ is called
primitive. It follows that 𝜀(ℎ) = 0 and that 𝑆(ℎ) = −ℎ. In the enveloping algebra U(g), elements
of g are obviously primitive. If 𝑎 and 𝑏 are primitive, then so is 𝑎𝑏 − 𝑏𝑎, so the vector space
Prim(𝐻) of primitive elements of 𝐻 is actually a Lie algebra.

Indeed, since the field of scalars 𝔽 has characteristic zero, the only primitive elements of U(g)
are those in g, i.e., Prim(U(g)) = g: see [11], [52, Lemma 1.21] or [74, Prop. 5.5.3]. (Over fields
of prime characteristic, there are other primitive elements in U(g) [74].)

▶ If 𝐻 is a bialgebra and 𝐴 is an algebra, and if 𝜙, 𝜓 : 𝐻 → 𝐴 are algebra homomorphisms, their
convolution 𝜙 ∗𝜓 ∈ Hom(𝐻, 𝐴) is a linear map, and will be also a homomorphism provided that 𝐴
is commutative. Indeed, 𝜙 ∗𝜓 = 𝑚(𝜙 ⊗ 𝜓)Δ is a composition of three homomorphisms in this case;
the commutativity of 𝐴 is needed to ensure that 𝑚 : 𝐴 ⊗ 𝐴 → 𝐴 is multiplicative. A particularly
important case arises when 𝐴 = 𝔽 .

Definition 1.6. A character of an algebra is a nonzero linear functional which is also multiplicative,
that is,

𝜇(𝑎𝑏) = 𝜇(𝑎) 𝜇(𝑏) for all 𝑎, 𝑏;

notice that 𝜇(1) = 1. The counit 𝜀 of a bialgebra is a character. Characters of a bialgebra can be
convolved, since 𝜇 ∗ 𝜈 = (𝜇 ⊗ 𝜈)Δ is a composition of homomorphisms. The characters of a Hopf
algebra 𝐻 form a group G(𝐻) under convolution, whose neutral element is 𝜀; the inverse of 𝜇 is
𝜇𝑆.

A derivation or “infinitesimal character” of a Hopf algebra 𝐻 is a linear map 𝛿 : 𝐻 → 𝔽

satisfying
𝛿(𝑎𝑏) = 𝛿(𝑎)𝜀(𝑏) + 𝜀(𝑎)𝛿(𝑏) for all 𝑎, 𝑏 ∈ 𝐻.

This entails 𝛿(1𝐻) = 0. The previous relation can also be written as 𝑚𝑡 (𝛿) = 𝛿 ⊗ 𝜀 + 𝜀 ⊗ 𝛿, which
shows that 𝛿 belongs to 𝐻◦ and is primitive there; in particular, the bracket [𝛿, 𝜕] := 𝛿 ∗ 𝜕 − 𝜕 ∗ 𝛿
of two derivations is again a derivation. Thus the vector space Der𝜀 (𝐻) of derivations is actually a
Lie algebra.

In the commutative case, there is another kind of duality to consider: one that matches a Hopf
algebra with its character group. A compact topological group𝐺 admits a normalized left-invariant
integral (the Haar integral): this can be thought of as a functional 𝐽 : R(𝐺) → ℝ, where the left-
invariance translates as (𝜄 ⊗ 𝐽)Δ = 𝜂𝐽. (We leave it as an exercise to show that this corresponds to
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the usual definition of an invariant integral.) The evaluations at points of𝐺 supply all the characters
of this Hopf algebra: G(R(𝐺)) ≃ 𝐺. Conversely, if 𝐻 is a commutative Hopf algebra possessing
such a left-invariant functional 𝐽, then its character group is compact, and 𝐻 ≃ R(G(𝐻)). These
results make up the Tannaka–Kreı̆n duality theorem —for the proofs, see [52] or [55]— and it is
important either to use real scalars, or to consider only hermitian characters if complex scalars are
used. The totality of all ℂ-valued characters of R(𝐺), hermitian or not, is a complex group 𝐺ℂ

called the complexification of 𝐺 [13, III.8]; for instance, if 𝐺 = SU(𝑛), then 𝐺ℂ ≃ 𝑆𝐿 (𝑛,ℂ).
▶ The action of vector fields in g and differential operators inU(g) on the space of smooth functions
on 𝐺, and more generally on any manifold carrying a transitive action of the group 𝐺, leads to the
notion of a Hopf action of a Hopf algebra 𝐻 on an algebra 𝐴.
Definition 1.7. Let 𝐻 be a Hopf algebra. A (left) Hopf 𝐻-module algebra 𝐴 is an algebra which
is a (left) module for the algebra 𝐻 such that ℎ · 1𝐴 = 𝜀(ℎ) 1𝐴 and

ℎ · (𝑎𝑏) = ∑(ℎ:1 · 𝑎) (ℎ:2 · 𝑏) (1.13)

whenever 𝑎, 𝑏 ∈ 𝐴 and ℎ ∈ 𝐻.
Grouplike elements act by endomorphisms of 𝐴, since 𝑔 · (𝑎𝑏) = (𝑔 · 𝑎) (𝑔 · 𝑏) and 𝑔 · 1 = 1

if 𝑔 is grouplike. On the other hand, primitive elements of 𝐻 act by the usual Leibniz rule:
ℎ · (𝑎𝑏) = (ℎ · 𝑎)𝑏 + 𝑎(ℎ · 𝑏) and ℎ · 1 = 0 if Δℎ = ℎ ⊗ 1+ 1 ⊗ ℎ. Thus (1.13) is a sort of generalized
Leibniz rule.

▶ Duality suggests that an action of U(g) should manifest itself as a coaction of R(𝐺).
Definition 1.8. A vector space 𝑉 is called a right comodule for a Hopf algebra 𝐻 if there is a linear
map Φ : 𝑉 → 𝑉 ⊗ 𝐻 (the right coaction) satisfying

(Φ ⊗ 𝜄)Φ = (𝜄 ⊗ Δ)Φ : 𝑉 → 𝑉 ⊗ 𝐻 ⊗ 𝐻, (𝜄 ⊗ 𝜀)Φ = 𝜄 : 𝑉 → 𝑉. (1.14)

In Sweedler notation, we may write the coaction as Φ(𝑣) =:
∑
𝑣:0 ⊗ 𝑣:1, so

∑
𝑣:0 𝜀(𝑣:1) = 𝑣

and
∑
𝑣:0:0 ⊗ 𝑣:0:1 ⊗ 𝑣:1 =

∑
𝑣:0 ⊗ 𝑣:1:1 ⊗ 𝑣:1:2; we can rewrite both sides of the last equality as∑

𝑣:0 ⊗ 𝑣:1 ⊗ 𝑣:2, where, by convention, 𝑣:𝑟 ∈ 𝐻 for 𝑟 ≠ 0 while 𝑣:0 ∈ 𝑉 .
Left 𝐻-comodules are similarly defined; a linear map Φ : 𝑉 → 𝐻 ⊗ 𝑉 is a left coaction if

(𝜄 ⊗ Φ)Φ = (Δ ⊗ 𝜄)Φ and (𝜀 ⊗ 𝜄)Φ = 𝜄;

it is convenient to write Φ(𝑣) =:
∑
𝑣:−1 ⊗ 𝑣:0 in this case.

If a 𝐻-comodule 𝐴 is also an algebra and if the coaction Φ : 𝐴 → 𝐴 ⊗ 𝐻 is an algebra
homomorphism, we say that 𝐴 is a (right) 𝐻-comodule algebra. In this case,

∑(𝑎𝑏):0 ⊗ (𝑎𝑏):1 =∑
𝑎:0𝑏:0 ⊗ 𝑎:1𝑏:1.
If 𝐻 and 𝑈 are two Hopf algebras in duality, then any right 𝐻-comodule algebra 𝐴 becomes a

left𝑈-module algebra, under
𝑋 · 𝑎 :=

∑
𝑎:0 ⟨𝑋, 𝑎:1⟩,

for 𝑋 ∈ 𝑈 and 𝑎 ∈ 𝐴. In symbols: 𝑋 acts as the operator (𝜄 ⊗ ⟨𝑋 |)Φ on 𝐴. Indeed, it is enough to
note that

𝑋 · (𝑎𝑏) = ∑
𝑎:0𝑏:0 ⟨𝑋, 𝑎:1𝑏:1⟩ =

∑
𝑎:0𝑏:0 ⟨Δ𝑋, 𝑎:1 ⊗ 𝑏:1⟩

=
∑
𝑎:0𝑏:0 ⟨𝑋:1 ⊗ 𝑋:2, 𝑎:1 ⊗ 𝑏:1⟩ =

∑
𝑎:0 ⟨𝑋:1, 𝑎:1⟩ 𝑏:0 ⟨𝑋:2, 𝑏:1⟩

=
∑(𝑋:1 · 𝑎) (𝑋:2 · 𝑏).

15



The language of coactions is used to formulate what one obtains by applying the Gelfand
cofunctor (loosely speaking) to the concept of a homogeneous space under a group action. If a
compact group 𝐺 acts transitively on a space 𝑀 , one can write 𝑀 ≈ 𝐺/𝐾 , where 𝐾 is the closed
subgroup fixing a basepoint 𝑧0 ∈ 𝑀 (i.e., 𝐾 is the “isotropy subgroup” of 𝑧0). Then any function
on 𝑀 is obtained from a function on 𝐺 which is constant on right cosets of 𝐾 . If F(𝐺) and F(𝑀)
denote suitable algebras of functions on 𝐺 and 𝑀 (we shall be more precise about these algebras in
a moment), then there is a corresponding algebra of right 𝐾-invariant functions

F(𝐺)𝐾 := { 𝑓 ∈ F(𝐺) : 𝑓 (𝑥𝑤) = 𝑓 (𝑥) whenever 𝑤 ∈ 𝐾, 𝑥 ∈ 𝐺 }.

If 𝑥 ∈ 𝑀 corresponds to the right coset 𝑥𝐾 in 𝐺/𝐾 , then

𝜁 𝑓 (𝑥) := 𝑓 (𝑥)

defines an algebra isomorphism 𝜁 : F(𝐺)𝐾 → F(𝑀). [For aesthetic reasons, one may prefer to
work with left 𝐾-invariant functions; for that, one should instead identify 𝑀 with the space 𝐾\𝐺 of
left cosets of 𝐾 .]

Suppose now that the chosen spaces of functions satisfy

F(𝐺) ⊗ F(𝑀) ≃ F(𝐺 × 𝑀), (1.15)

where ⊗ denotes, as before, the algebraic tensor product. Then we can define 𝜌 : F(𝑀) →
F(𝐺) ⊗ F(𝑀) by 𝜌 𝑓 (𝑥, �̄�) := 𝑓 (𝑥𝑦). It follows that

[𝜌𝜁 𝑓 ] (𝑥, �̄�) = 𝜁 𝑓 (𝑥𝑦) = 𝑓 (𝑥𝑦) = Δ 𝑓 (𝑥, 𝑦) = [(𝜄 ⊗ 𝜁)Δ 𝑓 ] (𝑥, �̄�), (1.16)

so that 𝜌𝜁 = (𝜄 ⊗ 𝜁)Δ : F(𝐺)𝐾 → F(𝐺) ⊗ F(𝑀). Notice, in passing, that the coproduct Δ maps
F(𝐺)𝐾 into F(𝐺) ⊗ F(𝐺)𝐾 , which consists of functions ℎ on 𝐺 × 𝐺 such that ℎ(𝑥, 𝑦𝑤) = ℎ(𝑥, 𝑦)
when 𝑤 ∈ 𝐾 . [Had we used left cosets and left-invariant functions, the corresponding relations
would be Δ(F(𝐺)𝐾) ⊆ F(𝐺)𝐾 ⊗ F(𝐺), 𝜌 : F(𝑀) → F(𝑀) ⊗ F(𝐺), and 𝜌𝜁 = (𝜁 ⊗ 𝜄)Δ.] In Hopf
algebra language, 𝜌 defines a left [or right] coaction of F(𝐺) on the algebra F(𝑀), implementing
the left [or right] action of the group 𝐺 on 𝑀 , and 𝜁 intertwines this with left [or right] regular
coaction on 𝐾-invariant functions induced by the coproduct Δ. We get an instance of the following
definition.

Definition 1.9. In the lore of quantum groups —see, for instance, [61, §11.6]— a (left) embedded
homogeneous space for a Hopf algebra 𝐻 is a left 𝐻-comodule algebra 𝐴 with coaction 𝜌 : 𝐴 →
𝐻 ⊗ 𝐴, for which there exists a subalgebra 𝐵 ⊆ 𝐻 and an algebra isomorphism 𝜁 : 𝐵 → 𝐴 such that
𝜌𝜁 = (𝜄 ⊗ 𝜁)Δ : 𝐵 → 𝐻 ⊗ 𝐴.

A right embedded homogeneous space is defined, mutatis mutandis, in the same way.

There are two ways to ensure that the relation (1.15) holds. One way is to chooseF(𝐺) := R(𝐺),
which is a bona-fide Hopf algebra, and then to define R(𝑀) as the image 𝜁 (R(𝐺)𝐾) of the 𝐾-
invariant representative functions. For instance, if 𝐺 = SU(2) and 𝐾 = U(1), so that 𝑀 ≈ 𝕊2

is the usual 2-sphere of spin directions, then R(𝐺) is spanned by the matrix elements D 𝑗
𝑚𝑛 of the

(2 𝑗 + 1)-dimensional unitary irreducible representations of SU(2): see [7], for example. Now D
𝑗
𝑚𝑛

is right U(1)-invariant if and only if 𝑗 is an integer (not a half-integer) and 𝑛 = 0; moreover, the
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functions 𝑌𝑙𝑚 :=
√︁
(2𝑙 + 1)/4𝜋D𝑙∗

𝑚0 are the usual spherical harmonics on the 2-sphere. In other
words: R(𝕊2) is the algebra of spherical harmonics on 𝕊2.

▶ To move closer to noncommutative geometry, it would be better to use either continuous functions
(at the 𝐶∗-algebra level) or smooth functions on 𝐺 and 𝑀; that is, one should work with F = ℂ or
with F = 𝐶∞. Notice that formulas like (1.16) make perfect sense in those cases; but the tensor
product relation (1.15) is false in the continuous or smooth categories, unless the algebraic ⊗ is
replaced by a more suitable completed tensor product.

In the continuous case, for compact 𝐺 and 𝑀 , the relation

𝐶 (𝐺) ⊗ 𝐶 (𝑀) ≃ 𝐶 (𝐺 × 𝑀)

is valid, where ⊗ denotes the “minimal” tensor product of 𝐶∗-algebras. (There may be several
compatible 𝐶∗-norms on a tensor product of two 𝐶∗-algebras; but they all coincide if the algebras
are commutative.) In the smooth case, we may fall back on a theorem of Grothendieck [54], which
says that

𝐶∞(𝐺) ⊗̂ 𝐶∞(𝑀) ≃ 𝐶∞(𝐺 × 𝑀),
where ⊗̂ denotes the projective tensor product of Fréchet spaces. But then, it is necessary to go
back and reexamine our definitions: for instance, the coproduct need only satisfy Δ(𝐴) ⊆ 𝐴 ⊗ 𝐴 for
a completed tensor product, which is a much weaker statement than the original one — the formula
Δ𝑎 =

∑
𝑎:1 ⊗ 𝑎:2 need no longer be a finite sum, but only some kind of convergent series. The bad

news is that, in the 𝐶∗-algebra case, the product map 𝑚 : 𝐴 ⊗ 𝐴→ 𝐴 is usually not continuous; the
counit 𝜀 and antipode 𝑆 become unbounded linear maps and one must worry about their domains;
and so on. We shall meet examples of these generalized Hopf algebras in subsection 4.2.

1.3 Hopf actions of differential operators: an example

The Hopf algebras which are currently of interest are typically neither commutative, like R(𝐺),
nor cocommutative, like U(g). The enormous profusion of “quantum groups” which have emerged
in the last twenty years provide many examples of such noncommutative, noncocommutative Hopf
algebras: see [17,59,61,70] for catalogues of these. A class of Hopf algebras which are commutative
but are not cocommutative were introduced a few years ago, first by Kreimer in a quantum field theory
context [63], and independently by Connes and Moscovici [35] in connection with a local index
formula for foliations; in both cases, the Hopf algebra becomes a device to organize complicated
calculations. We shall discuss the QFT version at length in the next section; here we look at the
geometric example first.

If one wishes to deal with gravity in a noncommutative geometric framework [26], one must be
able to handle the geometrical invariants of spacetime under the action of local diffeomorphisms.
We consider an oriented 𝑛-dimensional manifold 𝑀 , without boundary. By local diffeomorphisms
on 𝑀 we mean diffeomorphisms 𝜓 : Dom𝜓 → Ran𝜓, where both the domain Dom𝜓 and range
Ran𝜓 are open subsets of 𝑀; and we shall always assume that 𝜓 preserves the given orientation
on 𝑀 . Two such local diffeomorphisms can be composed if and only if the range of the first lies
within the domain of the second, and any local diffeomorphism can be inverted: taken all together,
they form what is called a pseudogroup. We let Γ be a subpseudogroup (with the discrete topology),
and consider the pair (𝑀, Γ).
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The orbit space 𝑀/Γ has in most cases a very poor topology. The noncommutative geometry
approach is to replace this singular space by an algebra which captures the action of Γ on 𝑀 . The
initial candidate, a “crossed product” algebra 𝐶 (𝑀) ⋊ Γ, still has a very complicated structure; but
much progress can be made [22] by replacing 𝑀 by the bundle 𝐹 → 𝑀 of oriented frames on 𝑀 .
This is a principal fibre bundle whose structure group is GL+(𝑛,ℝ), the 𝑛×𝑛matrices with positive
determinant.

Any 𝜓 ∈ Γ admits a prolongation to the frame bundle described as follows. Let 𝑥 = (𝑥1, . . . , 𝑥𝑛)
be local coordinates on 𝑀 and let 𝑦 = (𝑦1

1, 𝑦
2
1, . . . , 𝑦

𝑛
𝑛) be local coordinates for the frame at 𝑥. To

avoid a “debauch of indices”, we mainly consider the 1-dimensional case, where 𝑀 ≈ 𝕊1 is a circle
and 𝐹 is a cylinder (but we use a matrix notation to indicate how to proceed for higher dimensions;
the details for the general case are carefully laid out in [114]). Then 𝜓 acts locally on 𝐹 through �̃�,
given by

�̃�(𝑥, 𝑦) := (𝜓(𝑥), 𝜓′(𝑥)𝑦).
The point is that, while 𝑀 need not carry any Γ-invariant measure, the top-degree differential form
𝜈 = 𝑦−2 𝑑𝑦 ∧ 𝑑𝑥 on 𝐹 is Γ-invariant:

�̃�∗𝜈 = 𝑦−2𝜓′(𝑥)−2 𝜓′(𝑥) 𝑑𝑦 ∧ 𝜓′(𝑥) 𝑑𝑥 = 𝜈,

so we can build a Hilbert space 𝐿2(𝐹, 𝜈) and represent the action of each 𝜓 ∈ Γ by the unitary
operator 𝑈𝜓 defined by 𝑈𝜓𝜉 (𝑥, 𝑦) := 𝜉 (�̃�−1(𝑥, 𝑦)). It is slightly more convenient to work with
the adjoint unitary operators 𝑈†

𝜓
𝜉 (𝑥, 𝑦) := 𝜉 (�̃�(𝑥, 𝑦)). These unitaries intertwine multiplication

operators coming from functions on 𝐹 (specifically, smooth functions with compact support) as
follows:

𝑈𝜓 𝑓𝑈
†
𝜓
= 𝑓 𝜓 , where 𝑓 𝜓 (𝑥, 𝑦) := 𝑓 (�̃�−1(𝑥, 𝑦)). (1.17)

The local action of Γ on 𝐹 can be described in the language of smooth groupoids [38], or alter-
natively by introducing a “crossed product” algebra which incorporates the groupoid convolution.
This is a pre-𝐶∗-algebra A obtained by suitably completing the algebra

span{ 𝑓𝑈†
𝜓

: 𝜓 ∈ Γ, 𝑓 ∈ 𝐶∞
𝑐 (Dom �̃�) }.

The relation (1.17) gives the multiplication rule

( 𝑓𝑈†
𝜓
) (𝑔𝑈†

𝜙
) = 𝑓 (𝑈†

𝜓
𝑔𝑈𝜓)𝑈†

𝜓
𝑈

†
𝜙
= 𝑓 (𝑔 ◦ �̃�)𝑈†

𝜙𝜓
, (1.18)

Any two such elements are composable, since the support of 𝑓 (𝑔 ◦ �̃�) is a compact subset of
Dom �̃� ∩ �̃�−1(Dom 𝜙) ⊆ Dom(𝜙�̃�).

This construction is called the smash product in the Hopf algebra books: if 𝐻 is a Hopf algebra
and 𝐴 is a left Hopf 𝐻-module algebra, the smash product is the algebra 𝐴 # 𝐻 which is defined as
the vector space 𝐴 ⊗ 𝐻 with the product rule

(𝑎 ⊗ ℎ) (𝑏 ⊗ 𝑘) :=
∑
𝑎(ℎ:1 · 𝑏) ⊗ ℎ:2𝑘.

If ℎ is a grouplike element of 𝐻, this reduces to (𝑎 ⊗ ℎ) (𝑏 ⊗ 𝑘) := 𝑎(ℎ · 𝑏) ⊗ ℎ𝑘 , of which (1.18) is
an instance.

A local basis {𝑋,𝑌 } of vector fields on the bundle 𝐹 is defined by the “vertical” vector field
𝑌 := 𝑦 𝜕/𝜕𝑦, generating translations along the fibres, and the “horizontal” vector field 𝑋 := 𝑦 𝜕/𝜕𝑥,
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generating displacements transverse to the fibres. In higher dimensions, the basis contains 𝑛2

vertical vector fields 𝑌 𝑖
𝑗

and 𝑛 horizontal vector fields 𝑋𝑘 [114]. Under the lifted action of Γ, 𝑌 is
invariant:

�̃�∗𝑌 = 𝜓′(𝑥)𝑦 𝜕

𝜕𝜓′(𝑥)𝑦 = 𝑦
𝜕

𝜕𝑦
= 𝑌,

but 𝑋 is not. To see that, consider the 1-forms 𝛼 := 𝑦−1 𝑑𝑥 and 𝜔 := 𝑦−1 𝑑𝑦. The form 𝛼 is the
so-called canonical 1-form on 𝐹, which is invariant since �̃�∗𝛼 = 𝑦−1𝜓′(𝑥)−1 𝑑𝜓(𝑥) = 𝑦−1 𝑑𝑥 = 𝛼,
whereas 𝜔 is not invariant:

�̃�∗𝜔 = 𝑦−1 𝑑𝑦 + 𝜓′(𝑥)−1 𝑑𝜓′(𝑥) = 𝑦−1 𝑑𝑦 + 𝜓
′′(𝑥)
𝜓′(𝑥) 𝑑𝑥.

This transformation rule shows that 𝜔 is a connection 1-form on the principal bundle 𝐹 → 𝑀;
and the horizontality of 𝑋 means, precisely, that 𝜔(𝑋) = 0. Notice also that 𝛼(𝑋) = 1. Now the
vector field �̃�−1

∗ 𝑋 can be computed from the two equations 𝛼(�̃�−1
∗ 𝑋) = �̃�∗𝛼(�̃�−1

∗ 𝑋) = 𝛼(𝑋) = 1
and �̃�∗𝜔(�̃�−1

∗ 𝑋) = 𝜔(𝑋) = 0; we get

�̃�−1
∗ 𝑋 = 𝑦

𝜕

𝜕𝑥
− 𝑦2𝜓

′′(𝑥)
𝜓′(𝑥)

𝜕

𝜕𝑦
= 𝑋 − ℎ𝜓𝑌, (1.19a)

where
ℎ𝜓 (𝑥, 𝑦) := 𝑦

𝜓′′(𝑥)
𝜓′(𝑥) = 𝑦

𝜕

𝜕𝑥

(
log𝜓′(𝑥)

)
. (1.19b)

Any vector field 𝑍 on 𝐹 determines a linear operator on A, also denoted by 𝑍 , by

𝑍 ( 𝑓𝑈†
𝜓
) := (𝑍 𝑓 )𝑈†

𝜓
, (1.20)

which makes sense since supp(𝑍 𝑓 ) ⊆ supp 𝑓 ⊂ Dom �̃�. When applied to products, this operator
gives

𝑍 ( 𝑓𝑈†
𝜓
𝑔𝑈

†
𝜙
) = 𝑍 ( 𝑓 (𝑔 ◦ �̃�))𝑈†

𝜙𝜓
= (𝑍 𝑓 ) (𝑔 ◦ �̃�)𝑈†

𝜙𝜓
+ 𝑓 𝑍 (𝑔 ◦ �̃�)𝑈†

𝜙𝜓

= (𝑍 𝑓 )𝑈†
𝜓
𝑔𝑈

†
𝜙
+ 𝑓𝑈

†
𝜓
(𝑍 (𝑔 ◦ �̃�) ◦ �̃�−1)𝑈†

𝜙

= (𝑍 𝑓 )𝑈†
𝜓
𝑔𝑈

†
𝜙
+ 𝑓𝑈

†
𝜓
�̃�∗𝑍 (𝑔)𝑈†

𝜙
. (1.21)

Since the vector field𝑌 is invariant, �̃�∗𝑌 = 𝑌 , so the lifted operator𝑌 is a derivation on the algebraA:

𝑌 ( 𝑓𝑈†
𝜓
𝑔𝑈

†
𝜙
) = (𝑌 𝑓 )𝑈†

𝜓
𝑔𝑈

†
𝜙
+ 𝑓𝑈

†
𝜓
(𝑌𝑔)𝑈†

𝜙
,

Proposition 1.1. The operator 𝑋 on A is not a derivation; however, there is a derivation 𝜆1 on A

such that 𝑋 obeys the generalized Leibniz rule

𝑋 (𝑎𝑏) = 𝑋 (𝑎)𝑏 + 𝑎𝑋 (𝑏) + 𝜆1(𝑎)𝑌 (𝑏) for all 𝑎, 𝑏 ∈ A. (1.22)

Proof. Using the invariance of 𝑌 and (1.19a), we get

�̃�∗𝑋 − 𝑋 = �̃�∗(𝑋 − �̃�−1
∗ 𝑋) = �̃�∗(ℎ𝜓𝑌 ) = (ℎ𝜓 ◦ �̃�−1)𝑌,

19



and it follows that

𝑓𝑈
†
𝜓
(�̃�∗𝑋 (𝑔) − 𝑋𝑔)𝑈†

𝜙
= 𝑓𝑈

†
𝜓
(ℎ𝜓 ◦ �̃�−1) (𝑌𝑔)𝑈†

𝜙
= 𝑓 ℎ𝜓𝑈

†
𝜓
(𝑌𝑔)𝑈†

𝜙
.

If we define
𝜆1( 𝑓𝑈†

𝜓
) := ℎ𝜓 𝑓𝑈†

𝜓
, (1.23)

then (1.21) for 𝑍 = 𝑋 now reads

𝑋 ( 𝑓𝑈†
𝜓
𝑔𝑈

†
𝜙
) = 𝑋 ( 𝑓𝑈†

𝜓
) 𝑔𝑈†

𝜙
+ 𝑓𝑈

†
𝜓
𝑋 (𝑔𝑈†

𝜙
) + 𝜆1( 𝑓𝑈†

𝜓
)𝑌 (𝑔𝑈†

𝜙
).

Thus, (1.22) holds on generators. We leave the reader to check that the formula extends to finite
products of generators, provided that 𝜆1 is indeed a derivation. Now (1.19b) implies

ℎ𝜙𝜓 (𝑥, 𝑦) = 𝑦
𝜕

𝜕𝑥

(
log 𝜙′(𝜓(𝑥)) + log𝜓′(𝑥)

)
= ℎ𝜙 (�̃�(𝑥, 𝑦)) + ℎ𝜓 (𝑥, 𝑦),

so that ℎ𝜙𝜓 = �̃�∗ℎ𝜙 + ℎ𝜓 , and the derivation property of 𝜆1 follows:

𝜆1( 𝑓𝑈†
𝜓
𝑔𝑈

†
𝜙
) = (�̃�∗ℎ𝜙 + ℎ𝜓) 𝑓 (𝑔 ◦ �̃�)𝑈†

𝜙𝜓

= 𝑓 ((ℎ𝜙𝑔) ◦ �̃�)𝑈†
𝜙𝜓

+ ℎ𝜓 𝑓𝑈†
𝜓
𝑔𝑈

†
𝜙

= ( 𝑓𝑈†
𝜓
) (ℎ𝜙𝑔𝑈†

𝜙
) + (ℎ𝜓 𝑓𝑈†

𝜓
) (𝑔𝑈†

𝜙
). □

Consider now the Lie algebra obtained from the operators 𝑋 , 𝑌 and 𝜆1. The vector fields 𝑋 ,
𝑌 have the commutator [𝑦 𝜕/𝜕𝑦, 𝑦 𝜕/𝜕𝑥] = 𝑦 𝜕/𝜕𝑥 and the corresponding operators on A satisfy
[𝑌, 𝑋] = 𝑋 . Next, [𝑌, 𝜆1] ( 𝑓𝑈†

𝜓
) = 𝑓 (𝑌ℎ𝜓)𝑈†

𝜓
, and from 𝑌ℎ𝜓 = ℎ𝜓 we get [𝑌, 𝜆1] = 𝜆1. Simi-

larly, [𝑋, 𝜆1] ( 𝑓𝑈†
𝜓
) = 𝑓 (𝑋ℎ𝜓)𝑈†

𝜓
, where 𝑋ℎ𝜓 = 𝑦 𝜕/𝜕𝑥

(
𝑦 𝜓′′(𝑥)/𝜓′(𝑥)

)
= 𝑦2 𝜕2/𝜕𝑥2 (log𝜓′(𝑥)

)
.

Introduce
ℎ𝑛𝜓 = 𝑦𝑛

𝑑𝑛

𝑑𝑥𝑛
log𝜓′(𝑥),

for 𝑛 = 1, 2, . . . , and define 𝜆𝑛 ( 𝑓𝑈†
𝜓
) := 𝑓 ℎ𝑛

𝜓
𝑈

†
𝜓

, then 𝜆2 = [𝑋, 𝜆1] and by induction we obtain
𝜆𝑛+1 = [𝑋, 𝜆𝑛] for all 𝑛. Clearly 𝑌ℎ𝑛

𝜓
= 𝑛ℎ𝑛

𝜓
, which implies [𝑌, 𝜆𝑛] = 𝑛𝜆𝑛. The operators 𝜆𝑛

commute among themselves. We have constructed a Lie algebra, linearly generated by 𝑋 , 𝑌 , and
all the 𝜆𝑛.

We can make the associative algebra with these same generators into a Hopf algebra [35] by
defining their coproducts as follows. Since 𝑌 and 𝜆1 act as derivations, they must be primitive:

Δ𝑌 := 𝑌 ⊗ 1 + 1 ⊗ 𝑌, (1.24a)
Δ𝜆1 := 𝜆1 ⊗ 1 + 1 ⊗ 𝜆1. (1.24b)

The coproduct of 𝑋 can be read off from (1.22):

Δ𝑋 := 𝑋 ⊗ 1 + 1 ⊗ 𝑋 + 𝜆1 ⊗ 𝑌 . (1.24c)

Moreover, 𝜀(𝑌 ) = 𝜀(𝜆1) = 0 since 𝑌 and 𝜆1 are primitive, and 𝜀(𝑋) = 0 since 𝑋 = [𝑌, 𝑋] is a
commutator; moreover, 𝜀(𝜆𝑛) = 0 for all 𝑛 ⩾ 2 for the same reason. The commutation relations
yield the remaining coproducts; for instance,

Δ𝜆2 := [Δ𝑋,Δ𝜆1] = 𝜆2 ⊗ 1 + 1 ⊗ 𝜆2 + 𝜆1 ⊗ 𝜆1.
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The antipode is likewise determined: 𝑆(𝑌 ) = −𝑌 and 𝑆(𝜆1) = −𝜆1 since 𝑌 and 𝜆1 are primitive,
and (𝜄 ∗ 𝑆) (𝑋) = 𝜀(𝑋)1 = 0 gives 𝑋 + 𝑆(𝑋) + 𝜆1𝑌 = 0, so 𝑆(𝑋) = −𝑋 + 𝜆1𝑌 . The relation
𝑆(𝜆𝑛+1) = [𝑆(𝜆𝑛), 𝑆(𝑋)] yields all 𝑆(𝜆𝑛) by induction.

Definition 1.10. The Hopf algebra 𝐻𝐶𝑀 generated as an algebra by 𝑋 ,𝑌 and 𝜆1, with the coproduct
determined by (1.24) and the indicated counit and antipode, will be called the Connes–Moscovici
Hopf algebra.

Exercise 1.4. Show that the commutative subalgebra generated by { 𝜆𝑛 : 𝑛 = 1, 2, 3, . . . } is indeed
a Hopf subalgebra which is not cocommutative. ♢

The example 𝐻𝐶𝑀 arose in connection with a local index formula computation, which is
already very involved when the base space 𝑀 has dimension 1 (the case treated above). In higher
dimensions, one may start [114] with the vertical vector fields 𝑌 𝑖

𝑗
= 𝑦

𝜇

𝑗
𝜕/𝜕𝑦𝜇

𝑖
and a matrix-

valued connection 1-form 𝜔𝑖
𝑗
= (𝑦−1)𝑖𝜇 (𝑑𝑦

𝜇

𝑗
+ Γ

𝜇

𝛼𝛽
𝑦𝛼
𝑗
𝑑𝑥𝛽), which may be chosen torsion-free, with

Christoffel symbols Γ
𝜇

𝛼𝛽
= Γ

𝜇

𝛽𝛼
. With respect to this connection form, there are horizontal vector

fields 𝑋𝑘 = 𝑦𝜇𝑘 (𝜕/𝜕𝑥
𝜇−Γ𝜈𝛼𝜇𝑦

𝛼
𝑗
𝜕/𝜕𝑦 𝑗𝜈). One obtains the Lie algebra relations [𝑌 𝑗

𝑖
, 𝑌 𝑙
𝑘
] = 𝛿 𝑗

𝑘
𝑌 𝑙
𝑖
−𝛿𝑙

𝑖
𝑌
𝑗

𝑘

and [𝑌 𝑗
𝑖
, 𝑋𝑘 ] = 𝛿 𝑗𝑘𝑋𝑖, involving “structure constants”; however, [𝑋𝑘 , 𝑋𝑙] = 𝑅𝑖

𝑗 𝑘𝑙
𝑌
𝑗

𝑖
where 𝑅𝑖

𝑗 𝑘𝑙
are

the components of the curvature of the connection 𝜔, and these coefficients are in general not
constant, for 𝑛 > 1.

At first, Connes and Moscovici decided to use flat connections only [35], which entails [𝑋𝑘 , 𝑋𝑙] =
0; then, on lifting the𝑌 𝑖

𝑗
and the 𝑋𝑘 using (1.20), a higher-dimensional analogue of 𝐻𝐶𝑀 is obtained.

For instance, one gets [114]:

Δ𝑋𝑘 = 𝑋𝑘 ⊗ 1 + 1 ⊗ 𝑋𝑘 + 𝜆𝑖𝑘 𝑗 ⊗ 𝑌
𝑗

𝑖
,

where the 𝜆𝑖
𝑘 𝑗

are derivations of the form (1.23).
A better solution was later found [38]: one can allow commutation relations like [𝑋𝑘 , 𝑋𝑙] =

𝑅𝑖
𝑗 𝑘𝑙
𝑌
𝑗

𝑖
if one modifies the original setup to allow for “transverse differential operators with non-

constant coefficients”. The algebra A remains the same as before, but the base field ℂ is replaced by
the algebra R = 𝐶∞(𝐹) of smooth functions on 𝐹. Now A is an R-bimodule under the commuting
left and right actions

𝛼(𝑏) : 𝑓𝑈†
𝜓
↦→ 𝑏 · ( 𝑓𝑈†

𝜓
) := (𝑏 𝑓 )𝑈†

𝜓
, (1.25a)

𝛽(𝑏) : 𝑓𝑈†
𝜓
↦→ ( 𝑓𝑈†

𝜓
) · 𝑏 := (𝑏 ◦ �̃�) · ( 𝑓𝑈†

𝜓
) = ( 𝑓 (𝑏 ◦ �̃�))𝑈†

𝜓
. (1.25b)

Letting 𝐻 now denote the algebra of operators on A generated by these operators (1.25) and
the previous ones (1.20), then we no longer have a Hopf algebra over ℂ, but (𝐻,R, 𝛼, 𝛽) gives
an instance of a more general structure called a Hopf algebroid over R [69]. For instance, the
coproduct is an R-bimodule map from 𝐻 into 𝐻 ⊗R 𝐻, where elements of this range space satisfy
(ℎ · 𝑏) ⊗R 𝑘 = ℎ ⊗R (𝑏 · 𝑘) by construction, for any 𝑏 ∈ R. Just as Hopf algebras are the
noncommutative counterparts of groups, Hopf algebroids are the noncommutative counterparts of
groupoids: see [69,115] for instance. For the details of these recent developments, we refer to [38].
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2 The Hopf Algebras of Connes and Kreimer
2.1 The Connes–Kreimer algebra of rooted trees

A very important Hopf algebra structure is the one found by Kreimer [63] to underlie the combi-
natorics of subdivergences in the computation of perturbative expansions in quantum field theory.
Such calculations involve several layers of complication, and it is no small feat to remove one such
layer by organizing them in terms of a certain coproduct: indeed, the corresponding antipode pro-
vides a method to obtain suitable counterterms. Instead of addressing this matter from the physical
side, the approach taken here is algebraic, in order first to understand why the Hopf algebras which
emerge are in the nature of things.

A given Feynman graph represents a multiple integral (say, over momentum space) where the
integrand is assembled from a definite collection of Rules, and before renormalization will often
be superficially divergent, as determined by power counting. Even if not itself divergent, it may
well contain one or several subgraphs which yield divergent partial integrations: the first order of
business is to catalogue and organize the various graphs according to this nesting of subdivergences.
Kreimer’s coproduct separates out the divergences of subgraphs from those of the overall graph. In
consequence, when expressed in terms of suitable generators of a Hopf algebra, the coproduct turns
out to be polynomial in its first tensor factor, but merely linear in the second factor, and is therefore
highly noncocommutative. Our starting point is to find a source of Hopf algebras with this kind of
noncocommutativity.

▶ We start with an apparently unrelated digression into the homological classification of (associa-
tive) algebras.

There is a natural homology theory for associative algebras, linked with the name of Hochschild.
Given an algebra A over any field 𝔽 of scalars, one forms a complex by setting 𝐶𝑛 (A) := A⊗(𝑛+1) ,
and defining the boundary operator 𝑏 : 𝐶𝑛 (A) → 𝐶𝑛−1(A) by

𝑏(𝑎0 ⊗ 𝑎1 ⊗ · · · ⊗ 𝑎𝑛) :=
𝑛−1∑︁
𝑗=0

(−1) 𝑗𝑎0 ⊗ · · · ⊗ 𝑎 𝑗𝑎 𝑗+1 ⊗ · · · ⊗ 𝑎𝑛 + (−1)𝑛𝑎𝑛𝑎0 ⊗ 𝑎1 ⊗ · · · ⊗ 𝑎𝑛−1,

where the last term “turns the corner”. By convention, 𝑏 = 0 on 𝐶0(A) = A. One checks that
𝑏2 = 0 by cancellation. For instance, 𝑏(𝑎0 ⊗ 𝑎1) := [𝑎0, 𝑎1], while

𝑏(𝑎0 ⊗ 𝑎1 ⊗ 𝑎2) := 𝑎0𝑎1 ⊗ 𝑎2 − 𝑎0 ⊗ 𝑎1𝑎2 + 𝑎2𝑎0 ⊗ 𝑎1.

There are two important variants of this definition. One comes from the presence of a “degenerate
subcomplex” 𝐷•(A) where, for each 𝑛 = 0, 1, 2, . . . , the elements of 𝐷𝑛 (A) are finite sums of terms
of the form 𝑎0 ⊗ · · · ⊗ 𝑎 𝑗 ⊗ · · · ⊗ 𝑎𝑛, with 𝑎 𝑗 = 1 for some 𝑗 = 1, 2, . . . , 𝑛; elements of the quotient
Ω𝑛A := 𝐶𝑛 (A)/𝐷𝑛 (A) = A ⊗A

⊗𝑛
, where A = A/𝔽 , are sums of expressions 𝑎0 𝑑𝑎1 · · · 𝑑𝑎𝑛 where

𝑑 (𝑎𝑏) = 𝑑𝑎 𝑏 +𝑎 𝑑𝑏. The direct sum Ω•A =
⊕

𝑛⩾0 Ω
𝑛A is the universal graded differential algebra

generated by A in degree zero; using it, 𝑏 can be rewritten as

𝑏(𝑎0 𝑑𝑎1 · · · 𝑑𝑎𝑛) := 𝑎0𝑎1 𝑑𝑎2 · · · 𝑑𝑎𝑛 +
𝑛−1∑︁
𝑗=1

(−1) 𝑗𝑎0 𝑑𝑎1 · · · 𝑑 (𝑎 𝑗𝑎 𝑗+1) · · · 𝑑𝑎𝑛

+ (−1)𝑛𝑎𝑛𝑎0 𝑑𝑎1 · · · 𝑑𝑎𝑛−1. (2.1)
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The second variant involves replacing the algebra A in degree 0 by any A-bimodule E, and taking
𝐶𝑛 (A,E) := E ⊗ A⊗𝑛; in the formulas, the products 𝑎𝑛𝑎0 and 𝑎0𝑎1 make sense even when 𝑎0 ∈ E.
We write its homology as 𝐻•(A,E) and abbreviate 𝐻𝐻𝑛 (A) := 𝐻𝑛 (A,A).

Hochschild cohomology, with values in an A-bimodule E, is defined using cochains in 𝐶𝑛 =

𝐶𝑛 (A,E), the vector space of 𝑛-linear maps 𝜓 : A𝑛 → E; this itself becomes an A-bimodule by
writing (𝑎′ · 𝜓 · 𝑎′′) (𝑎1, . . . , 𝑎𝑛) := 𝑎′ · 𝜓(𝑎1, . . . , 𝑎𝑛) · 𝑎′′. The coboundary map 𝑏 : 𝐶𝑛 → 𝐶𝑛+1 is
given by

𝑏𝜓(𝑎1, . . . , 𝑎𝑛+1) := 𝑎1 · 𝜓(𝑎2, . . . , 𝑎𝑛+1) +
𝑛∑︁
𝑗=1

(−1) 𝑗𝜓(𝑎1, . . . , 𝑎 𝑗 , 𝑎 𝑗+1, . . . , 𝑎𝑛+1)

+ (−1)𝑛+1𝜓(𝑎1, . . . , 𝑎𝑛) · 𝑎𝑛+1. (2.2)

The standard case is E = A∗ as an A-bimodule, where for 𝜓 ∈ A∗ we put (𝑎′ · 𝜓 · 𝑎′′) (𝑐) :=
𝜓(𝑎′′𝑐𝑎′). Here, we identify 𝜓 ∈ 𝐶𝑛 (A,E) with the (𝑛 + 1)-linear map 𝜑 : A𝑛+1 → ℂ given
by 𝜑(𝑎0, 𝑎1, . . . , 𝑎𝑛) := 𝜓(𝑎1, . . . , 𝑎𝑛) (𝑎0); then, from the first summand in (2.2) we get 𝑎1 ·
𝜓(𝑎2, . . . , 𝑎𝑛+1) (𝑎0) = 𝜓(𝑎2, . . . , 𝑎𝑛+1) (𝑎0𝑎1) = 𝜑(𝑎0𝑎1, . . . , 𝑎𝑛+1), while the last summand gives
𝜓(𝑎1, . . . , 𝑎𝑛) · 𝑎𝑛+1(𝑎0) = 𝜓(𝑎1, . . . , 𝑎𝑛) (𝑎𝑛+1𝑎0) = 𝜑(𝑎𝑛+1𝑎0, . . . , 𝑎𝑛). In this case, (2.2) reduces
to

𝑏𝜑(𝑎0, . . . , 𝑎𝑛+1) :=
𝑛∑︁
𝑗=0

(−1) 𝑗𝜑(𝑎0, . . . , 𝑎 𝑗 , 𝑎 𝑗+1, . . . , 𝑎𝑛+1) + (−1)𝑛+1𝜑(𝑎𝑛+1𝑎0, . . . , 𝑎𝑛). (2.3)

The 𝑛-th Hochschild cohomology group is denoted 𝐻𝑛 (A,E) in the general case, and we also write
𝐻𝐻𝑛 (A) := 𝐻𝑛 (A,A∗).

Suppose that 𝜇 : A → 𝔽 is a character of A. We denote by A𝜇 the bimodule obtained by letting
A act on itself on the left by the usual multiplication, but on the right through 𝜇:

𝑎′ · 𝑐 · 𝑎′′ := 𝑎′𝑐 𝜇(𝑎′′) for all 𝑎′, 𝑎′′, 𝑐 ∈ A.

In (2.2), the last term on the right must be replaced by (−1)𝑛+1𝜑(𝑎1, . . . , 𝑎𝑛)𝜇(𝑎𝑛+1).
▶ We return now to the Hopf algebra setting, by considering a dual kind of Hochschild cohomology
for coalgebras. Actually, we now consider a bialgebra 𝐵; the dual of the coalgebra (𝐵,Δ, 𝜀) is an
algebra 𝐵∗, and the unit map 𝜂 for 𝐵 transposes to a character 𝜂𝑡 of 𝐵∗. Thus we may define the
Hochschild cohomology groups𝐻𝑛 (𝐵∗, 𝐵∗

𝜂𝑡
). An “𝑛-cochain” now means a linear map ℓ : 𝐵 → 𝐵⊗𝑛

which transposes to an 𝑛-linear map 𝜑 = (𝐵∗)𝑛 → 𝐵∗ by writing 𝜑(𝑎1, . . . , 𝑎𝑛) := ℓ𝑡 (𝑎1 ⊗ · · · ⊗ 𝑎𝑛).
Its coboundary is defined by

⟨𝑎1 ⊗ · · · ⊗ 𝑎𝑛+1, 𝑏ℓ(𝑥)⟩ := ⟨𝑏𝜑(𝑎1, . . . , 𝑎𝑛+1), 𝑥⟩, 𝑥 ∈ 𝐵.

We compute 𝑏ℓ using (2.2). First,

⟨𝑎1 · 𝜑(𝑎2, . . . , 𝑎𝑛+1), 𝑥⟩ = ⟨𝑎1 ⊗ 𝜑(𝑎2, . . . , 𝑎𝑛+1),Δ𝑥⟩ = ⟨𝑎1 ⊗ 𝑎2 ⊗ · · · ⊗ 𝑎𝑛+1, (𝜄 ⊗ ℓ)Δ𝑥⟩.

Next, if Δ 𝑗 : 𝐵⊗𝑛 → 𝐵⊗(𝑛+1) is the homomorphism which applies the coproduct on the 𝑗 th factor
only, then ⟨𝜑(𝑎1, . . . , 𝑎 𝑗𝑎 𝑗+1, . . . , 𝑎𝑛+1), 𝑥⟩ = ⟨𝑎1 ⊗ · · · ⊗ 𝑎𝑛+1,Δ 𝑗 (ℓ(𝑥))⟩. Finally, notice that
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⟨𝜑(𝑎1, . . . , 𝑎𝑛)𝜂𝑡 (𝑎𝑛+1), 𝑥⟩ = ⟨𝑎1 ⊗ · · · ⊗ 𝑎𝑛+1, ℓ(𝑥) ⊗ 1⟩. Thus the Hochschild coboundary operator
simplifies to

𝑏ℓ(𝑥) := (𝜄 ⊗ ℓ)Δ(𝑥) +
𝑛∑︁
𝑗=1

(−1) 𝑗Δ 𝑗 (ℓ(𝑥)) + (−1)𝑛+1ℓ(𝑥) ⊗ 1. (2.4)

In particular, a linear form 𝜆 : 𝐵 → 𝔽 is a 0-cochain, and 𝑏𝜆 = (𝜄 ⊗ 𝜆)Δ − 𝜆 ⊗ 1 is its coboundary;
and a 1-cocycle is a linear map ℓ : 𝐵 → 𝐵 satisfying

Δℓ = ℓ ⊗ 1 + (𝜄 ⊗ ℓ)Δ. (2.5)

The simplest example of a nontrivial 1-cocycle obeying (2.5) come from integration of poly-
nomials in the algebra 𝐵 = 𝔽 [𝑋]; we make 𝔽 [𝑋] a cocommutative coalgebra by declaring the
indeterminate 𝑋 to be primitive, so that Δ(𝑋) = 𝑋 ⊗ 1 + 1 ⊗ 𝑋 and 𝜀(𝑋) = 0. We immediately get
the binomial expansion Δ(𝑋 𝑘 ) = (Δ𝑋)𝑘 =

∑𝑘
𝑗=0

(𝑘
𝑗

)
𝑋 𝑘− 𝑗 ⊗ 𝑋 𝑗 . If 𝜆 is any linear form on 𝔽 [𝑋],

then

𝑏𝜆(𝑋 𝑘 ) = (𝜄 ⊗ 𝜆)Δ(𝑋 𝑘 ) − 𝜆(𝑋 𝑘 ) ⊗ 1 =

𝑘∑︁
𝑗=1

(
𝑘

𝑗

)
𝜆(𝑋 𝑘− 𝑗 ) 𝑋 𝑗 ,

so 𝑏𝜆 is a linear transformation of polynomials which does not raise the degree. Therefore, the
integration map ℓ(𝑋 𝑘 ) := 𝑋 𝑘+1/(𝑘 + 1) is not a 1-coboundary, but it is a 1-cocycle:

Δ(ℓ(𝑋 𝑘 )) = 1
𝑘 + 1

𝑘+1∑︁
𝑗=0

(
𝑘 + 1
𝑗

)
𝑋 𝑘+1− 𝑗 ⊗ 𝑋 𝑗 =

𝑋 𝑘+1

𝑘 + 1
⊗ 1 +

𝑘+1∑︁
𝑗=1

1
𝑗

(
𝑘

𝑗 − 1

)
𝑋 𝑘+1− 𝑗 ⊗ 𝑋 𝑗

= ℓ(𝑋 𝑘 ) ⊗ 1 +
𝑘∑︁
𝑟=0

1
𝑟 + 1

(
𝑘

𝑟

)
𝑋 𝑘−𝑟 ⊗ 𝑋𝑟+1 = ℓ(𝑋 𝑘 ) ⊗ 1 + (𝜄 ⊗ ℓ) (Δ(𝑋 𝑘 )).

This simple example already shows what the “Hochschild equation” (2.5) is good for: it allows a
recursive definition of the coproduct Δ, with the assistance of a degree-raising operation ℓ. Indeed,
𝔽 [𝑋] is a simple example of a connected, graded bialgebra.

Definition 2.1. A bialgebra 𝐻 =
⊕∞

𝑛=0 𝐻
(𝑛) is a graded bialgebra if it is graded both as an algebra

and as a coalgebra:

𝐻 (𝑚)𝐻 (𝑛) ⊆ 𝐻 (𝑚+𝑛) and Δ(𝐻 (𝑛)) ⊆
⊕
𝑝+𝑞=𝑛

𝐻 (𝑝) ⊗ 𝐻 (𝑞) . (2.6)

It is called connected if the degree-zero piece consists of scalars only: 𝐻 (0) = 𝔽 1 = im 𝜂.

In a connected graded bialgebra, we can write the coproduct with a modified Sweedler notation:
if 𝑎 ∈ 𝐻 (𝑛) , then

Δ𝑎 = 𝑎 ⊗ 1 + 1 ⊗ 𝑎 +∑
𝑎′:1 ⊗ 𝑎

′
:2, (2.7)

where the terms 𝑎′:1 and 𝑎′:2 all have degrees between 1 and 𝑛 − 1. Indeed, for the counit equations
(1.9a) to be satisfied, Δ𝑎 must contain the terms 𝑎 ⊗ 1 in 𝐻 (𝑛) ⊗ 𝐻 (0) and 1 ⊗ 𝑎 in 𝐻 (0) ⊗ 𝐻 (𝑛);
the remaining terms have intermediate bidegrees. On applying 𝜀 ⊗ 𝜄, we get 𝑎 = (𝜀 ⊗ 𝜄) (Δ𝑎) =

𝜀(𝑎)1 + 𝑎 + ∑
𝜀(𝑎′:1) 𝑎

′
:2, so that 𝜀(𝑎) = 0 when 𝑛 ⩾ 1: in a connected graded bialgebra, the

“augmentation ideal” ker 𝜀 is
⊕∞

𝑛=1 𝐻
(𝑛) , so that 𝐻 = 𝔽 1 ⊕ ker 𝜀.
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In fact, 𝐻 is a Hopf algebra, since the grading allows us to define the antipode recursively [73,
§8]. Indeed, the equation 𝑚(𝑆 ⊗ 𝜄)Δ = 𝜂𝜀 may be solved thus: if 𝑎 ∈ 𝐻 (𝑛) , we can obtain
0 = 𝜀(𝑎) 1 = 𝑆(𝑎) + 𝑎 +∑

𝑆(𝑎′:1) 𝑎
′
:2, where each term 𝑎′:1 has degree less than 𝑛, just by setting

𝑆(𝑎) := −𝑎 −∑
𝑆(𝑎′:1) 𝑎

′
:2. (2.8)

Likewise, 𝑚(𝜄 ⊗ 𝑇)Δ = 𝜂𝜀 is solved by setting 𝑇 (1) := 1 and recursively defining 𝑇 (𝑎) :=
−𝑎 −∑

𝑇 (𝑎′:2) 𝑎
′
:1. It follows that 𝑇 = 𝑆 ∗ 𝜄 ∗ 𝑇 = 𝑆, so we have indeed constructed a convolution

inverse for 𝜄.
In the same way, if there is a 1-cocycle ℓ which raises the degree, then (2.5) gives a recursive

recipe for the coproduct: start with Δ(1) := 1 ⊗ 1 in degree zero (since 𝐻 is connected, that will
suffice), and use

Δ(ℓ(𝑎)) := ℓ(𝑎) ⊗ 1 + (𝜄 ⊗ ℓ)Δ(𝑎)
as often as necessary. The point is that, at each level, coassociativity is maintained:

(𝜄 ⊗ Δ)Δ(ℓ(𝑎)) = (𝜄 ⊗ Δ) (ℓ(𝑎) ⊗ 1 + (𝜄 ⊗ ℓ) (Δ𝑎)) = ℓ(𝑎) ⊗ 1 ⊗ 1 + (𝜄 ⊗ Δℓ) (Δ𝑎)
= ℓ(𝑎) ⊗ 1 ⊗ 1 + (𝜄 ⊗ ℓ) (Δ𝑎) ⊗ 1 + (𝜄 ⊗ 𝜄 ⊗ ℓ) (𝜄 ⊗ Δ) (Δ𝑎),

whereas

(Δ ⊗ 𝜄)Δ(ℓ(𝑎)) = (Δ ⊗ 𝜄) (ℓ(𝑎) ⊗ 1 + (𝜄 ⊗ ℓ) (Δ𝑎))
= ℓ(𝑎) ⊗ 1 ⊗ 1 + (𝜄 ⊗ ℓ) (Δ𝑎) ⊗ 1 + (𝜄 ⊗ 𝜄 ⊗ ℓ) (Δ ⊗ 𝜄) (Δ𝑎),

where we have used the trivial relation (Δ⊗ 𝜄) (𝜄⊗ ℓ) = (𝜄⊗ 𝜄⊗ ℓ) (Δ⊗ 𝜄). The only remaining issues
are (i) whether such a 1-cocycle ℓ exists; and (ii) whether any 𝑐 ∈ 𝐻 (𝑛+1) is a sum of products of
elements of the form ℓ(𝑎) with 𝑎 of degree at most 𝑛.

▶ Both questions are answered by producing a universal example of a pair (𝐻, ℓ) consisting of a
connected graded Hopf algebra and a 1-cocycle ℓ. It was pointed out by Connes and Kreimer [30]
that their Hopf algebra of rooted trees gives precisely this universal example. (Kreimer had first
introduced a Hopf algebra of “parenthesized words” [63], where the nesting of subdivergences was
indicated by parentheses, but rooted trees are nicer, and both Hopf algebras are isomorphic by the
same universality.)

Definition 2.2. A rooted tree is a tree (a finite, connected graph without loops) with oriented edges,
in which all the vertices but one have exactly one incoming edge, and the remaining vertex, the root,
has only outgoing edges.

Here are the rooted trees with at most four vertices (up to isomorphism). To draw them, we
place the root at the top with a ⋄ symbol, and denote the other vertices with • symbols:

⋄
⋄
•

⋄
•
•

•
⋄

•

⋄
•
•
•

•
•

⋄
•

•
⋄

•
⋄
•

⋄
•

• •

𝑡1 𝑡2 𝑡31 𝑡32 𝑡41 𝑡42 𝑡43 𝑡44

The algebra of rooted trees 𝐻𝑅 is the commutative algebra generated by symbols 𝑇 , one for
each isomorphism class of rooted trees, plus a unit 1 corresponding to the empty tree. We shall write
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the product of trees as the juxtaposition of their symbols. There is an obvious grading making 𝐻𝑅
a graded algebra, by assigning to each tree 𝑇 the number of its vertices #𝑇 . The counit 𝜀 : 𝐻𝑅 → 𝔽

is the linear map defined by 𝜀(1) := 1 and 𝜀(𝑇1𝑇2 . . . 𝑇𝑛) = 0 if 𝑇1, . . . , 𝑇𝑛 are trees; this ensures
that 𝐻𝑅 = 𝔽 1 ⊕ ker 𝜀. To get a coproduct satisfying (2.7), we must give a rule which shows how a
tree may be cut into subtrees with complementary sets of vertices. A simple cut 𝑐 of a tree 𝑇 is the
removal of some of its edges, in such a way that along the path from the root to any vertex, at most
one edge is removed. Here, for instance, are the possible simple cuts of 𝑡44:

=

= = = =
•

• •

•

• •

•

• •

•

• •

⋄ ⋄ ⋄ ⋄

Among the subtrees of 𝑇 produced by a simple cut, exactly one, the “trunk” 𝑅𝑐 (𝑇), contains the
root of 𝑇 . The remaining “pruned” branches also form one or more rooted trees, whose product is
denoted by 𝑃𝑐 (𝑇). The formula for the coproduct can now be given, on the algebra generators, as

Δ𝑇 := 𝑇 ⊗ 1 + 1 ⊗ 𝑇 +
∑︁
𝑐

𝑃𝑐 (𝑇) ⊗ 𝑅𝑐 (𝑇), (2.9)

where the sum extends over all simple cuts of the tree 𝑇 ; as well as Δ1 := 1 ⊗ 1, of course. Here are
the coproducts of the trees listed above:

Δ𝑡1 = 𝑡1 ⊗ 1 + 1 ⊗ 𝑡1,
Δ𝑡2 = 𝑡2 ⊗ 1 + 1 ⊗ 𝑡2 + 𝑡1 ⊗ 𝑡1,
Δ𝑡31 = 𝑡31 ⊗ 1 + 1 ⊗ 𝑡31 + 𝑡2 ⊗ 𝑡1 + 𝑡1 ⊗ 𝑡2,
Δ𝑡32 = 𝑡32 ⊗ 1 + 1 ⊗ 𝑡32 + 2𝑡1 ⊗ 𝑡2 + 𝑡21 ⊗ 𝑡1,
Δ𝑡41 = 𝑡41 ⊗ 1 + 1 ⊗ 𝑡41 + 𝑡31 ⊗ 𝑡1 + 𝑡2 ⊗ 𝑡2 + 𝑡1 ⊗ 𝑡31,

Δ𝑡42 = 𝑡42 ⊗ 1 + 1 ⊗ 𝑡42 + 𝑡1 ⊗ 𝑡32 + 𝑡2 ⊗ 𝑡2 + 𝑡1 ⊗ 𝑡31 + 𝑡2𝑡1 ⊗ 𝑡1 + 𝑡21 ⊗ 𝑡2.
Δ𝑡43 = 𝑡43 ⊗ 1 + 1 ⊗ 𝑡43 + 3𝑡1 ⊗ 𝑡32 + 3𝑡21 ⊗ 𝑡2 + 𝑡31 ⊗ 𝑡1,
Δ𝑡44 = 𝑡44 ⊗ 1 + 1 ⊗ 𝑡44 + 𝑡32 ⊗ 𝑡1 + 2𝑡1 ⊗ 𝑡31 + 𝑡21 ⊗ 𝑡2. (2.10)

In this way, 𝐻𝑅 becomes a connected graded commutative Hopf algebra; clearly, it is not
cocommutative. In order to prove that this Δ is coassociative, we need only produce the appropriate
1-cocycle 𝐿 which raises the degree by 1. The linear operator 𝐿 – also known as 𝐵+ [30] – is
defined, on each product of trees, by sprouting a new common root.

Definition 2.3. Let 𝐿 : 𝐻𝑅 → 𝐻𝑅 be the linear map given by 𝐿 (1) := 𝑡1 and

𝐿 (𝑇1 . . . 𝑇𝑘 ) := 𝑇, (2.11)

where 𝑇 is the rooted tree obtained by conjuring up a new vertex as its root and extending edges
from this vertex to each root of 𝑇1, . . . , 𝑇𝑘 . Notice, in passing, that any tree 𝑇 with 𝑛 + 1 vertices
equals 𝐿 (𝑇1 · · ·𝑇𝑘 ), where 𝑇1, . . . , 𝑇𝑘 are the rooted trees, with 𝑛 vertices in all, formed by removing
every edge outgoing from the root of 𝑇 .

26



For instance,

𝐿

(
•

⋄
•

)
=

⋄
•

• •
and 𝐿

( ⋄
•

⋄
•

)
=

•
•

⋄
•
•
.

Checking the Hochschild equation (2.5) is a matter of bookkeeping: see [30, p. 229] or [52, p. 603],
for instance. Here, an illustration will suffice:

Δ

(
𝐿

(
•

⋄
•

))
= Δ

( ⋄
•

• •

)
=

⋄
•

• •
⊗ 1 + 1 ⊗

⋄
•

• •
+ •

⋄
• ⊗ ⋄ + 2 ⋄ ⊗

⋄
•
•
+ ⋄ ⋄ ⊗ ⋄

•

= 𝐿

(
•

⋄
•

)
⊗1 + (𝜄 ⊗ 𝐿)

(
1 ⊗ •

⋄
• + •

⋄
• ⊗ 1 + 2 ⋄ ⊗ ⋄

• + ⋄ ⋄ ⊗⋄
)

= 𝐿

(
•

⋄
•

)
⊗1 + (𝜄 ⊗ 𝐿)Δ

(
•

⋄
•

)
.

Finally, suppose that a pair (𝐻, ℓ) is given; we want to define a Hopf algebra morphism
𝜌 : 𝐻𝑅 → 𝐻 such that

𝜌(𝐿 (𝑎)) = ℓ(𝜌(𝑎)), (2.12)

where 𝑎 is a product of trees. Since 𝐿 (𝑎) may be any tree of degree #𝑎 + 1, we may regard this
as a recursive definition (on generators) of an algebra homomorphism, starting from 𝜌(1) := 1𝐻 .
The only thing to check is that it also yields a coalgebra homomorphism, which again reduces to an
induction on the degree of 𝑎:

Δ(𝜌(𝐿 (𝑎))) = Δ(ℓ(𝜌(𝑎))) = ℓ(𝜌(𝑎)) ⊗ 1 + (𝜄 ⊗ ℓ)Δ(𝜌(𝑎))
= ℓ(𝜌(𝑎)) ⊗ 1 + (𝜄 ⊗ ℓ) (𝜌 ⊗ 𝜌) (Δ𝑎)
= 𝜌(𝐿 (𝑎)) ⊗ 1 + (𝜌 ⊗ 𝜌) (𝜄 ⊗ 𝐿) (Δ𝑎)
= (𝜌 ⊗ 𝜌)

(
𝐿 (𝑎) ⊗ 1 + (𝜄 ⊗ 𝐿) (Δ𝑎)

)
= (𝜌 ⊗ 𝜌)Δ(𝐿 (𝑎)),

where in the third line, by using ℓ(𝜌(𝑎′:2)) = 𝜌(𝐿 (𝑎′:2)), we have implicitly relied on the property
(2.7) that the nontrivial components of the coproduct Δ𝑎 have lower degree than 𝑎.

▶ Since the Hopf algebra 𝐻𝑅 is commutative, we may look for a cocommutative Hopf algebra
in duality with it. Now, there is a structure theorem for connected graded cocommutative Hopf
algebras, arising from contributions of Hopf, Samelson, Leray, Borel, Cartier, Milnor, Moore and
Quillen,2 commonly known as the Milnor–Moore theorem, which states that such a Hopf algebra
𝐻 is necessarily isomorphic to U(g), with g being the Lie algebra of primitive elements of 𝐻.

This dual Hopf algebra is constructed as follows. Each rooted tree 𝑇 gives not only an algebra
generator for 𝐻𝑅, but also a derivation 𝑍𝑇 : 𝐻𝑅 → 𝔽 defined by

⟨𝑍𝑇 , 𝑇1 . . . 𝑇𝑘⟩ := 0 unless 𝑘 = 1 and 𝑇1 = 𝑇 ; ⟨𝑍𝑇 , 𝑇⟩ := 1.

Also, ⟨𝑍𝑇 , 1⟩ = 0 since 𝑍𝑇 ∈ Der𝜀 (𝐻) (Definition 1.6). Notice that the ideal generated by
products of two or more trees is (ker 𝜀)2, and any derivation 𝛿 vanishes there, since 𝛿(𝑎𝑏) =

2The historical record is murky; this list of contributors is due to P. Cartier.
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𝛿(𝑎)𝜀(𝑏) + 𝜀(𝑎)𝛿(𝑏) = 0 whenever 𝑎, 𝑏 ∈ ker 𝜀. Therefore, derivations are determined by their
values on the subspace 𝐻 (1)

𝑅
spanned by single trees – which equals 𝐿 (𝐻𝑅), by the way – and reduce

to linear forms on this subspace; thus Der𝜀 (𝐻) can be identified with the (algebraic) dual space
𝐻

(1)∗
𝑅

. We denote by h the linear subspace spanned by all the 𝑍𝑇 .
Let us compute the Lie bracket [𝑍𝑅, 𝑍𝑆] := (𝑍𝑅 ⊗ 𝑍𝑆 − 𝑍𝑆 ⊗ 𝑍𝑅)Δ of two such derivations.

Using (2.9) and ⟨𝑍𝑅, 1⟩ = ⟨𝑍𝑆, 1⟩ = 0, we get

⟨𝑍𝑅 ⊗ 𝑍𝑆,Δ𝑇⟩ =
∑︁
𝑐

⟨𝑍𝑅, 𝑃𝑐 (𝑇)⟩ ⟨𝑍𝑆, 𝑅𝑐 (𝑇)⟩,

where ⟨𝑍𝑅, 𝑃𝑐 (𝑇)⟩ = 0 unless 𝑃𝑐 (𝑇) = 𝑅 and ⟨𝑍𝑆, 𝑅𝑐 (𝑇)⟩ = 0 unless 𝑅𝑐 (𝑇) = 𝑆; in particular, the
sum ranges only over simple cuts which remove just one edge of 𝑇 . Let 𝑛(𝑅, 𝑆;𝑇) be the number
of one-edge cuts 𝑐 of 𝑇 such that 𝑃𝑐 (𝑇) = 𝑅 and 𝑅𝑐 (𝑇) = 𝑆; then

⟨[𝑍𝑅, 𝑍𝑆], 𝑇⟩ = ⟨𝑍𝑅 ⊗ 𝑍𝑆 − 𝑍𝑆 ⊗ 𝑍𝑅,Δ𝑇⟩ = 𝑛(𝑅, 𝑆;𝑇) − 𝑛(𝑆, 𝑅;𝑇),

and this expression vanishes altogether except for the finite number of trees𝑇 which can be produced
either by grafting 𝑅 on 𝑆 or by grafting 𝑆 on 𝑅. Evaluation of the derivation [𝑍𝑅, 𝑍𝑆] on a product
𝑇1 . . . 𝑇𝑘 of two or more trees gives zero, since each 𝑇𝑗 ∈ ker 𝜀. Therefore,

[𝑍𝑅, 𝑍𝑆] =
∑︁
𝑇

(
𝑛(𝑅, 𝑆;𝑇) − 𝑛(𝑆, 𝑅;𝑇)

)
𝑍𝑇 ,

which is a finite sum. In particular, [𝑍𝑅, 𝑍𝑆] ∈ h, and so h is a Lie subalgebra of Der𝜀 (𝐻). The
linear duality of 𝐻 (1)

𝑅
with h then extends to a duality between the graded Hopf algebras 𝐻𝑅 and

U(h).
It is possible to give a more concrete description of the Hopf algebra U(h) in terms of another

Hopf algebra of rooted trees 𝐻𝐺𝐿 , which is cocommutative rather than commutative. This structure
was introduced by Grossman and Larson [53] and is described in [52, §14.2]; here we mention
only that the multiplicative identity is the tree 𝑡1 and that the primitive elements are spanned by
those trees which have only one edge outgoing from the root. Panaite [79] has shown that h is
isomorphic to the Lie algebra of these primitive trees – by matching each 𝑍𝑇 to the tree 𝐿 (𝑇) – so
that U(h) ≃ 𝐻𝐺𝐿 .

In [30], another binary operation among the 𝑍𝑇 was introduced by setting

𝑍𝑅 ★ 𝑍𝑆 :=
∑︁
𝑇

𝑛(𝑅, 𝑆;𝑇) 𝑍𝑇 .

This is not the convolution (𝑍𝑅 ⊗ 𝑍𝑆)Δ, nor is it even associative, although it is obviously true that
𝑍𝑅★𝑍𝑆 − 𝑍𝑆★𝑍𝑅 = [𝑍𝑅, 𝑍𝑆]. This nonassociative bilinear operation satisfies the defining property
of a pre-Lie algebra [15]:

(𝑍𝑅 ★ 𝑍𝑆) ★ 𝑍𝑇 − 𝑍𝑅 ★ (𝑍𝑆 ★ 𝑍𝑇 ) = (𝑍𝑅 ★ 𝑍𝑇 ) ★ 𝑍𝑆 − 𝑍𝑅 ★ (𝑍𝑇 ★ 𝑍𝑆).

Indeed, both sides of this equation express the formation of new trees by grafting both 𝑆 and 𝑇 onto
the tree 𝑅. The combinatorics of this operation are discussed in [16], and several computations with
it are developed in [18] and [60].
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▶ The characters of 𝐻𝑅 form a group G(𝐻𝑅) (under convolution): see Definition 1.6. This group is
infinite-dimensional, and can be thought of as the set of grouplike elements in a suitable completion
of the Hopf algebra𝑈 = U(h). To see that, recall that𝑈 is a graded connected Hopf algebra; denote
by 𝑒 its counit. Then the sets (ker 𝑒)𝑚 =

∑
𝑘⩾𝑚 h𝑘 , for𝑚 = 1, 2, . . . , form a basis of neighbourhoods

of 0 for a vector space topology on 𝑈, and the grading properties (2.6) entail that all the Hopf
operations are continuous for this topology. (The basic neighbourhoods of 0 in 𝑈 ⊗ 𝑈 are the
powers of the ideal 1 ⊗ ker 𝑒 + ker 𝑒 ⊗ 1.) We can form the completion𝑈 of this topological vector
space, which is again a Hopf algebra since all the Hopf operations extend by continuity; an element
of𝑈 is a series

∑
𝑘⩾0 𝑧𝑘 with 𝑧𝑘 ∈ h𝑘 for each 𝑘 ∈ ℕ, since the partial sums form a Cauchy sequence

in𝑈. The closure of h within𝑈 is Der𝜀 (𝐻).
For example, consider the exponential given by 𝜑𝑇 := exp 𝑍𝑇 =

∑
𝑛⩾0(1/𝑛!) 𝑍𝑛

𝑇
; in any evalua-

tion
𝜑𝑇 (𝑇1 . . . 𝑇𝑘 ) =

∑︁
𝑛⩾0

1
𝑛!

⟨𝑍⊗𝑛
𝑇
,Δ𝑛−1(𝑇1 . . . 𝑇𝑘 )⟩,

the series has only finitely many nonzero terms. More generally, 𝜑 := exp 𝛿 ∈ 𝑈 makes sense for
each 𝛿 ∈ Der𝜀 (𝐻); and 𝜑 ∈ G(𝐻𝑅) since Δ𝜑 = exp(Δ𝛿) = exp(𝜀 ⊗ 𝛿 + 𝛿 ⊗ 𝜀) = 𝜑 ⊗ 𝜑 by continuity
of Δ. In fact, the exponential map is a bijection between Der𝜀 (𝐻) and G(𝐻𝑅), whose inverse is
provided by the logarithmic series log(1 − 𝑥) := −∑

𝑘⩾1 𝑥
𝑘/𝑘; for if 𝜇 is a character, the equation

𝜇 = exp(log 𝜇) holds in𝑈, and

Δ(log 𝜇) = Δ(log(𝜀 − (𝜀 − 𝜇)) = log(𝜀 ⊗ 𝜀 − Δ(𝜀 − 𝜇)) = log(𝜇 ⊗ 𝜇)
= log(𝜀 ⊗ 𝜇) + log(𝜇 ⊗ 𝜀) = 𝜀 ⊗ log 𝜇 + log 𝜇 ⊗ 𝜀,

so that log 𝜇 ∈ Der𝜀 (𝐻). See [55, Chap. X] or [56, Chap. XVI] for a careful discussion of the
exponential map. In view of this bijection, we can regard the commutative Hopf algebra 𝐻𝑅 as an
algebra of affine coordinates on the group G(𝐻𝑅), in the spirit of Tannaka–Kreı̆n duality.

▶ In any Hopf algebra, whether cocommutative or not, the determination of the primitive elements
plays an important part. If in any tree 𝑇 , the longest path from the root to a leaf contains 𝑘 edges,
then the coproduct Δ𝑇 is a sum of at least 𝑘 + 1 terms. In the applications to renormalization, 𝑇
represents a possibly divergent integration with 𝑘 nested subdivergences, while the primitive tree 𝑡1
corresponds to an integration without subdivergences. A primitive algebraic combination of trees
represents a collection of integrations where some of these divergences may cancel. For that reason
alone, it would be desirable to describe all the primitive elements of 𝐻𝑅 and then, as far as possible,
to rebuild 𝐻𝑅 from its primitives. This is a work in progress [12, 18, 46], which deserves a few
comments here.

To begin with, since 𝑡1 is primitive andΔ𝑡2 = 𝑡2⊗1+1⊗ 𝑡2+𝑡1⊗ 𝑡1, the combination 𝑝2 := 𝑡2− 1
2 𝑡

2
1

is also primitive. One can check that 𝑝3 := 𝑡31 − 𝑡1𝑡2 + 1
3 𝑡

3
1 is primitive, too.

For each 𝑘 = 1, 2, . . . , let 𝑡𝑘 denote the “stick” tree with 𝑘 − 1 edges and 𝑘 vertices in a vertical
progression. (In particular, 𝑡3 and 𝑡4 are the trees previously referred to as 𝑡31 and 𝑡41, respectively.)
A simple cut severs 𝑡𝑘 into two shorter sticks, and so

Δ𝑡𝑘 =
∑︁

0⩽𝑟⩽𝑘
𝑡𝑟 ⊗ 𝑡𝑘−𝑟 , (2.13)

with 𝑡0 := 1 by convention. Thus the sticks generate a cocommutative graded Hopf subalgebra 𝐻𝑙
of 𝐻𝑅.
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To find the primitives in 𝐻𝑙 , we follow the approach of [18]. Consider the formal power series
𝑔(𝑥) :=

∑
𝑘⩾0 𝑡𝑘𝑥

𝑘 whose coefficients are sticks. Then the equation (2.13) can be read as saying
that 𝑔(𝑥) is grouplike in 𝐻𝑙⟦𝑥⟧, that is, Δ𝑔(𝑥) = 𝑔(𝑥) ⊗ 𝑔(𝑥). If we can find a power series
𝑝(𝑥) =

∑
𝑟⩾1 𝑝𝑟𝑥

𝑟 , where each 𝑝𝑟 is homogeneous of degree 𝑟 in the grading of 𝐻𝑙 , such that
exp(𝑝(𝑥)) = 𝑔(𝑥), the corresponding equation will be Δ𝑝(𝑥) = 𝑝(𝑥) ⊗ 1 + 1 ⊗ 𝑝(𝑥); on comparing
coefficients of each 𝑥𝑟 , we see that each 𝑝𝑟 is primitive. The equation exp(𝑝(𝑥)) = 𝑔(𝑥) is solved as∑︁

𝑟⩾1
𝑝𝑟𝑥

𝑟 = log
(
1 +

∑︁
𝑘⩾1

𝑡𝑘𝑥
𝑘

)
,

by developing the Taylor series of log(1 + 𝑥). Since a monomial 𝑡𝑚1
1 𝑡

𝑚2
2 . . . 𝑡

𝑚𝑟
𝑟 has degree 𝑚1 +

2𝑚2 + · · · + 𝑟𝑚𝑟 , the general formula [46, Prop. 9.3] is quickly found to be

𝑝𝑟 =
∑︁

𝑚1+2𝑚2+···+𝑟𝑚𝑟=𝑟

(−1)𝑚1+···+𝑚𝑟+1 (𝑚1 + · · · + 𝑚𝑟 − 1)!
𝑚1! · · ·𝑚𝑟!

𝑡
𝑚1
1 · · · 𝑡𝑚𝑟

𝑟 ,

where the sum ranges over the partitions of the positive integer 𝑟.

▶ Nonstick primitives are more difficult to come by, but an algorithm which provides many of
them is found in [18], based on formal differential calculus. Indeed, this “differential” approach
can be extended, in principle, to deal efficiently with the more elaborate Hopf algebras of Feynman
diagrams discussed in the next subsection.

For each 𝑎 ∈ 𝐻𝑅, the expression

Π𝑎 :=
∑
𝑆(𝑎:1) 𝑑𝑎:2 (2.14)

where 𝑑 denotes an ordinary exterior derivative, may be regarded as a 1-form on 𝐺; it is a
straightforward generalization of the familiar (matrix-valued) 1-form 𝑔−1 𝑑𝑔 on a group manifold,
whose matrix elements are

∑
𝑗 (𝑔−1)𝑖 𝑗 𝑑𝑔 𝑗 𝑘 . We can treat such expressions algebraically, as a “first-

order differential calculus” on a Hopf algebra, in the sense of Woronowicz [112]. The commutativity
of 𝐻𝑅 shows that these 1-forms have the following derivation property:

Π𝑎𝑏 =
∑
𝑆(𝑎:1𝑏:1) 𝑑 (𝑎:2𝑏:2) =

∑
𝑆(𝑏:1)𝑆(𝑎:1)𝑎:2 𝑑𝑏:2 + 𝑆(𝑏:1)𝑏:2𝑆(𝑎:1) 𝑑𝑎:2 = 𝜀(𝑎) Π𝑏 +Π𝑎 𝜀(𝑏).

In particular, Π𝑎 = 0 for 𝑎 ∈ (ker 𝜀)2, so we need only consider Π𝑎 for 𝑎 ∈ 𝐻 (1)
𝑅

. Each Π𝑎 can be
thought of as a “left-invariant” 1-form, as follows.

Exercise 2.1. Let 𝐺 be a compact Lie group and let R(𝐺) be its Hopf algebra of representative
functions. If 𝐿𝑡 denotes left translation by 𝑡 ∈ 𝐺, then 𝐿∗𝑡 𝑓 (𝑥) = 𝑓 (𝑡−1𝑥) = Δ 𝑓 (𝑡−1, 𝑥) =∑
𝑓:1(𝑡−1) 𝑓:2(𝑥), so that 𝐿∗𝑡 𝑓 =

∑
𝑓:1(𝑡−1) 𝑓:2 for 𝑓 ∈ R(𝐺). Let Π 𝑓 be the smooth 1-form on 𝐺

defined by (2.14); prove that 𝐿∗𝑡Π 𝑓 = Π 𝑓 for all 𝑡 ∈ 𝐺. ♢

Each left-invariant 1-form (2.14) satisfies a “Maurer–Cartan equation”:

𝑑Π𝑎 = −∑
Π𝑎:1 ∧ Π𝑎:2 .

Indeed, since 0 = 𝑑 (𝜀(𝑎) 1) = ∑
𝑑 (𝑆(𝑎:1) 𝑎:2) =

∑
𝑑 (𝑆(𝑎:1)) 𝑎:2 + 𝑆(𝑎:1) 𝑑𝑎:2, we find that

𝑑 (𝑆(𝑎)) = ∑
𝑑 (𝑆(𝑎:1) 𝜀(𝑎:2)) =

∑
𝑑 (𝑆(𝑎:1)) 𝜀(𝑎:2) =

∑
𝑑 (𝑆(𝑎:1)) 𝑎:2 𝑆(𝑎:3)

= −∑
𝑆(𝑎:1) 𝑑𝑎:2 𝑆(𝑎:3),
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in analogy with 𝑑 (𝑔−1) = −𝑔−1 𝑑𝑔 𝑔−1. Therefore,

𝑑Π𝑎 =
∑
𝑑 (𝑆(𝑎:1)) ∧ 𝑑𝑎:2 = −∑

𝑆(𝑎:1) 𝑑𝑎:2 ∧ 𝑆(𝑎:3) 𝑑𝑎:4 = −∑
Π𝑎:1 ∧ Π𝑎:2 .

Suppose now that we are given some element 𝑎 ∈ 𝐻 (1)
𝑅

for which 𝑑Π𝑎 = 0. The bijectivity of
the exponential map for G(𝐻𝑅) suggests that this closed 1-form should be exact: Π𝑎 = 𝑑𝑏 for some
𝑏 ∈ 𝐻𝑅. It is clear from (2.14) that the equation Π𝑎 = 𝑑𝑏 can hold only if 𝑏 is primitive. Theorem 2
of [18] uses the Poincaré lemma technique to provide a formula for 𝑏, namely,

𝑏 := −Φ−1(𝑆(𝑎)),

where Φ is the operator which grades 𝐻𝑅 by the number of trees in a product: Φ(𝑇1 . . . 𝑇𝑘 ) :=
𝑘 𝑇1 . . . 𝑇𝑘 . Notice that 𝑏 = 𝑎 + 𝑐, where 𝑐 ∈ (ker 𝜀)2 is a sum of higher-degree terms.

Exercise 2.2. Show that 𝑎 = •
⋄

•
⋄
• +

⋄
•

• •
− 2

•
•

⋄
• satisfies 𝑑Π𝑎 = 0, and compute that

𝑏 = •
⋄

•
⋄
• +

⋄
•

• •
− 2

•
•

⋄
• − ⋄ •

⋄
• + ⋄

•
⋄
• .

Verify directly that 𝑏 is indeed primitive. ♢

It is still not a trivial matter to find linear combinations of trees satisfying 𝑑Π𝑎 = 0, but it clearly
is much easier to verify this property than to check primitivity directly on a case-by-case basis.

▶ Finally, we comment on the link between 𝐻𝑅 and the Hopf algebra 𝐻𝐶𝑀 of differential operators,
developed in [30]. This is found by extending 𝐻𝑅 to a larger (but no longer commutative) Hopf
algebra 𝐻𝑅. Since 𝐻𝑅 is graded by the number of vertices per tree, we regard the subspace 𝐻 (1)

𝑅
of

single trees as an abelian Lie algebra, and introduce an extra generator 𝑌 with the commutation rule

[𝑌,𝑇] := (#𝑇) 𝑇.

For each simple cut 𝑐 of 𝑇 , it is clear that #𝑃𝑐 (𝑇) + #𝑅𝑐 (𝑇) = #𝑇 ; a glance at (2.9) then shows that
Δ[𝑌,𝑇] = (#𝑇) Δ𝑇 = [𝑌 ⊗ 1 + 1 ⊗ 𝑌,Δ𝑇]. This forces 𝑌 to be primitive:

Δ𝑌 := 𝑌 ⊗ 1 + 1 ⊗ 𝑌, (2.15)

in order to get Δ[𝑌,𝑇] = [Δ𝑌,Δ𝑇] for consistency.
Another important operator on H𝑅 is the so-called natural growth of trees. We define 𝑁 (𝑇), for

each tree 𝑇 with vertices 𝑣1, . . . , 𝑣𝑛, by setting 𝑁 (𝑇) := 𝑇1 +𝑇2 + · · · +𝑇𝑛, where each 𝑇𝑗 is obtained
from 𝑇 by adding a leaf to 𝑣 𝑗 . For example,

𝑁
(
⋄
)

:=
⋄
• , 𝑁

( ⋄
•
)

:=
⋄
•
•
+ •

⋄
• ,

𝑁

( ⋄
•
•
+ •

⋄
•

)
:=

⋄
•
•
•

+ 3
•
•

⋄
• + •

⋄
•

⋄
• +

⋄
•

• •
.
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In symbols, we write these relations as

𝑁 (𝑡1) = 𝑡2, 𝑁2(𝑡1) = 𝑁 (𝑡2) = 𝑡31 + 𝑡32,

𝑁3(𝑡1) = 𝑁 (𝑡31 + 𝑡32) = 𝑡41 + 3𝑡42 + 𝑡43 + 𝑡44.

We rename these 𝛿1 := 𝑡1, 𝛿2 := 𝑁 (𝛿1), 𝛿3 := 𝑁2(𝛿1), 𝛿4 := 𝑁3(𝛿1), and in general 𝛿𝑛+1 := 𝑁𝑛 (𝛿1)
for any 𝑛. Notice that 𝛿𝑛+1 is a sum of 𝑛! trees.

𝑁 , defined on the algebra generators, extends uniquely to a derivation 𝑁 : 𝐻𝑅 → 𝐻𝑅. Now, we
can add one more generator 𝑋 with the commutation rule

[𝑋,𝑇] := 𝑁 (𝑇).

The Jacobi identity forces [𝑌, 𝑋] = 𝑋 , as follows:

[[𝑌, 𝑋], 𝑇] = [[𝑌,𝑇], 𝑋] + [𝑌, [𝑋,𝑇]] = (#𝑇) [𝑇, 𝑋] + [𝑌, 𝑁 (𝑇)]
= −(#𝑇) 𝑁 (𝑇) + (#𝑇 + 1) 𝑁 (𝑇) = 𝑁 (𝑇) = [𝑋,𝑇] .

What must the coproduct Δ𝑋 be? Proposition 3.6 of [30] – see also Proposition 14.6 of [52] –
proves that

Δ𝑁 (𝑇) = (𝑁 ⊗ 𝜄)Δ𝑇 + (𝜄 ⊗ 𝑁)Δ𝑇 + [𝛿1 ⊗ 𝑌,Δ𝑇] (2.16)

for each rooted tree 𝑇 . The argument is as follows: to get Δ𝑁 (𝑇), we grow an extra leaf on 𝑇
and then cut the resulting trees in every allowable way. If the new edge is not cut, then it belongs
either to a pruned branch or to the trunk which remains after a cut has been made on the original
tree 𝑇 ; this amounts to (𝑁 ⊗ 𝜄)Δ𝑇 + (𝜄 ⊗ 𝑁)Δ𝑇 . On the other hand, if the new edge is cut, the
new leaf contributes a solitary vertex 𝛿1 to 𝑃𝑐; the new leaf must have been attached to the trunk
𝑅𝑐 (𝑇) at any one of the latter’s vertices. Since (#𝑅𝑐)𝑅𝑐 = [𝑌, 𝑅𝑐], the terms wherein the new leaf
is cut amount to [𝛿1 ⊗ 𝑌,Δ𝑇]. The equation (2.16) accounts for both possibilities. Then, since
Δ[𝑋,𝑇] = [Δ𝑋,Δ𝑇] must hold, we get

Δ𝑋 = 𝑋 ⊗ 1 + 1 ⊗ 𝑋 + 𝛿1 ⊗ 𝑌 . (2.17)

Let 𝐻𝑅 be the algebra generated by 𝑋 , 𝑌 and 𝐻𝑅. We can extend the counit and antipode to it as
follows. Since 𝑌 is primitive, we must take 𝜀(𝑌 ) := 0 and 𝑆(𝑌 ) := −𝑌 . Then, on applying (𝜄 ⊗ 𝜀) to
(2.17), 𝜀(𝑋) := 0 follows; and by applying𝑚(𝜄⊗𝑆) or𝑚(𝑆⊗ 𝜄) to it, we also get 0 = 𝑋 +𝑆(𝑋) −𝛿1𝑌 ,
which forces 𝑆(𝑋) := −𝑋 + 𝛿1𝑌 .

Now (2.15) and (2.17) reproduce exactly the coproducts (1.24) for the differential operators
𝑌 and 𝑋 of the Hopf algebra 𝐻𝐶𝑀 . Indeed, since 𝛿1, like 𝜆1 ∈ 𝐻𝐶𝑀 , is primitive and since
𝛿𝑛+1 = 𝑁 (𝛿𝑛) = [𝑋, 𝛿𝑛], the correspondence 𝑋 ↦→ 𝑋 , 𝑌 ↦→ 𝑌 , 𝜆𝑛 ↦→ 𝛿𝑛 maps 𝐻𝐶𝑀 isomorphically
into 𝐻𝑅.

2.2 Hopf algebras of Feynman graphs and renormalization

In this subsection, we shall describe briefly some other Hopf algebras which underlie the structure
of a renormalizable quantum field theory. Rather than going into the details of perturbative
renormalization, we shall merely indicate how such Hopf algebras are involved.
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In a given QFT, one is faced with the problem of computing correlations (Green functions) from
a perturbative expansion whose terms are labelled by Feynman graphs Γ, and consist of multiple
integrals where the integrand is completely specified by the combinatorial structure of Γ (its vertices,
external and internal lines, and loops) according to a small number of Feynman rules. Typically, one
works in momentum space of 𝐷 dimensions, and a preliminary count of the powers of the momenta
in the integrand indicates, in many cases, a superficially divergent integral; even if the graph Γ itself
passes this test, it may contain subgraphs corresponding to superficially divergent integrals. The
main idea of renormalization theory is to associate a “counterterm” to each superficially divergent
subgraph, in order to obtain a finite result by subtraction.

The first step in approaching such calculations is to realize that all superficially divergent
subgraphs must be dealt with, in a recursive fashion, before finally assigning a finite value to the
full graph Γ. Thus, each graph Γ determines a nesting of divergent subgraphs: this nesting is
codified by a rooted tree, where the root represents the full graph, provided that the Γ does not
contain overlapping divergences. (Even if overlapping divergences do occur, one can replace the
single rooted tree by a sum over rooted trees after disentangling the overlaps: see [64] for a detailed
analysis.) A “leaf” is a divergent subgraph which itself contains no further subdivergences.

The combinatorial algebra is worked out in considerable detail in a recent article of Connes and
Kreimer [31]: the following remarks can be taken as an incentive for a closer look at that paper. See
also the survey of Kreimer [65] for a detailed discussion of the conceptual framework. The authors
of [31] consider 𝜙3 theory in 𝐷 = 6 dimensions; but one could equally well start with 𝜙4 theory for
𝐷 = 4 [49], or QED, or any other well-known theory.

Definition 2.4. Let Φ stand for any particular QFT. The Hopf algebra 𝐻Φ is a commutative algebra
generated by one-particle irreducible (1PI) graphs: that is, connected graphs with at least two
vertices which cannot be disconnected by removing a single line. The product is given by disjoint
union of graphs: Γ1Γ2 means Γ1 ⊎ Γ2. The counit is given by 𝜀(Γ) := 0 on any generator, with
𝜀(∅) := 1 (we assign the empty graph to the identity element). The coproduct Δ is given, on any
1PI graph Γ, by

ΔΓ := Γ ⊗ 1 + 1 ⊗ Γ +
∑︁

∅⊊𝛾⊊Γ
𝛾 ⊗ Γ/𝛾, (2.18)

where the sum ranges over all subgraphs which are divergent and proper (in the sense that removing
one internal line cannot increase the number of its connected components); 𝛾 may be either
connected or a disjoint union of several connected pieces. The notation Γ/𝛾 denotes the (connected,
1PI) graph obtained from Γ by replacing each component of 𝛾 by a single vertex.

To see that Δ is coassociative, we may reason as follows. We may replace the right hand side of
(2.18) by a single sum over ∅ ⊆ 𝛾 ⊆ Γ, allowing 𝛾 = ∅ or 𝛾 = Γ and setting Γ/Γ := 1. We observe
that if 𝛾 ⊆ 𝛾′ ⊆ Γ, then 𝛾′/𝛾 can be regarded as a subgraph of Γ/𝛾; moreover, it is obvious that

(Γ/𝛾)/(𝛾′/𝛾) ≃ Γ/𝛾′. (2.19)

The desired relation (Δ ⊗ 𝜄) (ΔΓ) = (𝜄 ⊗ Δ) (ΔΓ) can now be expressed as∑︁
∅⊆𝛾⊆𝛾′⊆Γ

𝛾 ⊗ 𝛾′/𝛾 ⊗ Γ/𝛾′ =
∑︁

∅⊆𝛾⊆Γ, ∅⊆𝛾′′⊆Γ/𝛾
𝛾 ⊗ 𝛾′′ ⊗ (Γ/𝛾)/𝛾′′,
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so coassociativity reduces to proving, for each subgraph 𝛾 of Γ, that∑︁
𝛾⊆𝛾′⊆Γ

𝛾′/𝛾 ⊗ Γ/𝛾′ =
∑︁

∅⊆𝛾′′⊆Γ/𝛾
𝛾′′ ⊗ (Γ/𝛾)/𝛾′′.

Choose 𝛾′ so that 𝛾 ⊆ 𝛾′ ⊆ Γ; then ∅ ⊆ 𝛾′/𝛾 ⊆ Γ/𝛾. Reciprocally, to every 𝛾′′ ⊆ Γ/𝛾 there
corresponds a unique 𝛾′ such that 𝛾 ⊆ 𝛾′ ⊆ Γ and 𝛾′/𝛾 = 𝛾′′; the previous equality now follows
from the identification (2.19).

We have now defined 𝐻Φ as a bialgebra. To make sure that it is a Hopf algebra, it suffices
to show that it is graded and connected, whereby the antipode comes for free. Several grading
operators Υ are available, which satisfy the two conditions (2.6):

Υ(Γ1Γ2) = Υ(Γ1) + Υ(Γ2) and Υ(𝛾) + Υ(Γ/𝛾) = Υ(Γ)

whenever 𝛾 is a divergent proper subgraph of Γ. One such grading is the loop number ℓ(Γ) :=
𝐼 (Γ) −𝑉 (Γ) + 1, if Γ has 𝐼 (Γ) internal lines and 𝑉 (Γ) vertices. If ℓ(Γ) = 0, then Γ would be a tree
graph, which is never 1PI; thus ker ℓ consists of scalars only, so 𝐻Φ is connected. The antipode is
now given recursively by (2.8):

𝑆(Γ) = −Γ +
∑︁

∅⊊𝛾⊊Γ
𝑆(𝛾) Γ/𝛾. (2.20)

As it stands, the Hopf algebra 𝐻Φ corresponds to a formal manipulation of graphs. It remains to
understand how to match these formulas to expressions for numerical values, whereby the antipode
𝑆 delivers the counterterms. This is done in two steps. First of all, the Feynman rules for the
unrenormalized theory can be thought of as prescribing a linear map

𝑓 : 𝐻Φ → A,

into some commutative algebraA, that is multiplicative on disjoint unions: 𝑓 (Γ1Γ2) = 𝑓 (Γ1) 𝑓 (Γ2).
In other words, 𝑓 is actually a homomorphism of algebras. For instance, A is often an algebra of
Laurent series in some (complex) regularization parameter 𝜀: in dimensional regularization, after
adjustment by a mass unit 𝜇 so that each 𝑓 (Γ) is dimensionless, one computes the corresponding
integral in dimension 𝑑 = 𝐷 + 𝜀, for 𝜀 ≠ 0. We shall also suppose that A is the direct sum of two
subalgebras:

A = A+ ⊕ A−.

Let 𝑇 : A → A− be the projection on the second subalgebra, with ker𝑇 = A+. When A is a
Laurent-series algebra, one takes A+ to be the holomorphic subalgebra of Taylor series and A− to
be the subalgebra of polynomials in 1/𝜀 without constant term; the projection 𝑇 picks out the pole
part, as in a minimal subtraction scheme. Now 𝑇 is not a homomorphism, but the property that both
its kernel and image are subalgebras is reflected in a “multiplicativity constraint”:

𝑇 (𝑎𝑏) + 𝑇 (𝑎) 𝑇 (𝑏) = 𝑇 (𝑇 (𝑎) 𝑏) + 𝑇 (𝑎 𝑇 (𝑏)) for all 𝑎, 𝑏 ∈ A. (2.21)

Exercise 2.3. Check (2.21) by examining the four cases 𝑎 ∈ A±, 𝑏 ∈ A± separately. ♢
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The second step is to invoke the renormalization scheme. It can now be summarized as follows.
If Γ is 1PI and is primitive (i.e., it has no subdivergences), we set

𝐶 (Γ) := −𝑇 ( 𝑓 (Γ)), and then 𝑅(Γ) := 𝑓 (Γ) + 𝐶 (Γ),

where 𝐶 (Γ) is the counterterm and 𝑅(Γ) is the desired finite value: in other words, for primitive
graphs one simply removes the pole part. Next, we may recursively define Bogoliubov’s 𝑅-operation
by setting

𝑅(Γ) := 𝑓 (Γ) +
∑︁

∅⊊𝛾⊊Γ
𝐶 (𝛾) 𝑓 (Γ/𝛾),

with the proviso that
𝐶 (𝛾1 . . . 𝛾𝑟) := 𝐶 (𝛾1) . . . 𝐶 (𝛾𝑟), (2.22)

whenever 𝛾 = 𝛾1 . . . 𝛾𝑟 is a disjoint union of several components. The final result is obtained by
removing the pole part of the previous expression: 𝐶 (Γ) := −𝑇 (𝑅(Γ)) and 𝑅(Γ) := 𝑅(Γ) + 𝐶 (Γ).
In summary,

𝐶 (Γ) := −𝑇
[
𝑓 (Γ) +

∑︁
∅⊊𝛾⊊Γ

𝐶 (𝛾) 𝑓 (Γ/𝛾)
]
, (2.23a)

𝑅(Γ) := 𝑓 (Γ) + 𝐶 (Γ) +
∑︁

∅⊊𝛾⊊Γ
𝐶 (𝛾) 𝑓 (Γ/𝛾). (2.23b)

The equation (2.23a) is what is meant by saying that “the antipode delivers the counterterm”:
one replaces 𝑆 in the calculation (2.20) by 𝐶 to obtain the right hand side, before projection with 𝑇 .
From the definition of the coproduct in 𝐻Φ, (2.23b) is a convolution in Hom(𝐻Φ,A), namely,
𝑅 = 𝐶 ∗ 𝑓 . To show that 𝑅 is multiplicative, it is enough to verify that the counterterm map
𝐶 is multiplicative, since the convolution of homomorphisms is a homomorphism because A is
commutative. In other words, we must check that (2.22) and (2.23a) are compatible.

This is easy to do by induction on the degree of the grading of 𝐻Φ. We shall use the modified
Sweedler notation of (2.7), to simplify the calculation. Starting from 𝐶 (1) := 1A, we define, for
𝑎 ∈ ker 𝜀,

𝐶 (𝑎) := −𝑇
[
𝑓 (𝑎) +∑

𝐶 (𝑎′:1) 𝑓 (𝑎
′
:2)

]
, (2.24)

assuming𝐶 (𝑏) to be already defined, and multiplicative, whenever 𝑏 has smaller degree than 𝑎. By
comparing the expansions of Δ(𝑎𝑏) and (Δ𝑎) (Δ𝑏), we see that∑(𝑎𝑏)′:1 ⊗ (𝑎𝑏)′:2 = 𝑎 ⊗ 𝑏 + 𝑏 ⊗ 𝑎 +∑

𝑎𝑏′:1 ⊗ 𝑏
′
:2 + 𝑏

′
:1 ⊗ 𝑎𝑏

′
:2

+ 𝑎′:1𝑏 ⊗ 𝑎
′
:2 + 𝑎

′
:1 ⊗ 𝑎

′
:2𝑏 + 𝑎

′
:1𝑏

′
:1 ⊗ 𝑎

′
:2𝑏

′
:2.

Using the multiplicativity constraint (2.21) and the definition 𝐶 (𝑎) := −𝑇 (𝑅(𝑎)), we get

𝐶 (𝑎)𝐶 (𝑏) = 𝑇
[
𝑅(𝑎)

]
𝑇
[
𝑅(𝑏)

]
= −𝑇

[
𝑅(𝑎) 𝑅(𝑏) + 𝐶 (𝑎) 𝑅(𝑏) + 𝑅(𝑎) 𝐶 (𝑏)

]
= −𝑇

[
𝑓 (𝑎) 𝑓 (𝑏) + 𝐶 (𝑎) 𝑓 (𝑏) + 𝑓 (𝑎)𝐶 (𝑏) +∑

𝐶 (𝑎)𝐶 (𝑏′:1) 𝑓 (𝑏
′
:2) + 𝑓 (𝑎)𝐶 (𝑏′:1) 𝑓 (𝑏

′
:2)

+∑
𝐶 (𝑎′:1) 𝑓 (𝑎

′
:2)𝐶 (𝑏) + 𝐶 (𝑎

′
:1) 𝑓 (𝑎

′
:2) 𝑓 (𝑏) + 𝐶 (𝑎

′
:1) 𝑓 (𝑎

′
:2)𝐶 (𝑏

′
:1) 𝑓 (𝑏

′
:2)

]
= −𝑇

[
𝑓 (𝑎) 𝑓 (𝑏) + 𝐶 (𝑎) 𝑓 (𝑏) + 𝐶 (𝑏) 𝑓 (𝑎) +∑

𝐶 (𝑎𝑏′:1) 𝑓 (𝑏
′
:2) + 𝐶 (𝑏

′
:1) 𝑓 (𝑎𝑏

′
:2)

+∑
𝐶 (𝑎′:1𝑏) 𝑓 (𝑎

′
:2) + 𝐶 (𝑎

′
:1) 𝑓 (𝑎

′
:2𝑏) + 𝐶 (𝑎

′
:1𝑏

′
:1) 𝑓 (𝑎

′
:2𝑏

′
:2)

]
= −𝑇

[
𝑓 (𝑎𝑏) +∑

𝐶 ((𝑎𝑏)′:1) 𝑓 ((𝑎𝑏)
′
:2)

]
= 𝐶 (𝑎𝑏),
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where, in the penultimate line, we have used the assumed multiplicativity of 𝐶 in lower degrees.

▶ The decomposition 𝑅 = 𝐶 ∗ 𝑓 has a further consequence. Assume that the unrenormalized
integrals, although divergent at 𝜀 = 0, make sense on the circle 𝑆 in the complex plane where
|𝜀 | = |𝑑 − 𝐷 | = 𝑟0, say. Evaluation at any 𝑑 = 𝑧 defines a character 𝜒𝑧 : A → ℂ of the Laurent-
series algebra. Composing this character with 𝑓 : 𝐻Φ → A gives a loop of characters of 𝐻Φ:

𝛾(𝑧) := 𝜒𝑧 ◦ 𝑓 , for any 𝑧 ∈ 𝑆.

Likewise, 𝛾−(𝑧) := 𝜒𝑧 ◦ 𝐶 and 𝛾+(𝑧) := 𝜒𝑧 ◦ 𝑅 define characters of 𝐻Φ – here is where we use the
multiplicativity of 𝐶 and 𝑅 – and 𝑅 = 𝐶 ∗ 𝑓 entails 𝛾+(𝑧) = 𝛾−(𝑧)𝛾(𝑧), or equivalently,

𝛾(𝑧) = 𝛾−(𝑧)−1 𝛾+(𝑧), for all 𝑧 ∈ 𝑆. (2.25)

The properties of the subalgebras A+ and A− show that 𝛾+(𝑧) extends holomorphically to the disc
|𝑧−𝐷 | < 𝑟0, while 𝛾−(𝑧) extends holomorphically to the outer region |𝑧−𝐷 | > 𝑟0 with 𝛾−(∞) being
finite. Since a function holomorphic on both regions must be constant (Liouville’s theorem), we
can normalize the factorization (2.25) just by setting 𝛾−(∞) := 1. The renormalization procedure
thus corresponds to replacing the loop { 𝛾(𝑧) : 𝑧 ∈ 𝑆 } by the finite evaluation 𝛾+(𝐷).

The decomposition (2.25) of a group-valued loop is known as the Birkhoff factorization, and
arises in the study of linear systems of differential equations

𝑦′(𝑧) = 𝐴(𝑧) 𝑦(𝑧),

where 𝐴(𝑧) is a meromorphic 𝑛×𝑛matrix-valued function with simple poles. The solution involves
constructing a loop around one of these poles 𝑧0 with values in the Lie group GL(𝑛,ℂ). We refer
to [82, Chap. 8] for an instructive discussion of this problem. Any such loop factorizes as follows:

𝛾(𝑧) = 𝛾−(𝑧)−1 𝜆(𝑧) 𝛾+(𝑧),

where 𝛾+(𝑧) is holomorphic for |𝑧− 𝑧0 | < 𝑟0, 𝛾−(𝑧) is holomorphic for |𝑧− 𝑧0 | > 𝑟0 with 𝛾−(∞) = 1,
and { 𝜆(𝑧) : |𝑧 − 𝑧0 | = 𝑟0 } is a loop with values in the 𝑛-torus of diagonal matrices. The loop 𝜆
provides clutching functions for 𝑛 line bundles over the Riemann sphere, and these are obstructions
to the solvability of the differential system. However, in our context, the Lie group GL(𝑛,ℂ)
is replaced by the topologically trivial group G(𝐻Φ), so that the loop 𝜆 becomes trivial and the
decomposition (2.25) goes through as stated, thereby providing a general recipe for computing finite
values in renormalizable theories.

3 Cyclic Cohomology
3.1 Hochschild and cyclic cohomology of algebras

We have already discussed briefly, in subsection 2.1, the Hochschild cohomology of associative
algebras. Recall that a Hochschild 𝑛-cochain, for an algebra over the complex field, is a multilinear
map 𝜑 : A𝑛+1 → ℂ, with the coboundary map given by (2.3). These 𝑛-cochains make up an
A-bimodule 𝐶𝑛 = 𝐶𝑛 (A,A∗); the 𝑛-cocycles 𝑍𝑛 = { 𝜑 ∈ 𝐶𝑛 : 𝑏𝜑 = 0 } and the 𝑛-coboundaries
𝐵𝑛 = { 𝑏𝜓 : 𝜓 ∈ 𝐶𝑛−1 } conspire to form the Hochschild cohomology module 𝐻𝐻𝑛 (A) := 𝑍𝑛/𝐵𝑛.
A 0-cocycle 𝜏 is a trace on A, since 𝜏(𝑎0𝑎1) − 𝜏(𝑎1𝑎0) = 𝑏𝜏(𝑎0, 𝑎1) = 0.

36



In the commutative case, when A = 𝐶∞(𝑀) is an algebra of smooth functions on a manifold 𝑀
(we take A unital and 𝑀 compact, as before), there is a theorem of Connes [21], which dualizes an
older result in algebraic geometry due to Hochschild, Kostant and Rosenberg [57], to the effect that
Hochschild classes for 𝐶∞(𝑀) correspond exactly to de Rham currents on 𝑀 . (Currents are the
objects which are dual to differential forms, and can be thought of as formal linear combinations
of domains for line and surface integrals within 𝑀 .) The correspondence [𝜑] ↦→ 𝐶𝜑 is given by
skewsymmetrization of 𝜑 in all arguments but the first:∫

𝐶𝜑

𝑎0 𝑑𝑎1 ∧ · · · ∧ 𝑑𝑎𝑘 :=
1
𝑘!

∑︁
𝜋∈𝑆𝑘

(−1)𝜋 𝜑(𝑎0, 𝑎𝜋(1) , . . . , 𝑎𝜋(𝑘)).

Dually, Hochschild homology classes on 𝐶∞(𝑀) correspond to differential forms on 𝑀; that is,
𝐻𝐻𝑘 (𝐶∞(𝑀)) ≃ A𝑘 (𝑀) for 𝑘 = 0, 1, . . . , dim𝑀 .

On the de Rham side, the vector spaces D𝑘 (𝑀) of currents of dimension 𝑘 form a complex,
but with zero maps between them, so that each Hochschild class [𝜑] matches with a single current
𝐶𝜑 rather than with its homology class. To deal with the homology classes, we must bring in an
algebraic expression for the de Rham boundary. This turns out to be a degree-lowering operation
on Hochschild cochains: if 𝜓 ∈ 𝐶𝑘 , then 𝐵𝜓 ∈ 𝐶𝑘−1, given by

𝐵𝜓(𝑎0, . . . , 𝑎𝑘−1) :=
𝑘−1∑︁
𝑗=0

(−1) 𝑗 (𝑘−1)𝜓(1, 𝑎 𝑗 , . . . , 𝑎𝑘−1, 𝑎0, . . . , 𝑎 𝑗−1)

+ (−1) ( 𝑗−1) (𝑘−1)𝜓(𝑎 𝑗 , . . . , 𝑎𝑘−1, 𝑎0, . . . , 𝑎 𝑗−1, 1), (3.1)

does the job. Indeed, if 𝐶 is a 𝑘-current and 𝜑𝐶 is the (already skewsymmetric) cochain

𝜑𝐶 (𝑎0, 𝑎1, . . . , 𝑎𝑘 ) :=
∫
𝐶

𝑎0 𝑑𝑎1 ∧ · · · ∧ 𝑑𝑎𝑘 ,

then 𝜑𝐶 (𝑎0, . . . , 𝑎𝑘−1, 1) = 0, and therefore

𝐵𝜑𝐶 (𝑎0, . . . , 𝑎𝑘−1) =
𝑘−1∑︁
𝑗=0

(−1) 𝑗 (𝑘−1)
∫
𝐶

𝑑𝑎 𝑗 ∧ · · · ∧ 𝑑𝑎𝑘−1 ∧ 𝑑𝑎0 ∧ · · · ∧ 𝑑𝑎 𝑗−1

=

𝑘−1∑︁
𝑗=0

∫
𝐶

𝑑𝑎0 ∧ · · · ∧ 𝑑𝑎𝑘−1 = 𝑘

∫
𝜕𝐶

𝑎0 𝑑𝑎1 ∧ · · · ∧ 𝑑𝑎𝑘−1,

by using Stokes’ theorem; thus 𝐵𝜑𝐶 = 𝑘 𝜑𝜕𝐶 . Up to the normalization factor 𝑘 = deg𝐶, the
algebraic operator 𝐵 delivers the de Rham boundary. Thus, the algebraic picture for de Rham
homology involves a cohomology of algebras which uses both 𝑏 and 𝐵.

▶ Dually, the Hochschild homology of algebras supports a degree-raising operator, also called 𝐵,
which is closely related related to the de Rham coboundary (that is, the exterior derivative). Indeed,
if we use the version of Hochschild homology where the chains belong to the universal graded
differential algebra Ω•A, with 𝑏 given by (2.1), then 𝐵 : Ω𝑘A → Ω𝑘+1A is given simply by

𝐵(𝑎0 𝑑𝑎1 · · · 𝑑𝑎𝑘 ) :=
𝑘∑︁
𝑗=0

(−1)𝑘 𝑗𝑑𝑎 𝑗 · · · 𝑑𝑎𝑘 𝑑𝑎0 · · · 𝑑𝑎 𝑗−1. (3.2)
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which mimics the operation 𝜔 ↦→ 𝑘 𝑑𝜔 on differential 𝑘-forms. In the manifold case, the various
𝑑𝑎 𝑗 anticommute, but for more general algebras they do not, so the cyclic summation in (3.2) is
unavoidable. From the formula, it is obvious that 𝐵2 = 0. One checks easily that 𝑏𝐵 + 𝐵𝑏 = 0, too.

Exercise 3.1. If 𝑒 ∈ A is an idempotent element, that is, 𝑒2 = 𝑒, and 𝑘 is even, check that

𝑏(𝑒 (𝑑𝑒)𝑘 ) = 𝑒 (𝑑𝑒)𝑘−1, 𝑏((𝑑𝑒)𝑘 ) = (2𝑒 − 1) (𝑑𝑒)𝑘−1,

𝐵(𝑒 (𝑑𝑒)𝑘 ) = (𝑘 + 1) (𝑑𝑒)𝑘+1, 𝐵((𝑑𝑒)𝑘 ) = 0.

If 𝑘 is odd, show that instead,

𝑏(𝑒(𝑑𝑒)𝑘 ) = 𝑏((𝑑𝑒)𝑘 ) = 0 and 𝐵(𝑒(𝑑𝑒)𝑘 ) = 𝐵((𝑑𝑒)𝑘 ) = 0. ♢

Moving back to cohomology, one can check that 𝑏2 = 0, 𝐵2 = 0, and 𝑏𝐵 + 𝐵𝑏 = 0 hold there,
too. This gives rise to a bicomplex:

...
...

...
...

𝐶3 𝐶2 𝐶1 𝐶0

𝐶2 𝐶1 𝐶0

𝐶1 𝐶0

𝐶0

𝑏

𝐵

𝑏

𝐵

𝑏

𝐵

𝑏

𝑏

𝐵

𝑏

𝐵

𝑏

𝑏

𝐵

𝑏

𝑏

Folding this up along the diagonals, we get a “total complex” whose coboundary operator is 𝑏 + 𝐵,
and whose module in degree 𝑛 is

𝐶𝑛 ⊕ 𝐶𝑛−2 ⊕ 𝐶𝑛−4 ⊕ · · · ⊕ 𝐶#𝑛,

where #𝑛 = 0 or 1 according as 𝑛 is even or odd. The cohomology of this total complex is, by
definition, the cyclic cohomology 𝐻𝐶•(A) of the algebra A. (The letters 𝐻𝐶 stand for “homologie
cyclique”: on replacing𝐶𝑘 byΩ𝑘 (A) and running all the arrows backwards, we get a dual bicomplex;
the homology 𝐻𝐶•(A) of its total complex is the cyclic homology of A.)

▶ There is an alternative description of cyclic cohomology, which in some ways is simpler. Let 𝜏
be the operation of cyclic permutation of the arguments of a Hochschild cochain:

𝜏𝜑(𝑎0, . . . , 𝑎𝑛) := 𝜑(𝑎𝑛, 𝑎0, . . . , 𝑎𝑛−1). (3.3)

We say that 𝜑 is cyclic if 𝜏𝜑 = (−1)𝑛𝜑 – notice that (−1)𝑛 is the sign of this cyclic permutation – and
denote the subspace of cyclic 𝑛-cochains by 𝐶𝑛

𝜆
= 𝐶𝑛

𝜆
(A) (the notation 𝜆 = (−1)𝑛𝜏 is often used).
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If 𝑍𝑛
𝜆
(A) and 𝐵𝑛

𝜆
(A) are the respective cyclic 𝑛-cocycles and cyclic 𝑛-coboundaries, an exercise in

homological algebra shows that 𝐻𝐶𝑛 (A) ≃ 𝑍𝑛
𝜆
(A)/𝐵𝑛

𝜆
(A).

Let us compute 𝐻𝐶•(A) for a simple example: the algebra A = ℂ, which is the coor-
dinate algebra of a single point. The module ℂ𝑛 is one-dimensional, since 𝜑(𝑎0, . . . , 𝑎𝑛) =

𝑎0 · · · 𝑎𝑛𝜑(1, 1, . . . , 1); it has a basis element 𝜑𝑛 determined by 𝜑𝑛 (1, 1, . . . , 1) := 1. Clearly,
𝑏𝜑𝑛 =

∑𝑛+1
𝑗=0(−1) 𝑗𝜑𝑛+1 = 0 or 𝜑𝑛+1, according as 𝑛 is even or odd. We also find that 𝐵𝜑𝑛 = 0

or 2𝑛𝜑𝑛−1, according as 𝑛 is even or odd. The total complex is of the form

ℂ
0−→ℂ

𝑑1−→ℂ2 0−→ℂ2 𝑑2−→ℂ3 0−→ℂ3 𝑑3−→ · · ·

each 𝑑 𝑗 being injective with range of codimension 1; for instance, 𝑑2(𝜑3, 𝜑1) = (𝜑4, 7𝜑2, 2𝜑0). The
alternative approach, using cyclic 𝑛-cocycles, argues more simply that 𝜏𝜑𝑛 = 𝜑𝑛, so that 𝑍𝑛

𝜆
(ℂ) = ℂ

or 0 according as 𝑛 is even or odd, while 𝐵𝑛
𝜆
(ℂ) = 0 for all 𝑛. Either way, 𝐻𝐶𝑛 (ℂ) = ℂ if 𝑛 is even,

and 𝐻𝐶𝑛 (ℂ) = 0 if 𝑛 is odd.
This periodicity might seem surprising: the de Rham cohomology of a one-point space is ℂ

in degree zero, and 0 in all higher degrees. Now we may notice that there is an obvious “shifting
operation” 𝑆 on the bicomplex, moving all modules right and up by one step (and pushing the total
complex along by two steps); it leaves behind the first column, which is just the Hochschild complex
of A. At the level of cohomology, we get a pair of maps

𝐻𝐶𝑛−2(A) 𝑆−→𝐻𝐶𝑛 (A) 𝐼−→𝐻𝐻𝑛 (A),

which actually splice together into a long exact sequence:

· · · −→𝐻𝐶𝑛 (A) 𝐼−→𝐻𝐻𝑛 (A) 𝐵−→𝐻𝐶𝑛−1(A) 𝑆−→𝐻𝐶𝑛+1(A) 𝐼−→𝐻𝐻𝑛+1(A) −→ · · ·

whose connecting homomorphism comes from the aforementioned 𝐵 at the level of cochains. The
detailed calculations which back up these plausible statements are long and tedious; they are given
in [68, Chap. 2] for cyclic homology, and in [52, §10.1] is the cohomological setting. The upshot
is that, by iterating the periodicity operator 𝑆, one can compute two direct limits, which capture the
main algebraic invariants of A.

Definition 3.1. The periodicity maps 𝑆 : 𝐻𝐶𝑛 → 𝐻𝐶𝑛+2 define two directed systems of abelian
groups; their inductive limits

𝐻𝑃0(A) := lim−−→𝐻𝐶2𝑘 (A), 𝐻𝑃1(A) := lim−−→𝐻𝐶2𝑘+1(A),

are called the even and odd periodic cyclic cohomology groups of the algebra A. In particular,
𝐻𝑃0(ℂ) = ℂ and 𝐻𝑃1(ℂ) = 0.

In the commutative case A = 𝐶∞(𝑀), it turns out that 𝐻𝐶•(A) does not quite capture the
de Rham homology of 𝑀 . The exact result – see [24, Thm. III.2.2] or [52, Thm. 10.5] – is

𝐻𝐶𝑘 (𝐶∞(𝑀)) ≃ 𝑍dR
𝑘 (𝑀) ⊕ 𝐻dR

𝑘−2(𝑀) ⊕ 𝐻dR
𝑘−4(𝑀) ⊕ · · · ⊕ 𝐻dR

#𝑘 (𝑀),

where 𝑍dR
𝑘
(𝑀) is the vector space of closed 𝑘-currents on 𝑀 , 𝐻dR

𝑟 (𝑀) is the 𝑟th de Rham homology
group of 𝑀 , and #𝑘 = 0 or 1 according as 𝑘 is even or odd. However, one may use 𝑆 to promote
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the closed 𝑘-currents, two degrees at a time, until the full de Rham homology is obtained, since
𝑍dR
𝑘
(𝑀) = 0 for 𝑘 > dim𝑀; then we get de Rham homology exactly, albeit rolled up into even and

odd degrees:
𝐻𝑃0(𝐶∞(𝑀)) ≃ 𝐻dR

even(𝑀), 𝐻𝑃1(𝐶∞(𝑀)) ≃ 𝐻dR
odd(𝑀).

There is also a dual result, which matches a periodic variant of the cyclic homology of𝐶∞(𝑀) with
the even/odd de Rham cohomology of 𝑀 .

▶ The importance of this algebraic scheme for de Rham co/homology is that it provides many
Chern characters, even for highly noncommutative algebras. Generally speaking, Chern characters
are tools to compute algebraic invariants from the more formidable 𝐾-theory and 𝐾-homology of
algebras. The idea is to associate, to any pair of classes [𝑥] ∈ 𝐾•(A) and [𝐷] ∈ 𝐾•(A) another pair
of classes ch• 𝑥 ∈ 𝐻𝐶•(A) and ch• 𝐷 ∈ 𝐻𝐶•(A), given by explicit and manageable formulas, so
that the index pairing ⟨[𝑥], [𝐷]⟩ can be computed from a cyclic co/homology pairing ⟨ch• 𝑥, ch• 𝐷⟩,
which is usually more tractable. We look at the 𝐾-theory version first, and distinguish the even and
odd cases.

Suppose first that 𝑒 = 𝑒2 is an idempotent in A, representing a class [𝑒] ∈ 𝐾0(A); we define
ch 𝑒 :=

∑∞
𝑘=0 ch𝑘 𝑒 ∈ ΩevenA, where the component chains are

ch𝑘 𝑒 := (−1)𝑘 (2𝑘)!
𝑘!

(𝑒 − 1
2 ) (𝑑𝑒)

2𝑘 ∈ Ω2𝑘A,

It follows from Exercise 3.1 that (𝑏 + 𝐵) (ch 𝑒) = 0. Next, if 𝑢 ∈ A is invertible, representing a class
[𝑢] ∈ 𝐾1(A); we define ch 𝑢 :=

∑∞
𝑘=0 ch𝑘+ 1

2
𝑢 ∈ ΩoddA, with components

ch𝑘+ 1
2
𝑢 := (−1)𝑘 𝑘! 𝑢−1 𝑑𝑢 (𝑑 (𝑢−1) 𝑑𝑢)𝑘 = 𝑘! (𝑢−1 𝑑𝑢)2𝑘+1 ∈ Ω2𝑘+1A.

Again, one checks that (𝑏 + 𝐵) (ch 𝑢) = 0. Actually, it is fairly rare that 𝐾-theory classes arise from
idempotents or invertibles in the original algebra A; more often, 𝑒 and 𝑢 belong to 𝑀𝑟 (A), the
algebra of 𝑟 × 𝑟 matrices with entries in A, for some 𝑟 = 1, 2, 3, . . . ; so in the definitions we must
insert a trace over these matrix elements; the previous equations must be modified to

ch𝑘 𝑒 := (−1)𝑘 (2𝑘)!
𝑘!

tr
(
(𝑒 − 1

2 ) (𝑑𝑒)
2𝑘 ) ∈ Ω2𝑘A, (3.4a)

ch𝑘+ 1
2
𝑢 := 𝑘! tr(𝑢−1 𝑑𝑢)2𝑘+1 ∈ Ω2𝑘+1A. (3.4b)

For instance, tr(𝑒 𝑑𝑒 𝑑𝑒) = ∑
𝑒𝑖 𝑗 𝑑𝑒 𝑗 𝑘 𝑑𝑒𝑘𝑖. The pairing of, say, the 2-chain ch1 𝑒 and a 2-cochain 𝜑

is given by
⟨𝜑, ch1 𝑒⟩ = −2

∑
𝜑(𝑒𝑖 𝑗 − 1

2𝛿𝑖 𝑗 , 𝑒 𝑗 𝑘 , 𝑒𝑘𝑖).

▶ The Chern character from 𝐾-homology to cyclic cohomology is trickier to define. First of all,
what is a 𝐾-cycle over the algebra A? It turns out that it is just a spectral triple (A,H, 𝐷), of
Definition 1.1: an even spectral triple is a 𝐾0-cycle, an odd spectral triple is a 𝐾1-cycle. The
unboundedness of the selfadjoint operator 𝐷 may cause trouble, but one can always replace 𝐷
(using the homotopy 𝐷 ↦→ 𝐷 |𝐷 |−𝑡 for 0 ⩽ 𝑡 ⩽ 1) with its sign operator 𝐹 := 𝐷 |𝐷 |−1, which is
a symmetry, that is, a bounded selfadjoint operator such that 𝐹2 = 1. The compactness of |𝐷 |−1

translates to the condition that [𝐹, 𝑎] be compact for each 𝑎 ∈ A; in the even case, 𝐹 anticommutes
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with the grading operator 𝜒, just like 𝐷 does. The triple (A,H, 𝐹), satisfying these conditions, is
called a Fredholm module; it represents the same 𝐾-homology class as the spectral triple (A,H, 𝐷).

Although 𝐹 is bounded, it is analytically a much more singular object than 𝐷, as a general rule.
For instance, if 𝐷 = (2𝜋𝑖)−1 𝑑/𝑑𝜃 is the Dirac operator on the unit circle 𝕊1, one finds that 𝐹 is
given by a principal-value integral:

𝐹ℎ(𝛼) = P
∫ 1

0
𝑖 ℎ(𝛼 − 𝜃) cot 𝜋𝜃 𝑑𝜃,

which is a trigonometric version of the Hilbert transform on 𝐿2(ℝ),

𝐹ℎ(𝑥) = 𝑖

𝜋
P
∫

ℎ(𝑥 − 𝑡)
𝑡

𝑑𝑡 :=
𝑖

𝜋
lim
𝜀↓0

∫
|𝑡 |>𝜀

ℎ(𝑥 − 𝑡)
𝑡

𝑑𝑡.

This can be seen by writing both operators in a Fourier basis for H = 𝐿2(𝕊1):

𝐷 (𝑒2𝜋𝑖𝑘𝜃) = 𝑘 𝑒2𝜋𝑖𝑘𝜃 , 𝐹 (𝑒2𝜋𝑖𝑘𝜃) = (sign 𝑘) 𝑒2𝜋𝑖𝑘𝜃 ,

with the convention that sign 0 = 1. This analytic intricacy of 𝐹 must be borne in mind when
regarding the formula for the Chern character of its 𝐾-homology class, which is given by the cyclic
𝑛-cocycle

𝜏𝑛𝐹 (𝑎0, . . . , 𝑎𝑛) :=
Γ( 𝑛2 + 1)

2 𝑛!
Tr
(
𝜒𝐹 [𝐹, 𝑎0] . . . [𝐹, 𝑎𝑛]

)
, (3.5)

provided 𝑛 is large enough that the operator in parentheses is trace-class. (The Fredholm module is
said to be “finitely summable” if this is true for a large enough 𝑛.) One can always replace 𝑛 by 𝑛+2,
because it turns out that 𝑆𝜏𝑛

𝐹
and 𝜏𝑛+2

𝐹
are cohomologous, so that the Chern character is well-defined

as a periodic class. Much effort has gone into finding more tractable “local index formulas” for this
Chern character, in terms of more easily computable cocycles: see [34] or [5].

▶ An important example of a cyclic 1-cocycle – historically one of the first to appear in the
literature [1, 2] – is the Schwinger term of a 1 + 1-dimensional QFT. In that context, there is a
fairly straightforward “second quantization” in Fock space: we recall here only a few aspects of the
formalism. In “first quantization”, one starts with a real vector space 𝑉 of solutions of a Dirac-type
equation (𝑖 𝜕/𝜕𝑡 − 𝐷)𝜓 = 0, together with a symmetric bilinear form 𝑔 making it a real Hilbert
space. If 𝐸+ and 𝐸− denote the orthogonal projectors on the subspaces of positive- and negative-
frequency solutions, respectively, the sign operator is 𝐹 := 𝐸+ − 𝐸−; moreover, 𝐽 := 𝑖𝐹 = 𝑖𝐸+ − 𝑖𝐸−
is an orthogonal complex structure on 𝑉 (in other words, 𝐽2 = −1), which can be used to make 𝑉
into a complex Hilbert space 𝑉𝐽 with the scalar product

⟨𝑢 | 𝑣⟩𝐽 := 𝑔(𝑢, 𝑣) + 𝑖𝑔(𝐽𝑢, 𝑣).

(In examples representing charged fields, 𝑉 is already a complex Hilbert space with an “original”
complex structure 𝑄 = 𝑖; the construction of the new Hilbert space with complex structure 𝐽
is equivalent to “filling up the Dirac sea”, and 𝑄 is the charge, a generator of global gauge
transformations.)

The fermion Fock space F𝐽 (𝑉) is simply the exterior algebra over 𝑉𝐽 ; the scalars in Λ0𝑉 are the
multiples of the vacuum vector |0⟩. If {𝑢 𝑗 } is an orthonormal basis for 𝑉𝐽 , there are corresponding
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creation and annihiliation operators on F𝐽 (𝑉):
𝑎
†
𝑖
(𝑢1 ∧ · · · ∧ 𝑢𝑘 ) := 𝑢𝑖 ∧ 𝑢1 ∧ · · · ∧ 𝑢𝑘 ,

𝑎𝑖 (𝑢1 ∧ · · · ∧ 𝑢𝑘 ) :=
𝑘∑︁
𝑗=1

(−1) 𝑗−1⟨𝑢𝑖 | 𝑢 𝑗 ⟩𝐽 𝑢1 ∧ · · · ∧ 𝑢 𝑗 ∧ · · · ∧ 𝑢𝑘 .

Any real-linear operator 𝐵 on 𝑉 can be written as 𝐵 = 𝐵+ + 𝐵− where 𝐵+ := 1
2 (𝐵 − 𝐽𝐵𝐽) gives

a complex-linear operator on 𝑉𝐽 because it commutes with 𝐽, but 𝐵− := 1
2 (𝐵 + 𝐽𝐵𝐽) is antilinear:

𝐽𝐵− = −𝐵−𝐽. A skewsymmetric operator 𝐵 is quantizable, by a result of Shale and Stinespring [96],
if and only if [𝐽, 𝐵] = 2𝐽𝐵− is Hilbert–Schmidt operator, and the second-quantization rule is
𝐵 ↦→ ¤𝜇(𝐵), where ¤𝜇(𝐵) is the following operator on Fock space:

¤𝜇(𝐵) :=
1
2

∑︁
𝑘,𝑙

⟨𝑢𝑘 | 𝐵−𝑢𝑙⟩𝐽 𝑎†𝑘𝑎
†
𝑙
+ 2 ⟨𝑢𝑘 | 𝐵+𝑢𝑙⟩𝐽 𝑎†𝑘𝑎𝑙 − ⟨𝐵−𝑢𝑙 | 𝑢𝑘⟩𝐽 𝑎𝑙𝑎𝑘 . (3.6)

The rule complies with normal ordering, because ⟨0 | ¤𝜇(𝐵) | 0⟩ = 0, i.e., the vacuum expectation
value is zero. However, this implies that (3.6) is not quite a representation of the Lie algebra
{ 𝐵 = −𝐵𝑡 : 𝐵− is Hilbert–Schmidt }. The anomalous commutator, or Schwinger term, is given by

[ ¤𝜇(𝐴), ¤𝜇(𝐵)] − ¤𝜇( [𝐴, 𝐵]) = −1
2 Tr[𝐴−, 𝐵−] .

This is a well-known result: see [51] or [52, Thm. 6.7] for a proof. The trace here is taken on
the Hilbert space 𝑉𝐽 ; notice that, although [𝐴−, 𝐵−] is a traceclass commutator, its trace need not
vanish, because it is the commutator of antilinear operators.

The claim is that 𝛼(𝐴, 𝐵) := −1
2 Tr[𝐴−, 𝐵−] defines a cyclic 1-cocycle on the algebra generated

by such 𝐴 and 𝐵. For that, we rewrite it in terms of a trace of operators on the complexified
space 𝑉ℂ := 𝑉 ⊕ 𝑖𝑉 ; any real-linear operator 𝐵 on 𝑉 extends to a ℂ-linear operator on 𝑉ℂ in the
obvious way: 𝐵(𝑢 + 𝑖𝑣) := 𝐵(𝑢) + 𝑖𝐵(𝑣). For instance, 𝐹 := 𝐸+ − 𝐸− where 𝐸+ and 𝐸− now denote
complementary orthogonal projectors on 𝑉ℂ. Taking now the trace over 𝑉ℂ, too, we find that

𝛼(𝐴, 𝐵) = 1
8 Tr(𝐹 [𝐹, 𝐴] [𝐹, 𝐵]). (3.7)

To see that, first notice that 𝐹 [𝐹, 𝐵] = 𝐵 − 𝐹𝐵𝐹 = −[𝐹, 𝐵]𝐹, and so Tr(𝐹 [𝐹, 𝐴] [𝐹, 𝐵]) =

Tr( [𝐹, 𝐵]𝐹 [𝐹, 𝐴]) = −Tr(𝐹 [𝐹, 𝐵] [𝐹, 𝐴]). The right hand side of (3.7) is unchanged under
skewsymmetrization: 1

8 Tr(𝐹 [𝐹, 𝐴] [𝐹, 𝐵]) = 1
2 Tr(𝐴−𝐹𝐵−) = −1

4 Tr(𝐹 [𝐴−, 𝐵−]). Thus, in turn,
equals

−1
4 Tr(𝐹 [𝐴−, 𝐵−]) = −1

4 Tr(𝐸+ [𝐴−, 𝐵−]𝐸+) + 1
4 Tr(𝐸− [𝐴−, 𝐵−]𝐸−)

= −1
2 Tr(𝐸+𝐴−𝐸−𝐵−𝐸+ − 𝐸+𝐵−𝐸−𝐴−𝐸+) = 𝛼(𝐴, 𝐵).

This is a cyclic cochain, since 𝛼(𝐴, 𝐵) = −𝛼(𝐵, 𝐴); and it is a cocycle because

𝑏𝛼(𝐴, 𝐵, 𝐶) = 1
8 Tr(𝐹 [𝐹, 𝐴𝐵] [𝐹,𝐶] − 𝐹 [𝐹, 𝐴] [𝐹, 𝐵𝐶] + 𝐹 [𝐹,𝐶𝐴] [𝐹, 𝐵])

= 1
8 Tr(𝐹𝐴[𝐹, 𝐵] [𝐹,𝐶] − 𝐹 [𝐹, 𝐴] [𝐹, 𝐵]𝐶 + 𝐹𝐶 [𝐹, 𝐴] [𝐹, 𝐵] + 𝐹 [𝐹,𝐶]𝐴[𝐹, 𝐵])

= 1
8 Tr(𝐹𝐴[𝐹, 𝐵] [𝐹,𝐶] − [𝐹, 𝐴] [𝐹, 𝐵]𝐹𝐶 + 𝐹𝐶 [𝐹, 𝐴] [𝐹, 𝐵] − [𝐹,𝐶]𝐹𝐴[𝐹, 𝐵])

= 0.

The Schwinger term is actually just a multiple of the Chern character 𝜏1
𝐹

, as specified by (3.5), of
the Fredholm module defined by 𝐹. The Shale–Stinespring condition shows that 𝐹 [𝐹, 𝐴] [𝐹, 𝐵] is
trace-class, so that, in this case, the character formula makes sense already for 𝑛 = 1.
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3.2 Cyclic cohomology of Hopf algebras

We now take a closer look at the algebraic operators 𝑏 and 𝐵, in the cohomological setting. They
can be built up from simpler constituents. First of all, the coboundary 𝑏 : 𝐶𝑛−1 → 𝐶𝑛 may be
written as 𝑏 =

∑𝑛
𝑖=0(−1)𝑖𝛿𝑖, where

𝛿𝑖𝜑(𝑎0, . . . , 𝑎𝑛) := 𝜑(𝑎0, . . . , 𝑎𝑖, 𝑎𝑖+1, . . . , 𝑎𝑛), 𝑖 = 0, 1, . . . , 𝑛 − 1,
𝛿𝑛𝜑(𝑎0, . . . , 𝑎𝑛) := 𝜑(𝑎𝑛𝑎0, . . . , 𝑎𝑛−1).

We also introduce maps 𝜎𝑗 : 𝐶𝑛+1 → 𝐶𝑛, for 𝑗 = 0, 1, . . . , 𝑛, given by

𝜎𝑗𝜑(𝑎0, . . . , 𝑎𝑛) := 𝜑(𝑎0, . . . , 𝑎 𝑗 , 1, 𝑎 𝑗+1, . . . , 𝑎𝑛),

and recall the “cyclic permuter” 𝜏 : 𝐶𝑛 → 𝐶𝑛 of (3.3):

𝜏𝜑(𝑎0, . . . , 𝑎𝑛) := 𝜑(𝑎𝑛, 𝑎0, . . . , 𝑎𝑛−1).

Notice that 𝜏𝑛+1 = 1 on 𝐶𝑛. The operator 𝐵 is built from the 𝜎𝑗 and 𝜏, as follows. The “cyclic
skewsymmetrizer” 𝑁 :=

∑𝑛
𝑘=0(−1)𝑛𝑘𝜏𝑘 acts on 𝐶𝑛 as

𝑁𝜑(𝑎0, . . . , 𝑎𝑛) = 𝜑(𝑎0, . . . , 𝑎𝑛) +
𝑛∑︁
𝑘=1

(−1)𝑛𝑘𝜑(𝑎𝑛−𝑘+1, . . . , 𝑎𝑛, 𝑎0, . . . , 𝑎𝑛−𝑘 ).

The formula (3.1) now reduces to

𝐵 = (−1)𝑛𝑁 (𝜎0𝜏
−1 + 𝜎𝑛) : 𝐶𝑛+1 → 𝐶𝑛.

The algebraic structure of cyclic cohomology is essentially determined by the relations between
the elementary maps 𝛿𝑖, 𝜎𝑗 and 𝜏. For instance, the associativity of the algebra A is captured by the
rule 𝛿𝑖+1𝛿𝑖 = 𝛿

2
𝑖

as maps from 𝐶𝑛−1 to 𝐶𝑛+1. Here is the full catalogue of these composition rules:

𝛿 𝑗𝛿𝑖 = 𝛿𝑖𝛿 𝑗−1 if 𝑖 < 𝑗 ;
𝜎𝑗𝜎𝑖 = 𝜎𝑖𝜎𝑗+1 if 𝑖 ⩽ 𝑗 ;

𝜎𝑗𝛿𝑖 =


𝛿𝑖𝜎𝑗−1 if 𝑖 < 𝑗 ,

𝜄 if 𝑖 = 𝑗 or 𝑗 + 1,
𝛿𝑖−1𝜎𝑗 if 𝑖 > 𝑗 + 1;

𝜏𝛿𝑖 = 𝛿𝑖−1𝜏 : 𝐶𝑛−1 → 𝐶𝑛 for 𝑖 = 1, . . . , 𝑛, and 𝜏𝛿0 = 𝛿𝑛,

𝜏𝜎𝑗 = 𝜎𝑗−1𝜏 : 𝐶𝑛+1 → 𝐶𝑛 for 𝑗 = 1, . . . , 𝑛, and 𝜏𝜎0 = 𝜎𝑛𝜏
2,

𝜏𝑛+1 = 𝜄 on 𝐶𝑛. (3.8)

The first three rules, not involving 𝜏, arise when working with simplexes of different dimensions,
where the “face maps” 𝛿𝑖 identify an (𝑛 − 1)-simplex with the 𝑖th face of an 𝑛-simplex, while the
“degeneracy maps” 𝜎𝑗 reduce an (𝑛 + 1)-simplex to an 𝑛-simplex by collapsing the edge from the
𝑗 th to the ( 𝑗 +1)st vertex into a point. A set of simplexes, one in each dimension, together with maps
𝛿𝑖 and 𝜎𝑗 complying with the above rules, forms the so-called “simplicial category” Δ – see [68],
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for instance – and any other instance of those rules defines a functor from Δ to another category: in
other words, Δ is a universal model for those rules.

By bringing in the next three rules involving 𝜏 also, Connes defined a “cyclic category” Λ which
serves as a universal model for cyclic cohomology [20]. Essentially, one supplements Δ with the
maps which cyclically permute the vertices of each simplex (an ordering of the vertices is given).
The point of this exercise is its universality, so that any system of maps complying with (3.8) gives
a bona-fide cyclic cohomology theory, complete with periodicity properties and so on. Indeed,
one can show [52, Lemma 10.4] that if 𝛾 : 𝐶𝑛−1 → 𝐶𝑛 is defined by 𝛾 :=

∑𝑛
𝑘=1(−1)𝑘 𝑘 𝛿𝑘 , then

𝑆 := (𝑛2 + 𝑛)−1𝑏𝛾 defines the periodicity operator on cyclic (𝑛 − 1)-cocycles.

▶ Important cyclic cocycles, such as the characteristic classes for the algebras which typically arise
in noncommutative geometry, can be quite difficult to compute. This is especially true for crossed
product algebras, such as those of subsection 1.3. It is time to discuss how this problem may be
addressed by transfer from cyclic cocycles of an associated Hopf algebra which acts on the algebra
in question.

We recall from subsection 1.3 that such a crossed product algebra A, obtained from the action
of local diffeomorphisms on the frame bundle over a manifold, carries an action of a certain Hopf
algebra 𝐻 of differential (and multiplication) operators, where the Hopf action itself codifies the
generalized Leibniz rules for these operators. To define characteristic classes in 𝐻𝐶•(A), we
introduce a new cyclic cohomology for 𝐻 and then show how to map 𝐻-classes to A-classes.

This cyclic cohomology for 𝐻 was introduced in [35] and developed further in [36–38] and
also in [39, 40]. Its definition will make full use of the Hopf algebra structure, so we proceed in a
“categorical” fashion. We shall first assume that the antipode 𝑆 is involutive, that is, 𝑆2 = 𝜄𝐻 . As
indicated earlier, this holds true for commutative or cocommutative Hopf algebras, although not
for the Hopf algebra 𝐻𝐶𝑀 of subsection 1.3; but that case can be handled by making a suitable
adjustment later on.

To set up the cyclic cohomology of 𝐻, we start with the algebras 𝐶𝑛 (𝐻) := 𝐻⊗𝑛 for 𝑛 =

1, 2, 3, . . . and 𝐶0(𝐻) := ℂ (or 𝔽 , if one prefers other kinds of scalars). This looks superficially
like the chain complex for associative algebras, but we shall make it a cochain complex by (once
again) taking advantage of duality to replace products by coproducts, and so on. The “simplicial”
operations are defined by

𝛿0(ℎ1 ⊗ · · · ⊗ ℎ𝑛−1) := 1 ⊗ ℎ1 ⊗ · · · ⊗ ℎ𝑛−1,

𝛿𝑖 (ℎ1 ⊗ · · · ⊗ ℎ𝑛−1) := ℎ1 ⊗ · · · ⊗ Δ(ℎ𝑖) ⊗ · · · ⊗ ℎ𝑛−1, 𝑖 = 1, . . . , 𝑛 − 1,
𝛿𝑛 (ℎ1 ⊗ · · · ⊗ ℎ𝑛−1) := ℎ1 ⊗ · · · ⊗ ℎ𝑛−1 ⊗ 1,
𝜎𝑗 (ℎ1 ⊗ · · · ⊗ ℎ𝑛+1) := 𝜀(ℎ 𝑗+1) ℎ1 ⊗ · · · ⊗ ℎ 𝑗 ⊗ ℎ 𝑗+2 ⊗ · · · ⊗ ℎ𝑛+1. (3.9)

For 𝑛 = 0, these reduce to 𝛿0(1) := 1, 𝛿1(1) := 1, and 𝜎0(ℎ) := 𝜀(ℎ). The relation 𝛿𝑖+1𝛿𝑖 = 𝛿
2
𝑖

of
(3.8) expresses the coassociativity ofΔ and the equationΔ(1) = 1⊗1; the relations𝜎𝑗𝛿 𝑗 = 𝜎𝑗𝛿 𝑗+1 = 𝜄

are equivalent to (𝜄 ⊗ 𝜀)Δ = (𝜀 ⊗ 𝜄)Δ = 𝜄; and the remaining relations involving the 𝛿𝑖 and the 𝜎𝑗
only are trivial.

To define the cyclic permuter 𝜏, we first note that 𝐻⊗𝑛 is itself an 𝐻-module algebra under the
“diagonal” action of 𝐻:

ℎ · (𝑘1 ⊗ · · · ⊗ 𝑘𝑛) := (Δ𝑛−1ℎ) (𝑘1 ⊗ · · · ⊗ 𝑘𝑛) = ∑
ℎ:1𝑘

1 ⊗ ℎ:2𝑘
2 ⊗ · · · ⊗ ℎ:𝑛𝑘

𝑛.
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We then define

𝜏(ℎ1 ⊗ · · · ⊗ ℎ𝑛) := 𝑆(ℎ1) · (ℎ2 ⊗ · · · ⊗ ℎ𝑛 ⊗ 1) = Δ𝑛−1(𝑆(ℎ1)) (ℎ2 ⊗ · · · ⊗ ℎ𝑛 ⊗ 1)
=
∑
𝑆(ℎ1

:𝑛)ℎ2 ⊗ 𝑆(ℎ1
:𝑛−1)ℎ

3 ⊗ · · · ⊗ 𝑆(ℎ1
:2)ℎ

𝑛 ⊗ 𝑆(ℎ1
:1). (3.10)

The cyclicity property of 𝜏 is a consequence of the following calculation.

Proposition 3.1. The map 𝜏 : 𝐻⊗𝑛 → 𝐻⊗𝑛 satisfies

𝜏𝑛+1(ℎ1 ⊗ ℎ2 ⊗ · · · ⊗ ℎ𝑛) = 𝑆2(ℎ1) ⊗ 𝑆2(ℎ2) ⊗ · · · ⊗ 𝑆2(ℎ𝑛). (3.11)

Proof. First we compute 𝜏2(ℎ1⊗ℎ2⊗· · ·⊗ℎ𝑛). The diagonal action of 𝑆(𝑆(ℎ1
:𝑛) ℎ2) = 𝑆(ℎ2) 𝑆2(ℎ1

:𝑛)
gives

𝜏2(ℎ1 ⊗ ℎ2 ⊗ · · · ⊗ ℎ𝑛) = ∑
𝑆(ℎ2

:𝑛) 𝑆2(ℎ1
:𝑛) 𝑆(ℎ1

:𝑛−1) ℎ
3 ⊗ 𝑆(ℎ2

:𝑛−1) 𝑆
2(ℎ1

:𝑛+1) 𝑆(ℎ
1
:𝑛−2) ℎ

4

⊗ · · · ⊗ 𝑆(ℎ2
:2) 𝑆

2(ℎ1
:2𝑛−2) 𝑆(ℎ

1
:1) ⊗ 𝑆(ℎ

2
:1) 𝑆

2(ℎ1
:2𝑛−1).

Observe that
∑
𝑆2(ℎ:2) 𝑆(ℎ:1) = 𝑆

(∑
ℎ:1 𝑆(ℎ:2)

)
= 𝑆(𝜀(ℎ) 1) = 𝜀(ℎ) 1. A further simplification

is
∑
𝜀(ℎ:2)𝑆2(ℎ:3) 𝑆(ℎ:1) =

∑
𝑆2(ℎ:2) 𝑆(ℎ:1) = 𝜀(ℎ) 1, so the terms 𝑆2(ℎ1

:𝑛+𝑘 ) 𝑆(ℎ
1
:𝑛−𝑘−1) telescope

from left to right, leaving

𝜏2(ℎ1 ⊗ ℎ2 ⊗ · · · ⊗ ℎ𝑛) = ∑
𝑆(ℎ2

:𝑛) ℎ3 ⊗ 𝑆(ℎ2
:𝑛−1) ℎ

4 ⊗ · · · ⊗ 𝑆(ℎ2
:2) ⊗ 𝑆(ℎ

2
:1) 𝑆

2(ℎ1),

where the sum runs over the terms in Δ𝑛−1𝑆(ℎ2). After 𝑛 − 1 iterations of this process, we obtain

𝜏𝑛 (ℎ1 ⊗ ℎ2 ⊗ · · · ⊗ ℎ𝑛) = ∑
𝑆(ℎ𝑛:𝑛) ⊗ 𝑆(ℎ𝑛:𝑛−1) 𝑆

2(ℎ1) ⊗ · · · ⊗ 𝑆(ℎ𝑛:2) 𝑆
2(ℎ𝑛−2) ⊗ 𝑆(ℎ𝑛:1) 𝑆

2(ℎ𝑛−1),

and, since Δ𝑛−1(𝑆(1)) = 1 ⊗ · · · ⊗ 1, the final iteration gives (3.11). □

This shows that the condition 𝑆2 = 𝜄𝐻 is necessary and sufficient to give 𝜏𝑛+1 = 𝜄 on 𝐶𝑛 (𝐻). We
leave the remaining relations in (3.8) to the reader.

▶ However, it turns out that 𝑆2 is not the identity in the Hopf algebra 𝐻𝐶𝑀 . For instance,

𝑆2(𝑋) = 𝑆(−𝑋 + 𝜆1𝑌 ) = (𝑋 − 𝜆1𝑌 ) + 𝑆(𝑌 ) 𝑆(𝜆1) = 𝑋 + [𝑌, 𝜆1] = 𝑋 + 𝜆1.

The day is saved by the existence of a character 𝛿 of𝐻𝐶𝑀 such that the “twisted antipode” 𝑆𝛿 := 𝜂𝛿∗𝑆
is involutive. Indeed, since 𝑋 and 𝜆1 are commutators, any character satisfies 𝛿(𝑋) = 𝛿(𝜆1) = 0,
so any character is determined by its value on the other algebra generator, 𝑌 . We set 𝛿(𝑌 ) := 1.
(Recall that 𝜀(𝑌 ) = 0.) Now

𝑆𝛿 (ℎ) := (𝜂𝛿 ∗ 𝑆) (ℎ) = ∑
𝛿(ℎ:1) 𝑆(ℎ:2),

so the twisted antipode does satisfy 𝑆2
𝛿
= 𝜄𝐻 .

Exercise 3.2. Show this by verifying 𝑆2
𝛿
(𝑋) = 𝑋 , 𝑆2

𝛿
(𝑌 ) = 𝑌 , and 𝑆2

𝛿
(𝜆1) = 𝜆1 directly. ♢
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The relation with the coproduct is given by

Δ(𝑆𝛿 (ℎ)) =
∑
𝑆(ℎ:2) ⊗ 𝑆𝛿 (ℎ:1), Δ2(𝑆𝛿 (ℎ)) =

∑
𝑆(ℎ:3) ⊗ 𝑆(ℎ:2) ⊗ 𝑆𝛿 (ℎ:1),

and more generally, Δ𝑛−1(𝑆𝛿 (ℎ)) =
∑
𝑆(ℎ:𝑛) ⊗ · · · ⊗ 𝑆(ℎ:2) ⊗ 𝑆𝛿 (ℎ:1). It is also worth noting that∑

𝑆𝛿 (ℎ:1) ℎ:2 =
∑
𝛿(ℎ:1) 𝑆(ℎ:2) ℎ:3 =

∑
𝛿(ℎ:1) 𝜀(ℎ:2) 1 = 𝛿(ℎ) 1.

The crossed product algebra A on which 𝐻𝐶𝑀 acts carries a distinguished faithful trace, given
by integration over the frame bundle 𝐹 with the Γ-invariant volume form 𝜈:

𝜑( 𝑓𝑈†
𝜓
) := 0 if 𝜓 ≠ 𝜄, 𝜑( 𝑓 ) :=

∫
𝐹

𝑓 𝑑𝜈. (3.12)

It follows from (1.18) that, for 𝑎 = 𝑓𝑈
†
𝜓

and 𝑏 = 𝑔𝑈𝜓 , the equality 𝜑(𝑎𝑏) = 𝜑(𝑏𝑎) reduces to∫
𝐹
𝑓 (𝑔 ◦ �̃�) 𝑑𝜈 =

∫
𝐹
( 𝑓 ◦ �̃�−1)𝑔 𝑑𝜈, so that the Γ-invariance of 𝜈 yields the tracial property of 𝜑.

If 𝑓 ∈ 𝐶∞
𝑐 (𝐹), it is easily checked that

∫
𝐹
(𝑋 𝑓 ) 𝑑𝜈 = 0 and that

∫
𝐹
(𝑌 𝑓 ) 𝑑𝜈 =

∫
𝐹
𝑓 𝑑𝜈, using

integration by parts. Moreover, since 𝜆1( 𝑓 ) := ℎ𝜄 𝑓 from (1.23) and ℎ𝜄 = 0, we also get
∫
𝐹
(𝜆1 𝑓 ) 𝑑𝜈 =

0. These identities are enough to confirm that

𝜑(ℎ · 𝑎) = 𝛿(ℎ) 𝜑(𝑎), for all ℎ ∈ 𝐻𝐶𝑀 , 𝑎 ∈ A.

It is standard to call a functional 𝜇 on A “invariant” under a Hopf action if the relation 𝜇(ℎ · 𝑎) =
𝜀(ℎ) 𝜇(𝑎) holds. Since the character 𝛿 takes the place of the counit here, we may say that the trace
𝜑 is a 𝛿-invariant functional.

This 𝛿-invariance may be reformulated as a rule for integration by parts, as pointed out in [37]:

𝜑((ℎ · 𝑎) 𝑏) = 𝜑(𝑎 (𝑆𝛿 (ℎ) · 𝑏)). (3.13)

Indeed, one only needs to observe that

𝜑((ℎ · 𝑎) 𝑏) = ∑
𝜑((ℎ:1 · 𝑎) 𝜀(ℎ:2) 𝑏) =

∑
𝜑((ℎ:1 · 𝑎) (ℎ:2 𝑆(ℎ:3) · 𝑏))

=
∑
𝜑(ℎ:1 · (𝑎 (𝑆(ℎ:2) · 𝑏))) =

∑
𝛿(ℎ:1) 𝜑(𝑎 (𝑆(ℎ:2) · 𝑏)) = 𝜑(𝑎 (𝑆𝛿 (ℎ) · 𝑏)).

The cyclic permuter 𝜏 must be redefined to take account of the twisted antipode 𝑆𝛿, as follows:

𝜏(ℎ1 ⊗ · · · ⊗ ℎ𝑛) := 𝑆𝛿 (ℎ1) · (ℎ2 ⊗ · · · ⊗ ℎ𝑛 ⊗ 1) = Δ𝑛−1(𝑆𝛿 (ℎ1)) (ℎ2 ⊗ · · · ⊗ ℎ𝑛 ⊗ 1)
=
∑
𝑆(ℎ1

:𝑛)ℎ2 ⊗ 𝑆(ℎ1
:𝑛−1)ℎ

3 ⊗ · · · ⊗ 𝑆(ℎ1
:2)ℎ

𝑛 ⊗ 𝑆𝛿 (ℎ1
:1).

A straightforward modification of the proof of Proposition 3.1 yields the following identity [40,
Prop. 4.4]:

𝜏𝑛+1(ℎ1 ⊗ ℎ2 ⊗ · · · ⊗ ℎ𝑛) = 𝑆2
𝛿 (ℎ1) ⊗ 𝑆2

𝛿 (ℎ2) ⊗ · · · ⊗ 𝑆2
𝛿 (ℎ𝑛).

Thus, 𝑆2
𝛿
= 𝜄𝐻 entails 𝜏𝑛+1 = 𝜄 on 𝐶𝑛 (𝐻).

▶ The cyclic cohomology 𝐻𝐶•
𝛿
(𝐻) is now easily defined. The maps 𝑏 : 𝐶𝑛−1(𝐻) → 𝐶𝑛 (𝐻) and

𝐵 : 𝐶𝑛+1(𝐻) → 𝐶𝑛 (𝐻) are given by the very same formulae as before:

𝑏 :=
𝑛∑︁
𝑖=0

(−1)𝑖𝛿𝑖, 𝐵 := (−1)𝑛𝑁 (𝜎0𝜏
−1 + 𝜎𝑛),

where 𝑁 :=
∑𝑛
𝑘=0(−1)𝑛𝑘𝜏𝑘 on 𝐶𝑛 (𝐻).
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Exercise 3.3. Show that ℎ ∈ 𝐻 is a cyclic 1-cocycle if and only if ℎ is primitive and 𝛿(ℎ) = 0. ♢

It remains to show how 𝐻𝐶•
𝛿
(𝐻) and 𝐻𝐶•(A) are related; the trace 𝜑 provides the link. For

each 𝑛 = 0, 1, 2, . . . , we define a linear map 𝛾𝜑 : 𝐶𝑛 (𝐻) → 𝐶𝑛 (A,A∗) by setting 𝛾𝜑 (1) := 𝜑 and

𝛾𝜑 (ℎ1 ⊗ · · · ⊗ ℎ𝑛) : (𝑎0, . . . , 𝑎𝑛) ↦→ 𝜑(𝑎0 (ℎ1 · 𝑎1) . . . (ℎ𝑛 · 𝑎𝑛)).

Following [37], we call 𝛾𝜑 the characteristic map associated to 𝜑.
It is easy to check that 𝛾𝜑 intertwines the maps 𝛿𝑖,𝜎𝑗 and 𝜏 defined on the two cochain complexes.

For instance, if 𝑖 = 1, 2, . . . , 𝑛 − 1, then

𝛾𝜑𝛿𝑖 (ℎ1 ⊗ · · · ⊗ ℎ𝑛) : (𝑎0, . . . , 𝑎𝑛+1) ↦→ 𝛾𝜑 (ℎ1 ⊗ · · · ⊗ Δ(ℎ𝑖) ⊗ · · · ⊗ ℎ𝑛−1) (𝑎0, . . . , 𝑎𝑛+1)
= 𝜑(𝑎0 (ℎ1 · 𝑎1) · · · (ℎ𝑖:1 · 𝑎𝑖) ((ℎ

𝑖
:2 · 𝑎𝑖+1) · · · (ℎ𝑛 · 𝑎𝑛+1))

= 𝜑(𝑎0 (ℎ1 · 𝑎1) · · · (ℎ𝑖 · (𝑎𝑖𝑎𝑖+1)) · · · (ℎ𝑛 · 𝑎𝑛+1))
= 𝛿𝑖𝛾𝜑 (ℎ1 ⊗ · · · ⊗ ℎ𝑛) (𝑎0, . . . , 𝑎𝑛+1).

To match the cyclic actions, we first recall that

𝜏(ℎ1 ⊗ ℎ2 ⊗ · · · ⊗ ℎ𝑛) = 𝑆𝛿 (ℎ1) · (ℎ2 ⊗ · · · ⊗ ℎ𝑛 ⊗ 1) = ∑
𝑆(ℎ1

:2) · (ℎ
2 ⊗ · · · ⊗ ℎ𝑛) ⊗ 𝑆𝛿 (ℎ1

:1).

Write 𝑏 := (ℎ2 · 𝑎1) · · · (ℎ𝑛 · 𝑎𝑛−1); then, using the “integration by parts” formula, we get

𝛾𝜑𝜏(ℎ1 ⊗ ℎ2 ⊗ · · · ⊗ ℎ𝑛) (𝑎0, . . . , 𝑎𝑛) =
∑
𝜑
(
𝑎0 (𝑆(ℎ1

:2) · 𝑏) 𝑆𝛿 (ℎ
1
:1) · 𝑎𝑛

)
=
∑
𝜑
(
ℎ1

:1 · (𝑎0 𝑆(ℎ1
:2) · 𝑏) 𝑎𝑛

)
=
∑
𝜑
(
𝑎𝑛 (ℎ1

:1 · 𝑎0) (ℎ1
:2 𝑆(ℎ

1
:3) · 𝑏)

)
=
∑
𝜑
(
𝑎𝑛 (ℎ1

:1 · 𝑎0) 𝜀(ℎ1
:2)𝑏

)
= 𝜑(𝑎𝑛 (ℎ1 · 𝑎0) 𝑏)

= 𝜑
(
𝑎𝑛 (ℎ1 · 𝑎0) (ℎ2 · 𝑎1) . . . (ℎ𝑛 · 𝑎𝑛−1)

)
= 𝜏𝛾𝜑 (ℎ1 ⊗ ℎ2 ⊗ · · · ⊗ ℎ𝑛) (𝑎0, . . . , 𝑎𝑛).

In retrospect, we can see what lies behind the definition of 𝜏 on 𝐶𝑛 (𝐻): on reading the last
calculation backwards, we see that the formula for 𝜏 is predetermined in order to fulfil 𝛾𝜑𝜏 = 𝜏𝛾𝜑
for any 𝛿-invariant trace 𝜑.

▶ We conclude with two variations on this algorithm for characteristic classes. The first concerns
algebras which support a Hopf action but have no natural 𝛿-invariant trace. In the theory of locally
compact quantum groups [66], another possibility arises, namely that instead of a trace the algebra
supports a linear functional 𝜑 such that 𝜑(𝑎𝑏) = 𝜑(𝑏(𝜎 · 𝑎)) where 𝜎 is a grouplike “modular
element” of the Hopf algebra. If 𝜑 is also 𝛿-invariant for a character 𝛿 such that 𝛿(𝜎) = 1, only two
further modifications of the elementary maps (3.9) and (3.10) are needed:

𝛿𝑛 (ℎ1 ⊗ · · · ⊗ ℎ𝑛−1) := ℎ1 ⊗ · · · ⊗ ℎ𝑛−1 ⊗ 𝜎,
𝜏(ℎ1 ⊗ · · · ⊗ ℎ𝑛) := 𝑆𝛿 (ℎ1) · (ℎ2 ⊗ · · · ⊗ ℎ𝑛 ⊗ 𝜎).

This time, the computation in Proposition 3.1 leads to

𝜏𝑛+1(ℎ1 ⊗ · · · ⊗ ℎ𝑛) = 𝜎−1𝑆2
𝛿 (ℎ1) 𝜎 ⊗ · · · ⊗ 𝜎−1𝑆2

𝛿 (ℎ𝑛) 𝜎.

Thus, the necessary and sufficient condition for 𝜏𝑛+1 = 𝜄 is 𝑆2
𝛿
(ℎ) = 𝜎ℎ𝜎−1 for all ℎ. See [36]

and [52, §14.7] for the detailed construction of the characteristic map in this “modular” case.
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The other variant concerns the application to the original problem of finding characteristic
classes for foliations, in the higher-dimensional cases, as discussed at the end of subsection 1.3.
What is needed is a cohomology theory which takes account of the Hopf algebroid structure, when
the coefficient is R = 𝐶∞(𝐹) instead of ℂ. The formula (3.12) continues to define a Γ-invariant
faithful trace on the algebra A. Now, however, instead of seeking a special character 𝛿, the main role
is taken by the integration-by-parts formula (3.13). The twisted antipode in that formula is replaced
by a map 𝑆 : 𝐻 → 𝐻, subject to four requirements: (a) that it be an algebra antihomomorphism;
(b) which is involutive, that is, 𝑆2 = 𝜄𝐻; (c) that it exchange the algebroid actions of (1.25), namely,
𝑆 𝛽 = 𝛼; and (d) that 𝑚(𝑆 ⊗R 𝜄)Δ = 𝛽𝜀𝑆. Connes and Moscovici show in [38] that a unique map 𝑆
satisfying these properties exists, and with its help one can again build a cyclic cohomology theory
for the Hopf algebroid of transverse differential operators, which provides the needed invariants
of A.

4 Noncommutative Homogeneous Spaces
4.1 Chern characters and noncommutative spheres

A fundamental theme of noncommutative geometry is the determination of geometric quantities
from the spectra of certain operators on Hilbert space. An early precursor is Weyl’s theorem on
the dimension and volume of a compact Riemannian manifold: these are determined by the growth
of the eigenvalues of the Laplacian. For spin manifolds, one can obtain the same data from the
asymptotics of the spectra of the Dirac operator /𝐷. This phenomenon forms the background for the
study of spectral triples. We know, for instance, that a spectral triple (A,H, 𝐷) over the algebra
A = 𝐶∞(𝑀), complying with the seven requirements listed in subsection 1.1, provides a spin
structure and a Riemannian metric on 𝑀 for which 𝐷 equals /𝐷 plus a torsion term.

A question raised in the paper which introduced these seven conditions [25] is whether the
manifold itself – or its algebra of smooth coordinates – may be extracted from spectral data. The
key property here is the orientation or volume-form condition:

𝜋𝐷 (c) = 𝜒, with c ∈ 𝐶𝑛 (A) such that 𝑏 c = 0, (4.1)

where 𝑛 is the classical dimension of the spin geometry. In view of the isomorphism between
𝐻𝐻𝑛 (𝐶∞(𝑀)) ≃ A𝑛 (𝑀), there is a unique 𝑛-form 𝜈 matched to the class [c] of the Hochschild
𝑛-cycle. It turns out that (4.1) entails that 𝜈 is nonvanishing on 𝑀 , so that, suitably normalized, it
is a volume form; in fact, it is the Riemannian volume for the metric associated to the Dirac-type
operator 𝐷.

To see how this works, recall that the standard volume form on the 2-sphere 𝕊2 is

𝜈 = 𝑥 𝑑𝑦 ∧ 𝑑𝑧 + 𝑦 𝑑𝑧 ∧ 𝑑𝑥 + 𝑧 𝑑𝑥 ∧ 𝑑𝑦 ∈ A2(𝕊2). (4.2)

The corresponding Hochschild 2-cycle is

c := 𝑖
2
(
𝑥 (𝑑𝑦 𝑑𝑧 − 𝑑𝑧 𝑑𝑦) + 𝑦 (𝑑𝑧 𝑑𝑥 − 𝑑𝑥 𝑑𝑧) + 𝑧 (𝑑𝑥 𝑑𝑦 − 𝑑𝑦 𝑑𝑥)

)
∈ Ω2(𝐶∞(𝕊2)), (4.3)

and (4.1) becomes

𝑖
2
(
𝑥 [[𝐷, 𝑦], [𝐷, 𝑧]] + 𝑦 [[𝐷, 𝑧], [𝐷, 𝑥]] + 𝑧 [[𝐷, 𝑥], [𝐷, 𝑦]]

)
= 𝜒. (4.4)
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The algebra A = 𝐶∞(𝕊2) is generated by the three commuting coordinates 𝑥, 𝑦, 𝑧, subject to the
constraint 𝑥2 + 𝑦2 + 𝑧2 = 1. It is important to note that one can vary the metric on 𝕊2 while keeping
the volume form 𝜈 fixed; one usually thinks of the round metric 𝑔 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 which is
SO(3)-invariant, but one can compose 𝑔 with any volume-preserving diffeomorphism of 𝕊2 to get
many another metric 𝑔′ whose volume form is also 𝜈. Therefore, the 𝐷 in the equation (4.1) is not
uniquely determined; it may be a Dirac operator 𝐷 = /𝐷𝑔′ obtained from any such metric 𝑔′ (the
Hilbert space H is the vector space of square-integrable spinors on 𝕊2).

On the other hand, one may think of (4.4) as a (highly nonlinear) equation for the coordinates
𝑥, 𝑦, 𝑧. To see how this comes about, we collect the three coordinates for the 2-sphere into a single
orthogonal projector (selfadjoint idempotent),

𝑒 :=
1
2

(
1 + 𝑧 𝑥 − 𝑖𝑦
𝑥 + 𝑖𝑦 1 − 𝑧

)
, (4.5)

in the algebra of 2× 2 matrices, 𝑀2(𝐶∞(𝕊2)). This is actually the celebrated Bott projector, whose
class [𝑒] ∈ 𝐾0(𝐶∞(𝕊2)) = 𝐾0(𝕊2) is nontrivial. It is easy to check the following identity in exterior
algebra:

tr((𝑒 − 1
2 ) 𝑑𝑒 ∧ 𝑑𝑒) =

𝑖
2𝜈 ∈ A2(𝕊2).

Now, up to normalization and replacement of the exterior derivative by the differential of the
universal graded differential algebra Ω•(𝐶∞(𝕊2)), the left hand side is just the term ch1 𝑒 of the
cyclic-homology Chern character of [𝑒]. Notice that ch0 𝑒 = tr(𝑒 − 1

2 ) vanishes also. The cyclic
homology computations preceding (3.4) show that, in full generality,

𝑏(ch1 𝑒) = −𝐵(ch0 𝑒),

so that the vanishing ch0 𝑒 = 0 is enough to guarantee that ch1 𝑒 is a Hochschild cycle: 𝑏(ch1 𝑒) = 0.

▶ We now switch to a different point of view. Suppose we wish to produce examples of spectral
triples (A,H, 𝐷, 𝐶, 𝜒) satisfying the seven conditions for a noncommutative spin geometry. We
first fix the classical dimension, which for convenience we shall suppose to be even: 𝑛 = 2𝑚. Then
we start from the orientation condition:

𝜋𝐷 (ch𝑚 𝑒) = 𝜒, (4.6a)

subject to the constraints

ch0 𝑒 = 0, ch1 𝑒 = 0, . . . , ch𝑚−1 𝑒 = 0, (4.6b)

which guarantee that ch𝑚 𝑒 will be a Hochschild 2𝑚-cycle.
Consider (4.6) as a system of equations for an “unknown” projector 𝑒 ∈ 𝑀𝑟 (A), 𝑟 being a

suitable matrix size. What does this system tell us about the coordinate algebra A?
In Connes’ survey paper [27], the answer is given in detail for the case 𝑛 = 2, 𝑟 = 2: it turns out

that (4.6b) forces A to be commutative, and (4.6a) ensures that its character space is the 2-sphere.
We summarize the argument, following our [52, §11.A]. First of all, the selfadjointness 𝑒∗ = 𝑒 and
the equation ch0 𝑒 = tr(𝑒 − 1

2 ) = 0 allow us to write 𝑒 in the form (4.5), where 𝑥, 𝑦, 𝑧 are selfadjoint
elements of A. The positivity of the projector 𝑒 implies −1 ⩽ 𝑧 ⩽ 1 (here we are implicitly
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assuming that A is a dense subalgebra of a 𝐶∗-algebra). The idempotence 𝑒2 = 𝑒 boils down to a
pair of equations

(1 ± 𝑧)2 + 𝑥2 + 𝑦2 ± 𝑖[𝑥, 𝑦] = 2(1 ± 𝑧),
(1 ∓ 𝑧) (𝑥 ± 𝑖𝑦) + (𝑥 ± 𝑖𝑦) (1 ± 𝑧) = 2(𝑥 ± 𝑖𝑦),

which simplify to [𝑥, 𝑦] = [𝑦, 𝑧] = [𝑧, 𝑥] = 0 and 𝑥2 + 𝑦2 + 𝑧2 = 1. Thus, 𝑥, 𝑦, 𝑧 generate a
commutative algebra A. Moreover, by regarding them as commuting selfadjoint operators in a
faithful representation of A, the equation 𝑥2 + 𝑦2 + 𝑧2 = 1 tells us that their joint spectrum in ℝ3 is
a closed subset 𝑉 of the sphere 𝕊2: the 𝐶∗-completion of A is 𝐶 (𝑉).

This partial description of A has not yet used the main equation (4.6a), whose role is to confirm
that𝑉 is all of 𝕊2. For convenience, we abbreviate d𝑎 := [𝐷, 𝑎] (at this stage, d is just an unspecified
derivation on A). Since

d𝑒 =
1
2

(
d𝑧 d𝑥 − 𝑖 d𝑦

d𝑥 + 𝑖 d𝑦 −d𝑧

)
,

a short calculation gives

𝜒 = tr((𝑒 − 1
2 ) d𝑒 d𝑒) = 𝑖

2
(
𝑥 [d𝑦, d𝑧] + 𝑦 [d𝑧, d𝑥] + 𝑧 [d𝑥, d𝑦]

)
.

This is of the form 𝜋𝐷 (c) = 𝜒, where c is just the Hochschild 2-cycle of the formula (4.3). The
corresponding volume form on𝑉 is precisely (4.2): but this volume is nonvanishing on all of 𝕊2, so
we conclude that 𝑉 = 𝕊2. The pre-𝐶∗-algebra A, generated by 𝑥, 𝑦, 𝑧, is none other than 𝐶∞(𝕊2)!
▶ The odd-dimensional case 𝑛 = 2𝑚 + 1 uses the odd Chern character (3.4b), and its orientation
condition is 𝜋𝐷 (ch𝑚+ 1

2
𝑢) = 1, with constraints ch𝑘+ 1

2
𝑢 = 0 for 𝑘 = 0, 1, . . . , 𝑚 − 1. The unitarity

condition 𝑢∗𝑢 = 𝑢𝑢∗ = 1 may be assumed. For instance, in dimension three, Connes and Dubois-
Violette [29] have shown that, under the sole constraint ch1/2 𝑢 = tr(𝑢−1 𝑑𝑢) = 0, all solutions of the
equation 𝜋𝐷 (ch3/2 𝑢) = 1 form a 3-parameter family of algebras; one of these is the commutative
algebra 𝐶∞(𝕊3), but the others are noncommutative.

▶ Moving on now to dimension 4, we take 𝑒 = 𝑒∗ = 𝑒2 in 𝑀4(A), and look for solutions of (4.6)
with 2𝑚 = 4. In [27], a commutative solution is again found, by using a “quaternionic” prescription
reminiscent of the Connes–Lott approach to the Standard Model (see [24, VI.5] or [71] for the story
of how quaternions enter in that approach). One writes 𝑒 in 2 × 2 blocks:

𝑒 :=
1
2

(
(1 + 𝑧)12 𝑞

𝑞∗ (1 − 𝑧)12

)
, where 12 =

(
1 0
0 1

)
, 𝑞 =

(
𝛼 𝛽

−𝛽∗ 𝛼∗

)
. (4.7)

Here again, 𝑧 is a selfadjoint element of A such that −1 ⩽ 𝑧 ⩽ 1, and 𝑒2 = 𝑒 yields the equalities
𝑞𝑞∗ = (1 − 𝑧2) = 𝑞∗𝑞 and [𝑧 12, 𝑞] = 0. Since 𝑞𝑞∗ = 𝑞∗𝑞 is diagonal, we find that 𝑧, 𝛼, 𝛼∗, 𝛽, 𝛽∗
are commuting elements of A, subject to the constraint 𝛼𝛼∗ + 𝛽𝛽∗ = 1 − 𝑧2: these are coordinate
relations for a closed subset of 𝕊4. Once more, the equation (4.6a) produces the standard volume
form supported on the full sphere, and the conclusion is that A = 𝐶∞(𝕊4): the ordinary 4-sphere
emerges as a solution to the cohomological equation (4.6) in dimension four.

Now, the particular quaternionic form of 𝑞 in (4.7) is merely an Ansatz, and Landi soon pointed
out that one could equally well try

𝑞 =

(
𝛼 𝛽

−𝜆𝛽∗ 𝛼∗

)
, with 𝜆 ∈ ℂ.
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The consequences are worked out in a recent paper by Connes and Landi [33] —see also [28]. One
finds that 𝑞𝑞∗ = (1 − 𝑧2) = 𝑞∗𝑞 and [𝑧 12, 𝑞] = 0 still hold, but these relations now lead to

𝛼𝛽 = �̄�−1 𝛽𝛼, 𝛼∗𝛽 = �̄� 𝛽𝛼∗,

𝛽𝛽∗ = 𝛽∗𝛽, 𝛼𝛼∗ + 𝛽𝛽∗ = 1 − 𝑧2 = 𝛼∗𝛼 + 𝜆�̄� 𝛽∗𝛽. (4.8a)

The computation of ch1(𝑒), carried out in [41], yields

ch1(𝑒) = 1
8 (1 − 𝜆�̄�)

(
𝑧 [𝑑𝛽, 𝑑𝛽∗] + 𝛽∗ [𝑑𝑧, 𝑑𝛽] + 𝛽 [𝑑𝛽∗, 𝑑𝑧]

)
,

which vanishes if and only if 𝜆 is a complex number of modulus 1.
In particular, this scheme parts company with the ever-popular deformations where 𝜆 = 𝑞 would

be a real number other than ±1. Foremost among these are the well-known Podleś spheres 𝕊2
𝑞𝑐,

which were originally constructed [80] as homogeneous spaces of the quantum group SU𝑞 (2).
Other higher-dimensional 𝑞-spheres currently on the market are described in [9, 14, 41, 58, 98]; the
𝐶∗-algebra construction of 𝕊𝑛𝑞 by Hong and Szymański [58], in particular, is quite far-reaching.
However, none of these arises from a Hochschild cycle in the manner described above. On the
other hand, Aschieri and Bonechi [3] have constructed, with 𝑅-matrix techniques, a multiparameter
family of quantum spaces which yields the spheres described here as limiting cases; see also [4].

By assuming |𝜆 | = 1, 𝜆 = 𝑒2𝜋𝑖𝜃 from now on, the relations (4.8a) simplify to

𝛼𝛽 = 𝜆 𝛽𝛼, 𝛼∗𝛽 = �̄� 𝛽𝛼∗,

𝛼𝛼∗ = 𝛼∗𝛼, 𝛽𝛽∗ = 𝛽∗𝛽, 𝛼𝛼∗ + 𝛽𝛽∗ = 1 − 𝑧2, (4.8b)

which determines a noncommutative algebra A, baptized 𝐶∞(𝕊4
𝜃
) by Connes and Landi.

4.2 How Moyal products yield compact quantum groups

To construct a spin geometry over A = 𝐶∞(𝕊4
𝜃
), we need a representation of this algebra on a

suitable Hilbert space. The key is to notice that the relation 𝛼𝛽 = 𝑒2𝜋𝑖𝜃 𝛽𝛼 of (4.8b), for normal
operators 𝛼 and 𝛽 (that is, 𝛼𝛼∗ = 𝛼∗𝛼 and 𝛽𝛽∗ = 𝛽∗𝛽), is closely related to the definition of the
noncommutative torus [19,85]. This is a pre-𝐶∗-algebra𝐶∞(𝕋 2

𝜃
) with two generators 𝑢 and 𝑣 which

are unitary: 𝑢𝑢∗ = 𝑢∗𝑢 = 1, 𝑣𝑣∗ = 𝑣∗𝑣 = 1, subject only to the commutation relation

𝑢𝑣 = 𝑒2𝜋𝑖𝜃 𝑣𝑢. (4.9)

One can then define “spherical coordinates” (𝑢, 𝑣, 𝜙, 𝜓) for the noncommutative space 𝕊4
𝜃

by setting

𝛼 =: 𝑢 sin𝜓 cos 𝜙, 𝛽 =: 𝑣 sin𝜓 sin 𝜙, 𝑧 =: cos𝜓, (4.10)

where 𝜙, 𝜓 are ordinary angular coordinates. It is clear that this is equivalent to (4.8), for 𝜆 = 𝑒2𝜋𝑖𝜃 .
There is a canonical action of the ordinary 2-torus 𝕋 2 on the algebra 𝐶∞(𝕋 2

𝜃
), obtained from the

independent rotations 𝑢 ↦→ 𝑒2𝜋𝑖𝜙1 𝑢, 𝑣 ↦→ 𝑒2𝜋𝑖𝜙2 𝑣 that respect (4.9). By substituting these rotations
in (4.10), we also obtain an action of 𝕋 2 on 𝐶∞(𝕊4

𝜃
).

In the commutative case 𝜃 = 0, this becomes an action of the abelian Lie group 𝕋 2 by rotations
on the compact manifold 𝕊4, and these rotations are isometries for the round metric on 𝕊4. Any
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smooth function on 𝕊4 can be decomposed as a generalized Fourier series 𝑓 =
∑
𝑟 𝑓𝑟 , indexed by

𝑟 = (𝑟1, 𝑟2) ∈ ℤ2, where 𝑓𝑟 satisfies

(𝑒2𝜋𝑖𝜙1 , 𝑒2𝜋𝑖𝜙2) · 𝑓𝑟 = 𝑒2𝜋𝑖(𝑟1𝜙1+𝑟2𝜙2) 𝑓𝑟 .

Indeed, each 𝑓𝑟 is of the form 𝑢𝑟1𝑣𝑟2ℎ(𝜙, 𝜓), in terms of the coordinates (4.10); all such functions
form the spectral subspace 𝐸𝑟 of 𝐶∞(𝕊4). The same is true of 𝐶∞(𝕊4

𝜃
) when 𝜃 ≠ 0.

If 𝑔𝑠 = 𝑢𝑠1𝑣𝑠2𝑘 (𝜙, 𝜓), then 𝑔𝑠 ∈ 𝐸𝑠 and 𝑒2𝜋𝑖𝜃𝑟2𝑠1 𝑓𝑟𝑔𝑠 = 𝑢
𝑟1+𝑠1𝑣𝑟2+𝑠2 ℎ𝑘 lies in 𝐸𝑟+𝑠, so we may

identify the algebra 𝐶∞(𝕊4
𝜃
) with the vector space 𝐶∞(𝕊4) of smooth functions on the ordinary

4-sphere, gifted with the new product:

𝑓𝑟 ∗ 𝑔𝑠 := 𝑒2𝜋𝑖𝜃𝑟2𝑠1 𝑓𝑟𝑔𝑠, (4.11a)

defined on homogeneous elements 𝑓𝑟 ∈ 𝐸𝑟 , 𝑔𝑠 ∈ 𝐸𝑠. Since the Fourier series 𝑓 =
∑
𝑟 𝑓𝑟 converges

rapidly in the Fréchet topology of 𝐶∞(𝕊4), one can show that this recipe defines a continuous
bilinear operation on that space. A more symmetric-looking operation, which yields an isomorphic
algebra, is given by

𝑓𝑟 × 𝑔𝑠 := 𝑒𝜋𝑖𝜃 (𝑟2𝑠1−𝑟1𝑠2) 𝑓𝑟𝑔𝑠 . (4.11b)

This deserves to be called a Moyal product of functions on 𝕊4. Indeed, suppressing the coordinates
𝜙, 𝜓 yields exactly the Moyal product on 𝐶∞(𝕋 2), which has long been recognized to give the
smooth algebras 𝐶∞(𝕋 2

𝜃
) of the noncommutative 2-tori [109].

The only nonobvious feature of the products (4.11) is their associativity. To check it, we
generalize a little. Suppose that 𝑀 is a compact Riemannian manifold on which an 𝑙-dimensional
torus acts by isometries (there is no shortage of examples of that). Then one can decompose𝐶∞(𝑀)
into spectral subspaces indexed by ℤ𝑙 . A “twisted” product of two homogeneous functions 𝑓𝑟 and
𝑔𝑠 may be defined by

𝑓𝑟 ∗ 𝑔𝑠 := 𝜌(𝑟, 𝑠) 𝑓𝑟𝑔𝑠, (4.12)

where the phase factors { 𝜌(𝑟, 𝑠) ∈ U(1) : 𝑟, 𝑠 ∈ ℤ𝑙 } make up a 2-cocycle on the additive group
ℤ𝑙 . The cocycle relation

𝜌(𝑟, 𝑠 + 𝑡)𝜌(𝑠, 𝑡) = 𝜌(𝑟, 𝑠)𝜌(𝑟 + 𝑠, 𝑡) (4.13)

ensures that the new product is associative. To define such a cocycle, one could take [106]:

𝜌(𝑟, 𝑠) := exp
{
−2𝜋𝑖

∑
𝑗<𝑘 𝑟 𝑗𝜃 𝑗 𝑘 𝑠𝑘

}
,

where 𝜃 = [𝜃 𝑗 𝑘 ] is a real 𝑙 × 𝑙 matrix. Complex conjugation of functions remains an involution
for the new product provided that the matrix 𝜃 is skewsymmetric. (When 𝑙 = 2, it is customary to
replace the matrix 𝜃 by the real number 𝜃12 = −𝜃21and, rather sloppily, call this number 𝜃, too; but
in higher dimensions one is forced to deal with a matrix of parameters.) The product (4.12) defines
a 𝐶∗-algebra which, when 𝑀 = 𝕋 𝑙 , is isomorphic to that of the noncommutative torus 𝐶 (𝕋 𝑙

𝜃
) with

parameter matrix 𝜃, as we shall soon see.
Moreover, we may define a “Moyal product”:

𝑓𝑟 × 𝑔𝑠 := 𝜎(𝑟, 𝑠) 𝑓𝑟𝑔𝑠, (4.14)

by replacing 𝜌 by its skewsymmetrized version,

𝜎(𝑟, 𝑠) := exp
{
−𝜋𝑖∑𝑙

𝑗 ,𝑘=1 𝑟 𝑗𝜃 𝑗 𝑘 𝑠𝑘
}
, (4.15)

52



which is again a group 2-cocycle; in fact, 𝜌 and 𝜎 are cohomologous as group cocycles [86],
therefore they define isomorphic 𝐶∗-algebras.

▶ To see why (4.14) should be called a Moyal product, let us briefly recall the real thing. The
quantum product of two functions on the phase space ℝ2𝑚 was introduced by Moyal [75] using a
series development in powers of ℏ whose first nontrivial term gives the Poisson bracket; later, it was
noticed [81] that it could be rewritten in an integral form [50]:

( 𝑓 ×𝐽 𝑔) (𝑥) := (𝜋ℏ)−2𝑚
∬

𝑓 (𝑥 + 𝑠)𝑔(𝑥 + 𝑡) 𝑒2𝑖𝑠·𝐽𝑡/ℏ 𝑑𝑠 𝑑𝑡,

where 𝐽 =

(
0 1
−1 0

)
is the skewsymmetric matrix giving the standard symplectic structure on ℝ2𝑚

(and the dot is the usual scalar product). This is in fact the Fourier transform of the “twisted
convolution” of phase-space functions which goes back to von Neumann’s work on the Schrödinger
representation [78]. For suitable classes of functions and distributions on ℝ2𝑚, it is an oscillatory
integral, which yields Moyal’s series development as an asymptotic expansion in powers of ℏ

[44, 107].
This integral form of the Moyal product is the starting point for a general deformation theory of

𝐶∗-algebras, which was undertaken by Rieffel [87]. He gave it a mildly improved presentation by
rewriting it as

( 𝑓 ×𝐽 𝑔) (𝑥) :=
∬

𝑓 (𝑥 + 𝐽𝑠)𝑔(𝑥 + 𝑡) 𝑒2𝜋𝑖𝑠·𝑡 𝑑𝑠 𝑑𝑡,

taking ℏ = 2 and rescaling the measure on ℝ2𝑚. He then replaced the functions 𝑓 , 𝑔 by elements
𝑎, 𝑏 of any 𝐶∗-algebra 𝐴, and the translations 𝑓 (𝑥) ↦→ 𝑓 (𝑥 + 𝑡) by a strongly continuous action 𝛼 of
ℝ𝑙 on 𝐴 by automorphisms; and he replaced the original matrix 𝐽 by any skewsymmetric real 𝑙 × 𝑙
matrix, still called 𝐽, ending up with

𝑎 ×𝐽 𝑏 :=
∬

ℝ𝑙×ℝ𝑙

𝛼𝐽𝑠 (𝑎)𝛼𝑡 (𝑏) 𝑒2𝜋𝑖𝑠·𝑡 𝑑𝑠 𝑑𝑡. (4.16)

This formula makes sense, as an oscillatory integral, for elements 𝑎, 𝑏 in the subalgebra 𝐴∞ :=
{ 𝑎 ∈ 𝐴 : 𝑡 ↦→ 𝛼𝑡 (𝑎) is smooth }, which is a Fréchet pre-𝐶∗-algebra (as a subalgebra of the original
𝐶∗-algebra 𝐴).

We wish to complete the algebra (𝐴∞,×𝐽) to a𝐶∗-algebra 𝐴𝐽 , which in general is not isomorphic
to 𝐴 (for instance, 𝐴 may be commutative while the new product is not). The task is to find a new
norm ∥ · ∥𝐽 on 𝐴∞ with the 𝐶∗-property ∥𝑎∗ ×𝐽 𝑎∥𝐽 = ∥𝑎∥2

𝐽
; then 𝐴𝐽 is just the completion of

𝐴∞ in this norm. Rieffel achieved this by considering the left multiplication operators 𝐿𝐽𝑎 = 𝐿𝐽 (𝑎)
given by

𝐿𝐽𝑎 𝑓 (𝑥) :=
∬

𝛼𝑥+𝐽𝑠 (𝑎) 𝑓 (𝑥 + 𝑡) 𝑒2𝜋𝑖𝑠·𝑡 𝑑𝑠 𝑑𝑡,

where 𝑓 is a smooth 𝐴-valued function which is rapidly decreasing at infinity. A particular
“Schwartz space” of such functions 𝑓 is identified in [87], on which the obvious 𝐴-valued pairing
( 𝑓 | 𝑔) :=

∫
ℝ𝑙 𝑓 (𝑥)∗𝑔(𝑥) 𝑑𝑥 yields a Hilbert-space norm by setting ||| 𝑓 |||2 := ∥( 𝑓 | 𝑓 )∥𝐴. It can then

be shown that if 𝑎 ∈ 𝐴∞, 𝐿𝐽𝑎 is a bounded operator on this Hilbert space; ∥𝑎∥𝐽 is defined to be the
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operator norm of 𝐿𝐽𝑎. Importantly, 𝐿𝐽 is a homomorphism:

𝐿𝐽 (𝑎 ×𝐽 𝑏) 𝑓 (𝑥) =
∬

𝛼𝑥+𝐽𝑠 (𝑎 ×𝐽 𝑏) 𝑓 (𝑥 + 𝑡) 𝑒2𝜋𝑖𝑠·𝑡 𝑑𝑠 𝑑𝑡

=

⨌
𝛼𝑥+𝐽𝑠+𝐽𝑢 (𝑎)𝛼𝑥+𝐽𝑠+𝑣 (𝑏) 𝑓 (𝑥 + 𝑡) 𝑒2𝜋𝑖(𝑠·𝑡+𝑢·𝑣) 𝑑𝑢 𝑑𝑣 𝑑𝑠 𝑑𝑡

=

⨌
𝛼𝑥+𝐽𝑢′ (𝑎)𝛼𝑥+𝑣+𝐽𝑠 (𝑏) 𝑓 (𝑥 + 𝑣 + 𝑡′) 𝑒2𝜋𝑖(𝑠·𝑡′+𝑢′·𝑣) 𝑑𝑠 𝑑𝑡′ 𝑑𝑢′ 𝑑𝑣

=

∬
𝛼𝑥+𝐽𝑢′ (𝑎)𝐿𝐽𝑏 𝑓 (𝑥 + 𝑣) 𝑒

2𝜋𝑖𝑢′·𝑣 𝑑𝑢′ 𝑑𝑣

= 𝐿𝐽𝑎𝐿
𝐽
𝑏 𝑓 (𝑥), (4.17)

so that 𝐿𝐽 (𝑎 ×𝐽 𝑏) = 𝐿𝐽 (𝑎)𝐿𝐽 (𝑏). The calculation uses only the change of variable 𝑡′ := 𝑡 − 𝑣,
𝑢′ := 𝑠 + 𝑢, for which 𝑠 · 𝑡 + 𝑢 · 𝑣 = 𝑠 · 𝑡′ + 𝑢′ · 𝑣.

Rieffel’s construction provides a deformation 𝐴 ↦→ 𝐴𝐽 of 𝐶∗-algebras which is explicit only on
the smooth subalgebra 𝐴∞. This construction has several useful functorial properties which we now
list, referring to the monograph [87] for the proofs.

• If 𝐴 and 𝐵 are two𝐶∗-algebras carrying the respective actions 𝛼 and 𝛽 of ℝ𝑙 , and if 𝜙 : 𝐴→ 𝐵

is a ∗-homomorphism intertwining them: 𝜙 𝛼𝑡 = 𝛽𝑡 𝜙 for all 𝑡, then 𝜙(𝐴∞) ⊆ 𝐵∞ and the
restriction of 𝜙 to 𝐴∞ extends uniquely to a ∗-homomorphism 𝜙𝐽 : 𝐴𝐽 → 𝐵𝐽 .

• The map 𝜙𝐽 is injective if and only if 𝜙 is injective, and 𝜙𝐽 is surjective if and only if 𝜙 is
surjective.

• When 𝐴 = 𝐵 and 𝛼 = 𝛽, we may take 𝜙 = 𝛼𝑠 for any 𝑠, because 𝛼𝑠𝛼𝑡 = 𝛼𝑠+𝑡 = 𝛼𝑡𝛼𝑠 for all 𝑡;
thus 𝛼𝐽 : 𝑠 ↦→ (𝛼𝑠)𝐽 is an action of ℝ𝑙 on 𝐴𝐽 by automorphisms, whose restriction to 𝐴∞

coincides with the original action 𝛼.

• Deforming (𝐴𝐽 , 𝛼𝐽) with another skewsymmetric matrix 𝐾 gives a 𝐶∗-algebra isomorphic to
𝐴𝐽+𝐾 . In particular, if 𝐾 = −𝐽, the second deformation recovers the original algebra 𝐴.

• The smooth subalgebra (𝐴𝐽)∞ of 𝐴𝐽 under the action 𝛼𝐽 coincides exactly with the original
smooth subalgebra 𝐴∞ (although their products are different).

When the action 𝛼 of ℝ𝑙 is periodic, so that 𝛼𝑡 = 𝜄𝐴 for each 𝑡 in a subgroup 𝐿, then 𝛼 is
effectively an action of the abelian group 𝐻 = ℝ𝑙/𝐿, and 𝐻 ≃ 𝕋 𝑘 ×ℝ𝑙−𝑘 for some 𝑘 . Suppose that
𝐻 is compact, i.e., 𝑘 = 𝑙 and 𝐻 ≃ 𝕋 𝑙 . Then 𝐴∞ decomposes into spectral subspaces { 𝐸𝑝 : 𝑝 ∈ 𝐿 }
where 𝛼𝑠 (𝑎𝑝) = 𝑒2𝜋𝑖𝑝·𝑠𝑎𝑝 for 𝑎𝑝 ∈ 𝐸𝑝. If 𝑏𝑞 ∈ 𝐸𝑞 also, one can check [87, Prop. 2.21] that

𝑎𝑝 ×𝐽 𝑏𝑞 = 𝑒−2𝜋𝑖𝑝·𝐽𝑞𝑎𝑝𝑏𝑞 .

On comparing this with (4.14), we see that if 𝐴 = 𝐶 (𝕋 𝑙) and 𝐽 := 1
2𝜃, then 𝐴𝐽 is none other than the

noncommutative 𝑙-torus 𝐶 (𝕋 𝑙
𝜃
). Moreover, if 𝐴 = 𝐶 (𝕊4) and 𝜃 is a real number, then the rotation

action of 𝕋 2 on 𝕊4 and the parameter matrix

𝑄 :=
1
2

(
0 𝜃

−𝜃 0

)
define a deformation such that 𝐶 (𝕊4)𝑄 ≃ 𝐶 (𝕊4

𝜃
).
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▶ We now apply this machinery to the case of the𝐶∗-algebra𝐶 (𝐺), where𝐺 is a compact connected
Lie group. The dense subalgebra R(𝐺) is a Hopf algebra: we may ask how its coalgebra structure
is modified by this kind of deformation. The answer is: not at all! It turns out that, for suitable
parameter matrices 𝐽, the coproduct remains an algebra homomorphism for the new product ×𝐽 .
This was seen early on by Dubois-Violette [42] in the context of Woronowicz’ compact quantum
groups: he noticed that the matrix corepresentations of 𝐶 (SU𝑞 (𝑁)) and similar bialgebras could
be seen as different products on the same coalgebra.

There are many ways in which a torus can act on 𝐺. Indeed, any connected abelian closed
subgroup 𝐻 of 𝐺 is a torus; by the standard theory of compact Lie groups [13, 97], any such 𝐻
is included in a maximal torus, and all maximal tori are conjugate. Thus 𝐻 can act on 𝐺 by left
translation, right translation, or conjugation. In what follows, we shall focus on the action of the
doubled torus 𝐻 × 𝐻 on 𝐺, given by

(ℎ, 𝑘) · 𝑥 := ℎ𝑥𝑘−1. (4.18)

The corresponding action on 𝐶 (𝐺) is [(ℎ, 𝑘) · 𝑓 ] (𝑥) := 𝑓 (ℎ−1𝑥𝑘). If h is the Lie algebra of 𝐻,
we may pull this back to a periodic action of the h ⊕ h on 𝐶 (𝐺). For notational convenience, we
choose and fix a basis for the vector space h ≃ ℝ𝑙 , which allows to write the exponential mapping
as a homomorphism 𝑒 : ℝ𝑙 → 𝐻 whose kernel is the integer lattice ℤ𝑙 . If 𝜆 := 𝑒(1, 1, . . . , 1), we
may write 𝜆𝑠 := 𝑒(𝑠) for 𝑠 ∈ ℝ𝑙 ; and the action of h ⊕ h on 𝐶 (𝐺) becomes

[𝛼(𝑠, 𝑡) 𝑓 ] (𝑥) := 𝑓 (𝜆−𝑠𝑥𝜆𝑡). (4.19)

The coefficient matrix 𝐽 for the Moyal product (4.16) is now a skewsymmetric matrix in 𝑀2𝑙 (ℝ).
It is argued in [90] – see also [105, §4] – that compatibility with the coalgebra structure is to be
expected only if 𝐽 splits as the direct sum of two opposing 𝑙 × 𝑙 matrices:

𝐽 :=
(
𝑄 0
0 −𝑄

)
(4.20)

where 𝑄 ∈ 𝑀𝑙 (ℝ) is evidently skewsymmetric. Here, we accept this as an Ansatz and explore
where it leads.

The Moyal product on the group manifold 𝐺 can now be written as

( 𝑓 ×𝐽 𝑔) (𝑥) :=
∫
h4
𝑓 (𝜆−𝑄𝑠𝑥𝜆−𝑄𝑡)𝑔(𝜆−𝑢𝑥𝜆𝑣) 𝑒2𝜋𝑖(𝑠·𝑢+𝑡·𝑣) 𝑑𝑠 𝑑𝑡 𝑑𝑢 𝑑𝑣. (4.21)

We remind ourselves that this makes sense as an oscillatory integral provided 𝑓 , 𝑔 ∈ 𝐶∞(𝐺), since
the smooth subalgebra of 𝐶 (𝐺) for the action (4.19) certainly includes 𝐶∞(𝐺); it could, however,
be larger, for instance if the torus 𝐻 is not maximal.

In subsection 1.2, the coproduct, counit and antipode for the Hopf algebra R(𝐺) are defined by

Δ 𝑓 (𝑥, 𝑦) := 𝑓 (𝑥𝑦), 𝜀( 𝑓 ) := 𝑓 (1), 𝑆 𝑓 (𝑥) := 𝑓 (𝑥−1). (4.22)

These formulas make sense in 𝐶∞(𝐺), which includes R(𝐺) since representative functions are
real-analytic; or even in 𝐶 (𝐺). In accordance with the remarks at the end of subsection 1.2, we
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shall now discard the algebraic tensor product and work in the smooth category. The coproduct
may now be regarded as a homomorphism

Δ : 𝐶∞(𝐺) → 𝐶∞(𝐺 × 𝐺),

the counit is a homomorphism 𝜀 : 𝐶∞(𝐺) → ℂ, and the coalgebra relations (Δ⊗ 𝜄)Δ = (𝜄⊗Δ)Δ and
(𝜀 ⊗ 𝜄)Δ = (𝜄 ⊗ 𝜀)Δ = 𝜄 continue to hold. Moreover, the antipode 𝑆 is an algebra antiautomorphism
of 𝐶∞(𝐺).

Let us check that all of those statements continue to hold when the pointwise product of functions
in 𝐶∞(𝐺) is replaced by a Moyal product. The following calculations are taken from [88]; they all
make use of changes of variable similar to that of (4.17). First of all,

(Δ 𝑓 ×𝐽 Δ𝑔) (𝑥, 𝑦) =
∫
h8
𝑓 (𝜆−𝑄𝑠𝑥𝜆−𝑄𝑡−𝑄𝑠′𝑦𝜆−𝑄𝑡′)𝑔(𝜆−𝑢𝑥𝜆𝑣−𝑢′𝑦𝜆𝑣′) 𝑒2𝜋𝑖(𝑠·𝑢+𝑡·𝑣+𝑠′·𝑢′+𝑡′·𝑣′) 𝑑𝑠 · · · 𝑑𝑣′

=

∫
h8
𝑓 (𝜆−𝑄𝑠𝑥𝜆−𝑄𝑡′′𝑦𝜆−𝑄𝑡′)𝑔(𝜆−𝑢𝑥𝜆−𝑢′′𝑦𝜆𝑣′) 𝑒2𝜋𝑖(𝑠·𝑢+𝑡′′·𝑣+𝑠′·𝑢′′+𝑡′·𝑣′) 𝑑𝑠 · · · 𝑑𝑣′

=

∫
h6
𝑓 (𝜆−𝑄𝑠𝑥𝜆−𝑄𝑡′′𝑦𝜆−𝑄𝑡′)𝑔(𝜆−𝑢𝑥𝜆−𝑢′′𝑦𝜆𝑣′) 𝑒2𝜋𝑖(𝑠·𝑢+𝑡′·𝑣′) 𝛿(𝑡′′) 𝛿(𝑢′′) 𝑑𝑠 · · · 𝑑𝑣′

=

∫
h4
𝑓 (𝜆−𝑄𝑠𝑥𝑦𝜆−𝑄𝑡′)𝑔(𝜆−𝑢𝑥𝑦𝜆𝑣′) 𝑒2𝜋𝑖(𝑠·𝑢+𝑡′·𝑣′) 𝑑𝑠 𝑑𝑡′ 𝑑𝑢 𝑑𝑣′

= ( 𝑓 ×𝐽 𝑔) (𝑥𝑦) = Δ( 𝑓 ×𝐽 𝑔) (𝑥, 𝑦).

Integrations like
∫
h
𝑒2𝜋𝑖𝑡′′·𝑣 𝑑𝑣 = 𝛿(𝑡′′) are a convenient shorthand for the Fourier inversion theorem.

Next,
( 𝑓 ×𝐽 𝑔) (1) =

∫
h4
𝑓 (𝜆−𝑄(𝑠+𝑡))𝑔(𝜆𝑣−𝑢) 𝑒2𝜋𝑖(𝑠·𝑢+𝑡·𝑣) 𝑑𝑠 𝑑𝑡 𝑑𝑢 𝑑𝑣,

which simplifies to ∫
h4
𝑓 (𝜆−𝑄𝑠′)𝑔(𝜆𝑣′) 𝑒2𝜋𝑖(𝑠′·𝑢+𝑡·𝑣′) 𝑑𝑠′ 𝑑𝑡 𝑑𝑢 𝑑𝑣′

=

∫
h2
𝑓 (𝜆−𝑄𝑠′)𝑔(𝜆𝑣′) 𝛿(𝑠′) 𝛿(𝑣′) 𝑑𝑠′ 𝑑𝑣′ = 𝑓 (1) 𝑔(1),

so 𝜀( 𝑓 ×𝐽 𝑔) = 𝜀( 𝑓 )𝜀(𝑔). Finally, if 𝑄 is invertible, then

(𝑆 𝑓 ×𝐽 𝑆𝑔) (𝑥) =
∫
h4
𝑓 (𝜆𝑄𝑡𝑥−1𝜆𝑄𝑠)𝑔(𝜆−𝑣𝑥−1𝜆𝑢) 𝑒2𝜋𝑖(𝑠·𝑢+𝑡·𝑣) 𝑑𝑠 𝑑𝑡 𝑑𝑢 𝑑𝑣

= (det𝑄)−2
∫
h4
𝑓 (𝜆−𝑡′𝑥−1𝜆𝑠

′)𝑔(𝜆−𝑣𝑥−1𝜆−𝑢) 𝑒−2𝜋𝑖(𝑄−1𝑡′·𝑣+𝑄−1𝑠′·𝑢) 𝑑𝑠′ 𝑑𝑡′ 𝑑𝑢 𝑑𝑣

=

∫
h4
𝑓 (𝜆−𝑡′𝑥−1𝜆𝑠

′)𝑔(𝜆−𝑄𝑣′𝑥−1𝜆−𝑄𝑢
′) 𝑒2𝜋𝑖(𝑡′·𝑣′+𝑠′·𝑢′) 𝑑𝑠′ 𝑑𝑡′ 𝑑𝑢′ 𝑑𝑣′

= (𝑔 ×𝐽 𝑓 ) (𝑥−1) = 𝑆(𝑔 ×𝐽 𝑓 ) (𝑥),

where the skewsymmetry of 𝑄 has been used. On the other hand, if 𝑄 = 0, then 𝑓 ×𝐽 𝑔 = 𝑓 𝑔 and
the calculation reduces to (𝑆 𝑓 ×𝐽 𝑆𝑔) (𝑥) = 𝑓 (𝑥−1)𝑔(𝑥−1) = 𝑆(𝑔 ×𝐽 𝑓 ) (𝑥); since we may integrate
separately over the nullspace of𝑄 and its orthogonal complement, the relation 𝑆 𝑓 ×𝐽 𝑆𝑔 = 𝑆(𝑔×𝐽 𝑓 )
holds in general.
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Exercise 4.1. Show, by similar calculations, that

𝑚(𝜄 ⊗ 𝑆) (Δ 𝑓 ) = 𝑚(𝑆 ⊗ 𝜄) (Δ 𝑓 ) = 𝜀( 𝑓 ) 1

whenever 𝑓 ∈ 𝐶∞(𝐺). ♢

The functoriality of Rieffel’s construction then lifts these maps to the 𝐶∗-level, without further
calculation. That is: the maps Δ, 𝜀 and 𝑆, defined as above on smooth functions only, extend
respectively to a ∗-homomorphismΔ𝐽 : 𝐶 (𝐺)𝐽 → 𝐶 (𝐺)𝐽⊗𝐶 (𝐺)𝐽 (using the minimal tensor product
of 𝐶∗-algebras), a character 𝜀𝐽 : 𝐶 (𝐺)𝐽 → ℂ, and a ∗-antiautomorphism 𝑆𝐽 : 𝐶 (𝐺)𝐽 → 𝐶 (𝐺)𝐽 .

However, the Moyal product itself on 𝐶∞(𝐺) generally need not extend to a continuous linear
map from 𝐶 (𝐺)𝐽 ⊗𝐶 (𝐺)𝐽 to 𝐶 (𝐺)𝐽 . This may happen because the product map 𝑚 is generally not
continuous for the minimal tensor product. (There is an interesting category of “Hopf𝐶∗-algebras”,
introduced by Vaes and van Daele [102], which does have continuous products, but the link with
Moyal deformations remains to be worked out.)

The𝐶∗-algebras𝐶 (𝐺)𝐽 , arising from Moyal products whose coefficient matrices are of the form
(4.20), are fully deserving of the name compact quantum groups. Indeed, they are thus baptized
in [88]. They differ from the compact quantum groups of Woronowicz [113] in that they explicitly
define the algebraic operations on smooth subalgebras, and are thus well-adapted to the needs of
noncommutative geometry.

4.3 Isospectral deformations of homogeneous spin geometries

The Connes–Landi spheres 𝕊4
𝜃

can now be seen as homogeneous spaces for compact quantum
groups. The ordinary 4-sphere is certainly a homogeneous space; in fact, it is – almost by definition
– an orbit of the 5-dimensional rotation group: thus, 𝕊4 ≈ SO(5)/SO(4). Now, SO(5) is a compact
simple Lie group of rank two; that is to say, its maximal torus is 𝕋 2. We can exhibit this maximal
torus as the group of block-diagonal matrices

ℎ =

©«
cos 𝜙1 sin 𝜙1
− sin 𝜙1 cos 𝜙1

cos 𝜙2 sin 𝜙2
− sin 𝜙2 cos 𝜙2

1

ª®®®®®¬
.

By regarding 𝕊4 as the orbit of (0, 0, 0, 0, 1) in ℝ5, whose isotropy subgroup is SO(4), we see that
the maximal torus of SO(4) is also 𝕋 2. When the 4-sphere is identified as the right-coset space
SO(5)/SO(4), and the doubled torus 𝕋 2 × 𝕋 2 is made to act on SO(5) by left-right multiplication
as in (4.18), then the right action of the second 𝕋 2 is absorbed in the cosets, but the left action of
the first 𝕋 2 passes to the quotient. This is a group-theoretical description of how the 2-torus acts by
rotations on the 4-sphere. The action is isometric since the left translations preserve the invariant
metric on the group, and also preserve the induced SO(5)-invariant metric on the coset space.

There is an immediate generalization, proposed in [105], which highlights the nature of this
torus action. Consider a tower of subgroups

𝐻 ⩽ 𝐾 ⩽ 𝐺,
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where𝐺 is a compact connected Lie group, 𝐾 is a closed subgroup of𝐺, and𝐻 is a closed connected
abelian subgroup of 𝐾 , i.e., a torus. The example we have just seen reappears in higher dimensions
as

𝕋 𝑙 ⩽ SO(2𝑙) ⩽ SO(2𝑙 + 1), with 𝕊2𝑙 ≈ SO(2𝑙 + 1)/SO(2𝑙).
Odd-dimensional spheres yield a slightly different case:

𝕋 𝑙 ⩽ SO(2𝑙 + 1) ⩽ SO(2𝑙 + 2), with 𝕊2𝑙+1 ≈ SO(2𝑙 + 2)/SO(2𝑙 + 1).

This time, 𝐻 is a maximal torus in 𝐾 but not in 𝐺.
Since 𝐻 ⩽ 𝐾 , the left-right action (4.18) of 𝐻 × 𝐻 on both 𝐺 and 𝐾 induces a left action of 𝐻

on the quotient space 𝑀 := 𝐺/𝐾 , since the right action of 𝐻 is absorbed in the right 𝐾-cosets. If
we deform 𝐶 (𝐺), under the action of 𝐻 × 𝐻, by means of a Moyal product with parameter matrix
𝐽 = 𝑄 ⊕ (−𝑄), the natural thing to expect is that the 𝐶∗-algebra 𝐶 (𝐺/𝐾) undergoes a deformation
governed by 𝑄 only. We now prove this, following [105].

It helps to recall the discussion of homogeneous spaces at the end of subsection 1.2. We
are now in a position to replace the generic function space F(𝐺) used there by either 𝐶∞(𝐺)
or 𝐶 (𝐺), according to need. In particular, the algebra isomorphism 𝜁 : 𝐶∞(𝐺)𝐾 → 𝐶∞(𝐺/𝐾)
given by 𝜁 𝑓 (𝑥) := 𝑓 (𝑥) intertwines the coproduct Δ on 𝐶∞(𝐺) with the coaction 𝜌 : 𝐶∞(𝑀) →
𝐶∞(𝐺) ⊗ 𝐶∞(𝐺/𝐾) defined by 𝜌 𝑓 (𝑥, �̄�) := 𝑓 (𝑥𝑦).

We can distinguish three abelian group actions here. First there is action 𝛼 of h ⊕ h on 𝐶 (𝐺),
already given by (4.19). Next, the formula (𝛽𝑡ℎ) (𝑥) := ℎ(𝜆−𝑡𝑥) determines an action 𝛽 of h on
𝐶 (𝐺/𝐾). Then there is action 𝛾 of h on 𝐶 (𝐺)𝐾 where (𝛾𝑡 𝑓 ) (𝑥) := 𝑓 (𝜆−𝑡𝑥); it can be regarded as
an action of h ⊕ h where the second factor acts trivially, so that 𝛾 is just the restriction of 𝛼 to the
subspace 𝐶 (𝐺)𝐾 of 𝐶 (𝐺).

Let 𝑓 , 𝑔 ∈ 𝐶∞(𝐺)𝐾 be smooth right 𝐾-invariant functions. Then

( 𝑓 ×𝐽 𝑔) (𝑥) =
∫
h4
𝑓 (𝜆−𝑄𝑠𝑥𝜆−𝑄𝑡)𝑔(𝜆−𝑢𝑥𝜆𝑣) 𝑒2𝜋𝑖(𝑠·𝑢+𝑡·𝑣) 𝑑𝑠 𝑑𝑡 𝑑𝑢 𝑑𝑣

=

∫
h4
𝑓 (𝜆−𝑄𝑠𝑥)𝑔(𝜆−𝑢𝑥) 𝑒2𝜋𝑖(𝑠·𝑢+𝑡·𝑣) 𝑑𝑠 𝑑𝑡 𝑑𝑢 𝑑𝑣

=

∫
h2
𝑓 (𝜆−𝑄𝑠𝑥)𝑔(𝜆−𝑢𝑥) 𝑒2𝜋𝑖𝑠·𝑢 𝑑𝑠 𝑑𝑢 = ( 𝑓 ×𝑄 𝑔) (𝑥),

where the 𝑄-product comes from the action 𝛾 on 𝐶 (𝐺)𝐾 . On passing to 𝐶∞(𝐺/𝐾) with the
isomorphism 𝜁 , which obviously intertwines the actions 𝛾 and 𝛽, this calculation shows that

𝜁 ( 𝑓 ×𝐽 𝑔) = 𝜁 𝑓 ×𝑄 𝜁𝑔 for all 𝑓 , 𝑔 ∈ 𝐶∞(𝐺)𝐾 .

In other words, the 𝐽-product on 𝐶 (𝐺) induces the 𝑄-product, as claimed.
The reason for this bookkeeping with actions and isomorphisms is to be able to lift everything

to the 𝐶∗-level, using Rieffel’s functoriality theorems. First, since 𝜁𝛾𝑡 = 𝛽𝑡𝜁 for each 𝑡 ∈ h, the
isomorphism 𝜁−1 : 𝐶∞(𝐺/𝐾) → 𝐶∞(𝐺)𝐾 extends to a ∗-isomorphism of 𝐶 (𝐺/𝐾)𝑄 onto 𝐶 (𝐺)𝐾

𝑄
.

Since 𝛾 is the restriction of 𝛼 to 𝐶 (𝐺)𝐾 , the inclusion 𝐶∞(𝐺)𝐾 ↩→ 𝐶∞(𝐺) is equivariant for the
actions 𝛾 and 𝛼, so it extends to an injective ∗-homomorphism from 𝐶 (𝐺)𝐾

𝑄
to 𝐶 (𝐺)𝐽 . We may

summarize by saying that the isomorphism and inclusion

𝐶 (𝐺/𝐾) ≃ 𝐶 (𝐺)𝐾 ↩→ 𝐶 (𝐺)
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restricts to the smooth subalgebras

𝐶∞(𝐺/𝐾) ≃ 𝐶∞(𝐺)𝐾 ↩→ 𝐶∞(𝐺),

and from there extends to an isomorphism and inclusion

𝐶 (𝐺/𝐾)𝑄 ≃ 𝐶 (𝐺)𝐾𝑄 ↩→ 𝐶 (𝐺)𝐽 .

This shows that the deformed 𝐶∗-algebra 𝐶 (𝐺/𝐾)𝑄 is an embedded homogeneous space for the
compact quantum group 𝐶 (𝐺)𝐽 .
Example 4.1. To get the noncommutative spheres of Connes and Landi, just take 𝐺 = SO(2𝑙 + 1),
𝐾 = SO(2𝑙) and let 𝐻 = 𝕋 𝑙 be the maximal torus for both. Then let 𝑄 = 1

2𝜃, where 𝜃 is any real
skewsymmetric 𝑙 × 𝑙 matrix. The resulting deformation of 𝐶 (𝕊2𝑙) is the 𝐶∗-algebra 𝐶 (𝕊2𝑙

𝜃
), and its

smooth subalgebra (for the 𝕋 𝑙-action) is just 𝐶∞(𝕊2𝑙
𝜃
) := 𝐶∞(𝕊2𝑙) with the Moyal product ×𝑄 .

The odd-dimensional spheres 𝕊2𝑙+1 = SO(2𝑙 + 2)/SO(2𝑙 + 1) may be deformed in like manner,
using, say, the maximal torus 𝕋 𝑙 of SO(2𝑙+1). However, in this case, since this torus is not maximal
in the full group SO(2𝑙+2), one can regard the 𝕋 𝑙-rotations as an action of the torus 𝕋 𝑙+1 that is trivial
in one direction. The algebras 𝐶 (𝕊2𝑙+1

𝜃
), with their 𝕋 𝑙-actions and the corresponding deformations

of 𝐶 (SO(2𝑙 + 2)), have recently been discussed extensively by Connes and Dubois-Violette [29]
from the cohomological standpoint.

In fact, in [29], the noncommutative spheres are constructed in another way, by directly obtaining
generators and relations for the corresponding algebras from twistings of Clifford algebras, as
already outlined in [33], before checking that those algebras also come from 𝜃-deformations. The
advantage of this procedure is that what is obtained is manifestly spherical, in the sense that the
homology-sphere condition (4.6), or its odd-dimensional counterpart, is built-in [43].

The simplest nonspherical examples in even dimensions are ℂℙ2 ≃ SU(3)/U(2) and the 6-
dimensional flag manifold 𝔽 6 = SU(3)/𝕋 2. With 𝐺 = SU(3) and 𝐻 = 𝐾 = 𝕋 2 and any irrational
𝜃 = 2𝑄12, one obtains a family of 6-dimensional quantized flag manifolds.

▶ We have outlined a general construction of noncommutative algebras, including all the Connes–
Landi spheres, which come equipped with dense pre-𝐶∗-algebras. The final step is to build
noncommutative spin geometries based on these algebras. This was done by Connes and Landi for
their spheres [33] by means of an isospectral deformation. It was observed in [105], and likewise
in [29], that their algorithm extends directly to any of the aforementioned quantum homogeneous
spaces, with only notational changes.

The compact homogeneous manifold 𝐺/𝐾 can be regarded as a Riemannian manifold, since it
has a 𝐺-invariant metric. We shall assume that 𝐺/𝐾 also has a homogeneous spin structure (this
is not always the case; for instance, ℂℙ2 is only spin𝑐, while SU(3)/SO(3) does not even admit
a spin𝑐 structure [47, §2.4]), and we let /𝐷 be the corresponding Dirac operator; it is a selfadjoint
operator on the Hilbert space H of square-integrable spinors. As we shall see, in the end we only
need that the metric, and the Dirac operator, be invariant under the action of the torus 𝐻 rather than
the full group 𝐺.

It is important to remark that the action of 𝐻 by isometries on 𝐺/𝐾 does not lift directly to the
spinor space H (or, if one prefers, to the spinor bundle 𝑆). Rather, in view of the double covering
Spin(𝑛) → SO(𝑛) where 𝑛 = dim𝐺/𝐾 , there is a double covering 𝐻 𝜋−→𝐻 and a homomorphism
𝐻 → Aut(𝑆) which covers the homomorphism 𝐻 → Isom(𝐺/𝐾) [29, §13]. This yields a group of
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unitaries {𝑉𝑥 : 𝑥 ∈ 𝐻 } on H which preserve the subspace Γ∞(𝐺/𝐾, 𝑆) of smooth spinors and cover
the isometries { 𝐼𝑥 : 𝑥 ∈ 𝐻 } of 𝐺/𝐾 . More precisely: if 𝜙, 𝜓 ∈ Γ∞(𝐺/𝐾, 𝑆) and 𝑓 ∈ 𝐶∞(𝐺/𝐾),
then

𝑉𝑥 ( 𝑓 𝜓) = 𝐼𝑥 ( 𝑓 )𝑉𝑥𝜓, and (𝑉𝑥𝜙)†𝑉𝑥𝜓 = 𝐼𝑥 (𝜙†𝜓),
where 𝑥 = 𝜋(𝑥). Consequently, the Dirac operator /𝐷 on H commutes with each 𝑉𝑥 .

Now choose a basis 𝑋1, . . . , 𝑋𝑙 of the Lie algebra h, and for 𝑗 = 1, . . . , 𝑙, let 𝑝 𝑗 be the selfadjoint
operator representing 𝑋 𝑗 on H; if exp: h → 𝐻 and Exp: h → 𝐻 denote the exponential maps, then
𝜋(Exp(𝑡𝑋 𝑗 )) = exp(𝑡𝑋 𝑗/2) and 𝑝 𝑗 = −𝑖 𝑑

𝑑𝑡

��
𝑡=0𝑉Exp(𝑡𝑋 𝑗 ) . Therefore, the spectrum of each operator

𝑝 𝑗 lies either in ℤ or ℤ + 1
2 . For each 𝑟 ∈ ℝ𝑙 , we may define a unitary operator

𝜎(𝑝, 𝑟) := exp
{
−2𝜋𝑖

∑
𝑗 ,𝑘 𝑝 𝑗𝑄 𝑗 𝑘𝑟𝑘

}
, (4.23)

by formally replacing half of the arguments of the group cocycle (4.15) with the operators 𝑝 𝑗 ; its
inverse is the similarly defined operator 𝜎(𝑟, 𝑝). These operators commute with each other and
also with /𝐷, but they do not commute with the representation of 𝐶∞(𝐺/𝐾) on H (multiplication
of spinors by functions).

The unitary conjugations𝑇 ↦→ 𝜎(𝑝, 𝑡)𝑇𝜎(𝑡, 𝑝) define an action of ℝ𝑙 on the algebra of bounded
operators on H, which is periodic on account of the half-integer spectra of the 𝑝 𝑗 , and this action
gives a grading of operators into spectral subspaces, indexed byℤ𝑙 . Therefore, any bounded operator
𝑇 in the common smooth domain of these transformations has a decomposition𝑇 =

∑
𝑟∈ℤ𝑙 𝑇𝑟 , where

the components satisfy the commutation rules

𝜎(𝑝, 𝑟) 𝑇𝑠 = 𝑇𝑠 𝜎(𝑝 + 𝑠, 𝑟) for 𝑟, 𝑠 ∈ ℤ𝑙 .

For any multiplication operator 𝑓 obtained from the representation of the algebra 𝐶∞(𝐺/𝐾) on
spinors, this grading coincides with the previous decomposition 𝑓 =

∑
𝑟∈ℤ𝑙 𝑓𝑟 .

The operator ℤ𝑙-grading allows us to define a “left twist” of 𝑇 by

𝐿 (𝑇) :=
∑︁
𝑟∈ℤ𝑙

𝑇𝑟 𝜎(𝑝, 𝑟).

If 𝑓 , 𝑔 ∈ 𝐶∞(𝐺/𝐾), the group cocycle property (4.13) of 𝜎 shows that

𝐿 ( 𝑓 )𝐿 (𝑔) =
∑︁
𝑟,𝑠

𝑓𝑟 𝜎(𝑝, 𝑟) 𝑔𝑠 𝜎(𝑝, 𝑠) =
∑︁
𝑟,𝑠

𝑓𝑟 𝑔𝑠 𝜎(𝑝 + 𝑠, 𝑟) 𝜎(𝑝, 𝑠)

=
∑︁
𝑟,𝑠

𝑓𝑟 𝑔𝑠 𝜎(𝑟, 𝑠) 𝜎(𝑝, 𝑟 + 𝑠) = 𝐿 ( 𝑓 ×𝑄 𝑔),

on account of (4.14). Therefore, 𝐿 yields a representation of𝐶∞(𝐺/𝐾)𝑄 := (𝐶∞(𝐺/𝐾),×𝑄) on H.
In other words, the Moyal product gives not only an abstract deformation of the algebra 𝐶∞(𝐺/𝐾),
but also – more importantly – it yields a deformation of the spinor representation of 𝐶∞(𝐺/𝐾),
without disturbing the underlying Hilbert space.

The recipe for creating new spin geometries should now be clear: one deforms the algebra
(and its representation), while keeping unchanged all the other terms of the spectral triple: the
Hilbert space H together with its grading 𝜒 if dim(𝐺/𝐾) is even, the operator /𝐷, and the charge
conjugation 𝐶. This deformation is isospectral [33] in the tautological sense that the spectrum in
question is that of the operator /𝐷, which remains the same.
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It remains to check that the new spectral triple satisfies the conditions governing a spin geometry.
First of all, each [ /𝐷, 𝐿( 𝑓 )], for 𝑓 ∈ 𝐶∞(𝐺/𝐾), must be a bounded operator; this is ensured by
noting that

[ /𝐷, 𝐿( 𝑓 )] =
∑︁
𝑟

[ /𝐷, 𝑓𝑟] 𝜎(𝑝, 𝑟) = 𝐿 ( [ /𝐷, 𝑓 ]),

since each [ /𝐷, 𝑓 ] is bounded. The grading operator 𝜒 is unaffected by the torus action on 𝐺/𝐾
since the metric is taken to be 𝐻-invariant: this implies 𝐿 (𝜒) = 𝜒. In view of the previous equation,
the orientation equation 𝜋 /𝐷 (c) = 𝜒 survives after application of 𝐿 to both sides.

The reality condition is more interesting. The charge conjugation operator 𝐶 on spinors [52,
Chap. 9] commutes with all 𝜎(𝑝, 𝑟) (again, due to 𝐻-invariance of the metric). It follows from
(4.23) and the antilinearity of 𝐶 that 𝐶𝑝 𝑗𝐶−1 = −𝑝 𝑗 for each 𝑗 . We can now define a “right twist”

𝑅(𝑇) := 𝐶𝐿 (𝑇)∗𝐶−1 =
∑︁
𝑟∈ℤ𝑙

𝜎(𝑟, 𝑝) 𝐶𝑇∗
𝑟 𝐶

−1 =
∑︁
𝑟∈ℤ𝑙

𝐶𝑇∗
𝑟 𝐶

−1 𝜎(𝑟, 𝑝).

Now, 𝐶 intertwines multiplication operators from 𝐶∞(𝐺/𝐾) with their complex conjugates:
𝐶 𝑓 ∗𝐶−1 = 𝑓 for 𝑓 . Therefore, 𝑅( 𝑓 ) =

∑
𝑟∈ℤ𝑙 𝑓𝑟 𝜎(𝑟, 𝑝), from which one can check that

𝑅( 𝑓 )𝑅(𝑔) = 𝑅( 𝑓 ×−𝑄 𝑔); in other words, 𝑅 gives an antirepresentation of 𝐶∞(𝐺/𝐾)𝑄 on H.
This commutes with the representation 𝐿:

𝐿 ( 𝑓 )𝑅(𝑔) =
∑︁
𝑟,𝑠

𝑓𝑟 𝜎(𝑝, 𝑟) 𝑔𝑠 𝜎(𝑠, 𝑝) =
∑︁
𝑟,𝑠

𝑓𝑟𝑔𝑠 𝜎(𝑝 + 𝑠, 𝑟) 𝜎(𝑠, 𝑝)

=
∑︁
𝑟,𝑠

𝑔𝑠 𝑓𝑟 𝜎(𝑠, 𝑝 + 𝑟) 𝜎(𝑝, 𝑟) =
∑︁
𝑟,𝑠

𝑔𝑠 𝜎(𝑠, 𝑝) 𝑓𝑟 𝜎(𝑝, 𝑟) = 𝑅(𝑔)𝐿 ( 𝑓 ).

The first-order property of the spin geometry is now immediate

[[ /𝐷, 𝐿( 𝑓 )], 𝑅(𝑔)] =
∑︁
𝑟,𝑠

𝜎(𝑝, 𝑟) [[ /𝐷, 𝑓𝑟], 𝑔𝑠] 𝜎(𝑠, 𝑝) = 0,

since [[ /𝐷, 𝑓𝑟], 𝑔𝑠] = 0 in the commutative case (the commutator [ /𝐷, 𝑓𝑟] is an operator of order
zero which commutes with multiplication operators). Regularity and finiteness are straightforward,
since the smooth subalgebra 𝐶∞(𝐺/𝐾) does not grow or shrink under deformations. Poincaré
duality also goes through, on account of another theorem of Rieffel, to the effect that the 𝐾-theory
of the pre-𝐶∗-algebras remains unaffected by deformations [89].

The construction is now complete. We sum up with the following Proposition.
Proposition 4.1. Let 𝐻 ⩽ 𝐾 ⩽ 𝐺 be a tower of compact connected Lie groups where 𝐻 is a
torus, such that 𝐺/𝐾 admits a spin structure. Let (𝐶∞(𝐺/𝐾),H, /𝐷,𝐶, 𝜒) denote any commutative
spin geometry over 𝐶∞(𝐺/𝐾) where H is the spinor space and /𝐷 is the Dirac operator for an
𝐻-invariant metric on 𝐺/𝐾 . Then there is a noncommutative spin geometry obtained from it by
isospectral deformation, whose algebra 𝐶∞(𝐺/𝐾)𝑄 is that of any quantum homogeneous space
obtained from a Moyal product ×𝑄 on 𝐶∞(𝐺/𝐾). □
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Minkowski space”, Int. J. Mod. Phys. A 11 (1996), 4513–4549.

[5] M.-T. Benameur, “Noncommutative geometry and abstract integration theory”, in Geometric and Topological
Methods in Quantum Field Theory, A. Cardona, H. Ocampo and S. Paycha, eds., World Scientific, Singapore,
2003; pp. 157–227.

[6] N. Berline, E. Getzler and M. Vergne, Heat Kernels and Dirac Operators, Springer, Berlin, 1992.

[7] L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics: Theory and Applications,
Addison-Wesley, Reading, MA, 1981.

[8] B. Blackadar, 𝐾-theory for Operator Algebras, 2nd edition, Cambridge University Press, Cambridge, 1998.

[9] F. Bonechi, N. Ciccoli and M. Tarlini, “Noncommutative instantons on the 4-sphere from quantum groups”,
Commun. Math. Phys. 226 (2002), 419–432.
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