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Abstract

We construct a 3+-summable spectral triple (A(SU𝑞 (2)),H, 𝐷) over the quantum group
SU𝑞 (2) which is equivariant with respect to a left and a right action ofU𝑞 (su(2)). The geometry
is isospectral to the classical case since the spectrum of the operator 𝐷 is the same as that of
the usual Dirac operator on the 3-dimensional round sphere. The presence of an equivariant
real structure 𝐽 demands a modification in the axiomatic framework of spectral geometry,
whereby the commutant and first-order properties need be satisfied only modulo infinitesimals
of arbitrary high order.

1 Introduction
In this paper, we show how to successfully construct a (noncommutative) 3-dimensional spectral
geometry on the manifold of the quantum group SU𝑞 (2). This is done by building a 3+-summable
spectral triple (A(SU𝑞 (2)),H, 𝐷) which is equivariant with respect to a left and a right action of
U𝑞 (su(2)). The geometry is isospectral to the classical case in the sense that the spectrum of the
operator 𝐷 is the same as that of the usual Dirac operator on the 3-sphere 𝕊3 ≃ SU(2), with the
“round” metric.

The possibility of such an isospectral deformation was suggested in [10] where the operator
𝐷 was named the “true Dirac” operator. Subsequent investigations [13] seemed to rule out this
deformation because some of the commutators [𝐷, 𝑥], with 𝑥 ∈ A(SU𝑞 (2)), failed to extend to
bounded operators, a property which is essential to the definition of a spectral triple [7].

∗Partially supported by Polish State Committee for Scientific Research (KBN) under grant 2 P03B 022 25.
†Regular Associate of the Abdus Salam ICTP, Trieste.
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These difficulties are overcome here by constructing on a Hilbert space of spinors H a spin
representation of the algebra A(SU𝑞 (2)) which differs slightly from the one used in [13]. Our
spin representation is determined by requiring that it be equivariant with respect to a left and a
right action of U𝑞 (su(2)), a condition which is not present in the previous approach. The role of
Hopf-algebraic equivariance in producing interesting spectral triples has already met with some
success [6, 12]; for a programmatic viewpoint, see [30].

Our construction of an isospectral noncommutative geometry on the manifold of SU𝑞 (2), which
deforms the usual geometry on the 3-dimensional sphere, belongs to an interesting terrain where
noncommutative geometry meets the underlying “spaces” of quantum groups. Recent examples
[11, 12, 26, 29] are concerned with the “two-dimensional” spheres of Podleś [27] and more general
flag manifolds [22]. The left-equivariant spectral triple on SU𝑞 (2) constructed in [6] and fully
analyzed in [9] is not isospectral and does not have a good limit at the classical value of the
deformation parameter.

▶ After a brief review in Section 2 of SU𝑞 (2) and its symmetries, mainly to fix notation, we
construct its left regular representation in Section 3 via equivariance, and transfer that construction
to spinors in Section 4. On the Hilbert space of spinors, we consider in Section 5 a class of
equivariant “Dirac” operators 𝐷. For such an operator 𝐷 having a classical spectrum, that is,
with eigenvalues depending linearly on “total angular momentum”, we prove boundedness of the
commutators [𝐷, 𝑥], for all 𝑥 ∈ A(SU𝑞 (2)). In fact, this equivariant Dirac operator is essentially
determined by a modified first-order condition, as is shown later on.

Since the spectrum is classical, the deformation – from SU(2) to SU𝑞 (2) – is isospectral, and
in particular the metric dimension of the spectral geometry is 3.

The new feature of the spin geometry of SU𝑞 (2) is the nature of the real structure 𝐽, whose
existence is addressed in Section 6. An equivariant 𝐽 is constructed by suitably lifting to the Hilbert
space of spinors H the antiunitary Tomita conjugation operator for the left regular representation
of A(SU𝑞 (2)). However, this 𝐽 is not the Tomita operator for the spin representation; for if it were,
the spectral triple would inherit equivariance under the co-opposite symmetry algebra U1/𝑞 (su(2)),
forcing it to be trivial. Therefore, the equivariant 𝐽 we shall use does not intertwine the spin
representation of A(SU𝑞 (2)) with its commutant, and it is not possible to satisfy all the desirable
properties of a real spectral triple as set forth in [8, 15]. This rupture was already observed in [11];
just as in that paper, we must also weaken the first-order requirement on 𝐷.

In Section 7, we rescue the formalism by showing that the commutant and first-order properties
nevertheless do hold, up to infinitesimals of arbitrary high order. For that, we identify an ideal of
trace-class operators containing all commutation defects; these defects vanish in the classical case.
An appropriately modified first-order condition is given, which distinguishes Dirac operators with
classical spectra.

A discussion of the Connes–Moscovici local index formula for the spectral geometry presented
in this paper is currently under investigation and will be soon reported elsewhere.
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2 Algebraic preliminaries
Definition 2.1. Let 𝑞 be a real number with 0 < 𝑞 < 1, and let A = A(SU𝑞 (2)) be the ∗-algebra
generated by 𝑎 and 𝑏, subject to the following commutation rules:

𝑏𝑎 = 𝑞𝑎𝑏, 𝑏∗𝑎 = 𝑞𝑎𝑏∗, 𝑏𝑏∗ = 𝑏∗𝑏,

𝑎∗𝑎 + 𝑞2𝑏∗𝑏 = 1, 𝑎𝑎∗ + 𝑏𝑏∗ = 1. (2.1)

As a consequence, 𝑎∗𝑏 = 𝑞𝑏𝑎∗ and 𝑎∗𝑏∗ = 𝑞𝑏∗𝑎∗. This becomes a Hopf ∗-algebra under the
coproduct

Δ𝑎 := 𝑎 ⊗ 𝑎 − 𝑞 𝑏 ⊗ 𝑏∗,
Δ𝑏 := 𝑏 ⊗ 𝑎∗ + 𝑎 ⊗ 𝑏,

counit 𝜀(𝑎) = 1, 𝜀(𝑏) = 0, and antipode 𝑆𝑎 = 𝑎∗, 𝑆𝑏 = −𝑞𝑏, 𝑆𝑏∗ = −𝑞−1𝑏∗, 𝑆𝑎∗ = 𝑎.

Remark 2.2. Here we follow Majid’s “lexicographic convention” [23, 24] (where, with 𝑐 = −𝑞𝑏∗,
𝑑 = 𝑎∗, a factor of 𝑞 is needed to restore alphabetical order). Another much-used convention is
related to ours by 𝑎 ↔ 𝑎∗, 𝑏 ↔ −𝑏; see, for instance, [6, 9].

Definition 2.3. The Hopf ∗-algebra U = U𝑞 (su(2)) is generated as an algebra by elements 𝑒, 𝑓 , 𝑘 ,
with 𝑘 invertible, satisfying the relations

𝑒𝑘 = 𝑞𝑘𝑒, 𝑘 𝑓 = 𝑞 𝑓 𝑘, 𝑘2 − 𝑘−2 = (𝑞 − 𝑞−1) ( 𝑓 𝑒 − 𝑒 𝑓 ), (2.2)

and its coproduct Δ is given by

Δ𝑘 = 𝑘 ⊗ 𝑘, Δ𝑒 = 𝑒 ⊗ 𝑘 + 𝑘−1 ⊗ 𝑒, Δ 𝑓 = 𝑓 ⊗ 𝑘 + 𝑘−1 ⊗ 𝑓 .

Its counit 𝜀, antipode 𝑆, and star structure ∗ are given respectively by

𝜀(𝑘) = 1, 𝑆𝑘 = 𝑘−1, 𝑘∗ = 𝑘,

𝜀( 𝑓 ) = 0, 𝑆 𝑓 = −𝑞 𝑓 , 𝑓 ∗ = 𝑒,

𝜀(𝑒) = 0, 𝑆𝑒 = −𝑞−1𝑒, 𝑒∗ = 𝑓 .

There is an automorphism 𝜗 of U𝑞 (su(2)) defined on the algebra generators by

𝜗(𝑘) := 𝑘−1, 𝜗( 𝑓 ) := −𝑒, 𝜗(𝑒) := − 𝑓 . (2.3)

Remark 2.4. We recall that there is another convention for the generators ofU𝑞 (su(2)) in widespread
use: see [19], for instance. The handy compendium [21] gives both versions, denoting by 𝑈̆𝑞 (𝑠𝑢(2))
the version which we adopt here. However, the parameter 𝑞 of this paper corresponds to 𝑞−1 in [21],
or alternatively, we keep the same 𝑞 but exchange 𝑒 and 𝑓 of that book; the equivalence of these
procedures is immediate from the above formulas (2.2).

The older literature uses the convention which we follow here, with generators usually written
as 𝐾 = 𝑘 , 𝑋+ = 𝑓 , 𝑋− = 𝑒.
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We employ the so-called “𝑞-integers”, defined for each 𝑛 ∈ ℤ as

[𝑛] ≡ [𝑛]𝑞 :=
𝑞𝑛 − 𝑞−𝑛
𝑞 − 𝑞−1 provided 𝑞 ≠ 1. (2.4)

Definition 2.5. There is a bilinear pairing between U and A, defined on generators by

⟨𝑘, 𝑎⟩ = 𝑞 1
2 , ⟨𝑘, 𝑎∗⟩ = 𝑞− 1

2 , ⟨𝑒,−𝑞𝑏∗⟩ = ⟨ 𝑓 , 𝑏⟩ = 1,

with all other couples of generators pairing to 0. It satisfies

⟨(𝑆ℎ)∗, 𝑥⟩ = ⟨ℎ, 𝑥∗⟩, for all ℎ ∈ U, 𝑥 ∈ A. (2.5)

We regard U as a subspace of the linear dual of A via this pairing. There are canonical left and
right U-module algebra structures on A [32] such that

⟨𝑔, ℎ ⊲ 𝑥⟩ := ⟨𝑔ℎ, 𝑥⟩, ⟨𝑔, 𝑥 ⊳ ℎ⟩ := ⟨ℎ𝑔, 𝑥⟩, for all 𝑔, ℎ ∈ U, 𝑥 ∈ A.

They are given by ℎ ⊲ 𝑥 := (id ⊗ℎ) Δ𝑥 and 𝑥 ⊳ ℎ := (ℎ ⊗ id) Δ𝑥, or equivalently by

ℎ ⊲ 𝑥 := 𝑥(1) ⟨ℎ, 𝑥(2)⟩, 𝑥 ⊳ ℎ := ⟨ℎ, 𝑥(1)⟩ 𝑥(2) , (2.6)

using the Sweedler notation Δ𝑥 =: 𝑥(1) ⊗ 𝑥(2) with implicit summation.

The right and left actions of U on A are mutually commuting:

(ℎ ⊲ 𝑎) ⊳ 𝑔 = (𝑎 (1) ⟨ℎ, 𝑎 (2)⟩) ⊳ 𝑔 = ⟨𝑔, 𝑎 (1)⟩ 𝑎 (2) ⟨ℎ, 𝑎 (3)⟩ = ℎ ⊲ (⟨𝑔, 𝑎 (1)⟩ 𝑎 (2)) = ℎ ⊲ (𝑎 ⊳ 𝑔),

and it follows from (2.5) that the star structure is compatible with both actions:

ℎ ⊲ 𝑥∗ = ((𝑆ℎ)∗ ⊲ 𝑥)∗, 𝑥∗ ⊳ ℎ = (𝑥 ⊳ (𝑆ℎ)∗)∗, for all ℎ ∈ U, 𝑥 ∈ A.

On the generators, the left action is given explicitly by

𝑘 ⊲ 𝑎 = 𝑞
1
2 𝑎, 𝑘 ⊲ 𝑎∗ = 𝑞−

1
2 𝑎∗, 𝑘 ⊲ 𝑏 = 𝑞−

1
2 𝑏, 𝑘 ⊲ 𝑏∗ = 𝑞

1
2 𝑏∗,

𝑓 ⊲ 𝑎 = 0, 𝑓 ⊲ 𝑎∗ = −𝑞𝑏∗, 𝑓 ⊲ 𝑏 = 𝑎, 𝑓 ⊲ 𝑏∗ = 0, (2.7)
𝑒 ⊲ 𝑎 = 𝑏, 𝑒 ⊲ 𝑎∗ = 0, 𝑒 ⊲ 𝑏 = 0, 𝑒 ⊲ 𝑏∗ = −𝑞−1𝑎∗,

and the right action is likewise given by

𝑎 ⊳ 𝑘 = 𝑞
1
2 𝑎, 𝑎∗ ⊳ 𝑘 = 𝑞−

1
2 𝑎∗, 𝑏 ⊳ 𝑘 = 𝑞

1
2 𝑏, 𝑏∗ ⊳ 𝑘 = 𝑞−

1
2 𝑏∗,

𝑎 ⊳ 𝑓 = −𝑞𝑏∗, 𝑎∗ ⊳ 𝑓 = 0, 𝑏 ⊳ 𝑓 = 𝑎∗, 𝑏∗ ⊳ 𝑓 = 0, (2.8)
𝑎 ⊳ 𝑒 = 0, 𝑎∗ ⊳ 𝑒 = 𝑏, 𝑏 ⊳ 𝑒 = 0, 𝑏∗ ⊳ 𝑒 = −𝑞−1𝑎.

We remark in passing that since A is also a Hopf algebra, the left and right actions are linked
through the antipodes:

𝑆(𝑆ℎ ⊲ 𝑥) = 𝑆𝑥 ⊳ ℎ.
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Indeed, it is immediate from (2.6) and the duality relation ⟨𝑆ℎ, 𝑦⟩ = ⟨ℎ, 𝑆𝑦⟩ that

𝑆(𝑆ℎ ⊲ 𝑥) = 𝑆(𝑥(1)) ⟨𝑆ℎ, 𝑥(2)⟩ = 𝑆(𝑥(1)) ⟨ℎ, 𝑆(𝑥(2))⟩ = (𝑆𝑥)(2) ⟨ℎ, (𝑆𝑥)(1)⟩ = 𝑆𝑥 ⊳ ℎ.

As noted in [14], for instance, the invertible antipode of U serves to transform the right action ⊳
into a second left action of U on A, commuting with the first. Here we also use the automorphism
𝜗 of (2.3), and define

ℎ · 𝑥 := 𝑥 ⊳ 𝑆−1(𝜗(ℎ)).
Indeed, it is immediate that

𝑔 · (ℎ · 𝑥) = (𝑥 ⊳ 𝑆−1(𝜗ℎ)) ⊳ 𝑆−1(𝜗𝑔) = 𝑥 ⊳ (𝑆−1(𝜗ℎ)𝑆−1(𝜗𝑔)) = 𝑥 ⊳ (𝑆−1(𝜗(𝑔ℎ)) = 𝑔ℎ · 𝑥,

i.e., it is a left action. We tabulate this action directly from (2.8):

𝑘 · 𝑎 = 𝑞
1
2 𝑎, 𝑘 · 𝑎∗ = 𝑞− 1

2 𝑎∗, 𝑘 · 𝑏 = 𝑞
1
2 𝑏, 𝑘 · 𝑏∗ = 𝑞− 1

2 𝑏∗,

𝑓 · 𝑎 = 0, 𝑓 · 𝑎∗ = 𝑞𝑏, 𝑓 · 𝑏 = 0, 𝑓 · 𝑏∗ = −𝑎, (2.9)
𝑒 · 𝑎 = −𝑏∗, 𝑒 · 𝑎∗ = 0, 𝑒 · 𝑏 = 𝑞−1𝑎∗, 𝑒 · 𝑏∗ = 0.

In the “classical” case 𝑞 = 1, we use the well-known identifications

SU(2) ≈ 𝕊3 ≈ Spin(4)/Spin(3) = (SU(2) × SU(2))/SU(2);

on quotienting out the diagonal SU(2) subgroup of Spin(4), we realize SU(2) as the base space
of the principal spin bundle Spin(4) → 𝕊3, with projection map (𝑔, ℎ) ↦→ 𝑔ℎ−1. The action of
Spin(4) on SU(2) is given by (𝑔, ℎ) · 𝑥 := 𝑔𝑥ℎ−1, and the stabilizer of 1 is the diagonal SU(2)
subgroup. We may choose to regard this as a pair of commuting actions of SU(2) on the base space
SU(2), apart from the nuance of switching one of them from a right to a left action via the group
inversion map. The foregoing pair of actions of U𝑞 (su(2)) on A(SU𝑞 (2)) extends this scheme to
the case 𝑞 ≠ 1.

▶ We recall [21] that A has a vector-space basis consisting of matrix elements of its irreducible
corepresentations, { 𝑡𝑙𝑚𝑛 : 2𝑙 ∈ ℕ, 𝑚, 𝑛 = −𝑙, . . . , 𝑙 − 1, 𝑙 }, where

𝑡000 = 1, 𝑡
1
2
1
2 ,

1
2
= 𝑎, 𝑡

1
2
1
2 ,−

1
2
= 𝑏.

The coproduct has the matricial form Δ𝑡𝑙𝑚𝑛 =
∑
𝑘 𝑡
𝑙
𝑚𝑘

⊗ 𝑡𝑙
𝑘𝑛

, while the product is given by

𝑡
𝑗
𝑟𝑠𝑡

𝑙
𝑚𝑛 =

𝑗+𝑙∑︁
𝑘=| 𝑗−𝑙 |

𝐶𝑞

(
𝑗 𝑙 𝑘

𝑟 𝑚 𝑟 + 𝑚

)
𝐶𝑞

(
𝑗 𝑙 𝑘

𝑠 𝑛 𝑠 + 𝑛

)
𝑡𝑘𝑟+𝑚,𝑠+𝑛, (2.10)

where the 𝐶𝑞 (−) factors are 𝑞-Clebsch–Gordan coefficients [3, 20].
The Haar state on the 𝐶∗-completion 𝐶 (SU𝑞 (2)), which we shall denote by 𝜓, is faithful, and it

is determined by setting 𝜓(1) := 1 and 𝜓(𝑡𝑙𝑚𝑛) := 0 if 𝑙 > 0. (The Haar state is usually denoted by
ℎ, but here we use ℎ for a generic element of U instead.) Let H𝜓 = 𝐿2(SU𝑞 (2), 𝜓) be the Hilbert
space of its GNS representation; then the GNS map 𝜂 : 𝐶 (SU𝑞 (2)) → H𝜓 is injective and satisfies

∥𝜂(𝑡𝑙𝑚𝑛)∥2 = 𝜓((𝑡𝑙𝑚𝑛)∗ 𝑡𝑙𝑚𝑛) =
𝑞−2𝑚

[2𝑙 + 1] , (2.11)
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and the vectors 𝜂(𝑡𝑙𝑚𝑛) are mutually orthogonal. From the formula

𝐶𝑞

(
𝑙 𝑙 0

−𝑚 𝑚 0

)
= (−1)𝑙+𝑚 𝑞−𝑚

[2𝑙 + 1] 1
2
,

we see that the involution in 𝐶 (SU𝑞 (2)) is given by

(𝑡𝑙𝑚𝑛)∗ = (−1)2𝑙+𝑚+𝑛𝑞𝑛−𝑚 𝑡𝑙−𝑚,−𝑛. (2.12)

In particular, 𝑡
1
2
− 1

2 ,
1
2
= −𝑞𝑏∗ and 𝑡

1
2
− 1

2 ,−
1
2
= 𝑎∗, as expected.

An orthonormal basis of H𝜓 is obtained by normalizing the matrix elements, using (2.11):

|𝑙𝑚𝑛⟩ := 𝑞𝑚 [2𝑙 + 1] 1
2 𝜂(𝑡𝑙𝑚𝑛). (2.13)

3 Equivariant representation of A(SU𝒒 (2))
Let U be a Hopf algebra and let A be a left U-module algebra. A representation of A on a vector
space 𝑉 is called U-equivariant if there is also an algebra representation of U on 𝑉 , satisfying the
following compatibility relation:

ℎ(𝑥𝜉) = (ℎ(1) ⊲ 𝑥) (ℎ(2)𝜉), ℎ ∈ U, 𝑥 ∈ A, 𝜉 ∈ 𝑉,

where ⊲ denotes the Hopf action of U on A. If A is instead a right U-module algebra, the
appropriate compatibility relation is 𝑥(ℎ𝜉) = ℎ(1) ((𝑥 ⊳ ℎ(2))𝜉). Also, if A is an U-bimodule algebra
(carrying commuting left and right Hopf actions of U), one can demand both of these conditions
simultaneously for pair of representations of A and U on the same vector space 𝑉 .

In the present case, it turns out to be simpler to consider equivariance under two commuting left
Hopf actions, as exemplified in the previous section. We shall first work out in detail a construction
of the regular representation of the Hopf algebra A(SU𝑞 (2)), showing how it is determined by its
equivariance properties.

▶ We begin with the known representation theory [21] of U𝑞 (su(2)). The irreducible finite dimen-
sional representations𝜎𝑙 ofU𝑞 (su(2)) are labelled by nonnegative half-integers 𝑙 = 0, 1

2 , 1,
3
2 , 2, . . . ,

and they are given by

𝜎𝑙 (𝑘) |𝑙𝑚⟩ = 𝑞𝑚 |𝑙𝑚⟩,
𝜎𝑙 ( 𝑓 ) |𝑙𝑚⟩ =

√︁
[𝑙 − 𝑚] [𝑙 + 𝑚 + 1] |𝑙, 𝑚 + 1⟩, (3.1)

𝜎𝑙 (𝑒) |𝑙𝑚⟩ =
√︁
[𝑙 − 𝑚 + 1] [𝑙 + 𝑚] |𝑙, 𝑚 − 1⟩,

where the vectors |𝑙𝑚⟩, for 𝑚 = −𝑙,−𝑙 + 1, . . . , 𝑙 − 1, 𝑙, form a basis for the irreducible U-module
𝑉𝑙 , and the brackets denote 𝑞-integers as in (2.4). Moreover, 𝜎𝑙 is a ∗-representation of U𝑞 (su(2)),
with respect to the hermitian scalar product on 𝑉𝑙 for which the vectors |𝑙𝑚⟩ are orthonormal.
Remark 3.1. The irreducible representations (3.1) coincide with those of 𝑈̆𝑞 (𝑠𝑢(2)) in [21], after
exchange of 𝑒 and 𝑓 (see Remark 2.4). Further results on the representation theory of U𝑞 (su(2)) are
taken from [21, Chap. 3] without comment; in particular we use the 𝑞-Clebsch–Gordan coefficients
found therein for the decomposition of tensor product representations. An alternative source for
these coefficients is [3], although their 𝑞 1

2 is our 𝑞.
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Definition 3.2. Let 𝜆 and 𝜌 be mutually commuting representations of the Hopf algebra U on a
vector space 𝑉 . A representation 𝜋 of the ∗-algebra A on 𝑉 is (𝜆, 𝜌)-equivariant if the following
compatibility relations hold:

𝜆(ℎ) 𝜋(𝑥)𝜉 = 𝜋(ℎ(1) · 𝑥) 𝜆(ℎ(2))𝜉,
𝜌(ℎ) 𝜋(𝑥)𝜉 = 𝜋(ℎ(1) ⊲ 𝑥) 𝜌(ℎ(2))𝜉, (3.2)

for all ℎ ∈ U, 𝑥 ∈ A and 𝜉 ∈ 𝑉 .

▶ We shall now exhibit an equivariant representation of A(SU𝑞 (2)) on the prehilbert space which
is the (algebraic) direct sum

𝑉 :=
∞⊕

2𝑙=0
𝑉𝑙 ⊗ 𝑉𝑙 .

The two U𝑞 (su(2)) symmetries 𝜆 and 𝜌 will act on the first and the second leg of the tensor product
respectively; both actions will be via the irreps (3.1). In other words,

𝜆(ℎ) = 𝜎𝑙 (ℎ) ⊗ id, 𝜌(ℎ) = id ⊗𝜎𝑙 (ℎ) on 𝑉𝑙 ⊗ 𝑉𝑙 .

We abbreviate |𝑙𝑚𝑛⟩ := |𝑙𝑚⟩ ⊗ |𝑙𝑛⟩, for 𝑚, 𝑛 = −𝑙, . . . , 𝑙 − 1, 𝑙; these form an orthonormal basis
for 𝑉𝑙 ⊗ 𝑉𝑙 , for each fixed 𝑙. (As we shall see, this is consistent with our labelling (2.13) of the
orthonormal basis of H𝜓 in the previous section.) Also, we adopt a shorthand notation:

𝑙± := 𝑙 ± 1
2 , 𝑚± := 𝑚 ± 1

2 , 𝑛± := 𝑛 ± 1
2 .

Proposition 3.3. A (𝜆, 𝜌)-equivariant ∗-representation 𝜋 of A(SU𝑞 (2)) on the Hilbert space 𝑉
of (3.3) must have the following form:

𝜋(𝑎) |𝑙𝑚𝑛⟩ = 𝐴+𝑙𝑚𝑛 |𝑙
+𝑚+𝑛+⟩ + 𝐴−𝑙𝑚𝑛 |𝑙

−𝑚+𝑛+⟩,
𝜋(𝑏) |𝑙𝑚𝑛⟩ = 𝐵+

𝑙𝑚𝑛 |𝑙
+𝑚+𝑛−⟩ + 𝐵−

𝑙𝑚𝑛 |𝑙
−𝑚+𝑛−⟩,

𝜋(𝑎∗) |𝑙𝑚𝑛⟩ = 𝐴+𝑙𝑚𝑛 |𝑙
+𝑚−𝑛−⟩ + 𝐴−𝑙𝑚𝑛 |𝑙

−𝑚−𝑛−⟩, (3.3)
𝜋(𝑏∗) |𝑙𝑚𝑛⟩ = 𝐵+

𝑙𝑚𝑛 |𝑙
+𝑚−𝑛+⟩ + 𝐵−

𝑙𝑚𝑛 |𝑙
−𝑚−𝑛+⟩,

where the constants 𝐴±
𝑙𝑚𝑛

and 𝐵±
𝑙𝑚𝑛

are, up to phase factors depending only on 𝑙, given by

𝐴+𝑙𝑚𝑛 = 𝑞
(−2𝑙+𝑚+𝑛−1)/2

(
[𝑙 + 𝑚 + 1] [𝑙 + 𝑛 + 1]

[2𝑙 + 1] [2𝑙 + 2]

) 1
2

,

𝐴−𝑙𝑚𝑛 = 𝑞
(2𝑙+𝑚+𝑛+1)/2

(
[𝑙 − 𝑚] [𝑙 − 𝑛]
[2𝑙] [2𝑙 + 1]

) 1
2

,

𝐵+
𝑙𝑚𝑛 = 𝑞

(𝑚+𝑛−1)/2
(
[𝑙 + 𝑚 + 1] [𝑙 − 𝑛 + 1]

[2𝑙 + 1] [2𝑙 + 2]

) 1
2

, (3.4)

𝐵−
𝑙𝑚𝑛 = −𝑞 (𝑚+𝑛−1)/2

(
[𝑙 − 𝑚] [𝑙 + 𝑛]
[2𝑙] [2𝑙 + 1]

) 1
2

,

and the other coefficients are complex conjugates of these, namely,

𝐴±𝑙𝑚𝑛 = (𝐴∓𝑙±𝑚−𝑛− )
★, 𝐵±

𝑙𝑚𝑛 = (𝐵∓
𝑙±𝑚−𝑛+)

★. (3.5)
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Proof. First of all, notice that hermiticity of 𝜋 entails the relations (3.5). We now use the covariance
properties (3.2). When ℎ = 𝑘 , they simplify to

𝜆(𝑘) 𝜋(𝑥) 𝜉 = 𝜋(𝑘 · 𝑥) 𝜆(𝑘) 𝜉, 𝜌(𝑘) 𝜋(𝑥) 𝜉 = 𝜋(𝑘 ⊲ 𝑥) 𝜌(𝑘) 𝜉. (3.6)

Thus, for instance, when 𝑥 = 𝑎 we find the relations

𝜆(𝑘) 𝜋(𝑎) |𝑙𝑚𝑛⟩ = 𝜋(𝑞 1
2 𝑎)

(
𝑞𝑚 |𝑙𝑚𝑛⟩

)
= 𝑞𝑚+

1
2 𝜋(𝑎) |𝑙𝑚𝑛⟩,

𝜌(𝑘) 𝜋(𝑎) |𝑙𝑚𝑛⟩ = 𝜋(𝑞 1
2 𝑎)

(
𝑞𝑛 |𝑙𝑚𝑛⟩

)
= 𝑞𝑛+

1
2 𝜋(𝑎) |𝑙𝑚𝑛⟩,

where we have invoked 𝑘 ·𝑎 = 𝑘 ⊲ 𝑎 = 𝑞
1
2 𝑎. We conclude that 𝜋(𝑎) |𝑙𝑚𝑛⟩ must lie in the closed span

of the basis vectors |𝑙′𝑚+𝑛+⟩. A similar argument with 𝑥 = 𝑏 in (3.6) shows that 𝜋(𝑏) increments 𝑛
and decrements 𝑚 by 1

2 , since 𝑘 · 𝑏 = 𝑞
1
2 𝑏 while 𝑘 ⊲ 𝑏 = 𝑞−

1
2 𝑏. The analogous behaviour for 𝑥 = 𝑎∗

and 𝑥 = 𝑏∗ follows in the same way from (2.7) and (2.9).
Thus, 𝜋(𝑎) |𝑙𝑚𝑛⟩ is a (possibly infinite) sum

𝜋(𝑎) |𝑙𝑚𝑛⟩ = ∑
𝑙′ 𝐶𝑙′𝑙𝑚𝑛 |𝑙′𝑚+𝑛+⟩, (3.7)

where the sum runs over nonnegative half-integers 𝑙′ = 0, 1
2 , 1,

3
2 , . . . .

Next, we call on (3.2) with ℎ = 𝑓 , 𝑥 = 𝑎, to get

𝜆( 𝑓 ) 𝜋(𝑎)𝜉 = 𝜋( 𝑓 · 𝑎) 𝜆(𝑘)𝜉 + 𝜋(𝑘−1 · 𝑎) 𝜆( 𝑓 )𝜉 = 𝑞− 1
2 𝜋(𝑎) 𝜆( 𝑓 )𝜉,

on account of (2.7). Consequently, 𝜆( 𝑓 )𝑟𝜋(𝑎) = 𝑞−𝑟/2𝜋(𝑎) 𝜆( 𝑓 )𝑟 for 𝑟 = 1, 2, 3, . . . . On applying
𝜆( 𝑓 )𝑟 to both sides of (3.7), we obtain on the left hand side a multiple of 𝜋(𝑎) |𝑙, 𝑚 + 𝑟, 𝑛⟩, which
vanishes for 𝑚 + 𝑟 > 𝑙; and on the right hand side we get

∑
𝑙′ 𝐶𝑙′𝑙𝑚𝑛 𝐷 𝑙′𝑚𝑟 |𝑙′, 𝑚+ + 𝑟, 𝑛+⟩, where

𝐷 𝑙′𝑚𝑟 ≠ 0 as long as𝑚+𝑟+ 1
2 ⩽ 𝑙

′. We conclude that𝐶𝑙′𝑙𝑚𝑛 = 0 for 𝑙′ > 𝑙+ 1
2 , by linear independence

of these summands.
To get a lower bound on the range of the index 𝑙′ in (3.7), we consider the analogous ex-

pansion 𝜋(𝑎∗) |𝑙𝑚𝑛⟩ =
∑
𝑙′ 𝐶𝑙′𝑙𝑚𝑛 |𝑙′𝑚−𝑛−⟩. Now 𝜆(𝑒)𝑟𝜋(𝑎∗) |𝑙𝑚𝑛⟩ = 𝑞𝑟/2𝜋(𝑎∗) 𝜆(𝑒)𝑟 |𝑙𝑚𝑛⟩ ∝

𝜋(𝑎∗) |𝑙, 𝑚 − 𝑟, 𝑛⟩ vanishes for 𝑚 − 𝑟 < −𝑙; while 𝜆(𝑒)𝑟 |𝑙′𝑚−𝑛−⟩ = 𝐹𝑙′𝑚𝑟 |𝑙′, 𝑚− − 𝑟, 𝑛−⟩ with
𝐹𝑙′𝑚𝑟 ≠ 0 for 𝑚 − 𝑟 − 1

2 ⩾ −𝑙′. Again we conclude that 𝐶𝑙′𝑙𝑚𝑛 = 0 for 𝑙′ > 𝑙 + 1
2 . However,

since 𝜋 is a ∗-representation, the matrix element ⟨𝑙′𝑚′𝑛′ | 𝜋(𝑎) | 𝑙𝑚𝑛⟩ is the complex conjugate of
⟨𝑙𝑚𝑛 |𝜋(𝑎∗) | 𝑙′𝑚′𝑛′⟩, which vanishes for 𝑙 > 𝑙′+ 1

2 , so that the indices in (3.7) satisfy 𝑙− 1
2 ⩽ 𝑙

′ ⩽ 𝑙+ 1
2 .

Clearly, 𝑙′ = 𝑙 is ruled out because 𝑙 − 𝑚 and 𝑙′ − 𝑚 ± 1
2 must both be integers.

Therefore, 𝜋(𝑎) and also 𝜋(𝑎∗) have the structure indicated in (3.3). A parallel argument shows
the corresponding result for 𝜋(𝑏) and 𝜋(𝑏∗).

The coefficients which appear in (3.4) may be determined by further application of the equiva-
riance relations. Since 𝑓 ⊲ 𝑎 = 0 and 𝑒 ⊲ 𝑏 = 0, then by applying 𝜌( 𝑓 ) and 𝜌(𝑒) to the first two
relations of (3.3), we obtain the following recursion relations for the coefficients 𝐴±

𝑙𝑚𝑛
, 𝐵±

𝑙𝑚𝑛
:

𝐴+𝑙𝑚𝑛 [𝑙 + 𝑛 + 2] 1
2 = 𝑞−

1
2 𝐴+𝑙𝑚,𝑛+1 [𝑙 + 𝑛 + 1] 1

2 ,

𝐴−𝑙𝑚𝑛 [𝑙 − 𝑛 − 1] 1
2 = 𝑞−

1
2 𝐴−𝑙𝑚,𝑛+1 [𝑙 − 𝑛]

1
2 ,

𝐵+
𝑙𝑚𝑛 [𝑙 − 𝑛 + 2] 1

2 = 𝑞
1
2𝐵+

𝑙𝑚,𝑛−1 [𝑙 − 𝑛 + 1] 1
2 ,

𝐵−
𝑙𝑚𝑛 [𝑙 + 𝑛 − 1] 1

2 = 𝑞
1
2𝐵−

𝑙𝑚,𝑛−1 [𝑙 + 𝑛]
1
2 .
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Then, applying 𝜆( 𝑓 ) to the same pair of equations, we further find that

𝐴+𝑙𝑚𝑛 [𝑙 + 𝑚 + 2] 1
2 = 𝑞−

1
2 𝐴+𝑙,𝑚+1,𝑛 [𝑙 + 𝑚 + 1] 1

2 ,

𝐴−𝑙𝑚𝑛 [𝑙 − 𝑚 − 1] 1
2 = 𝑞−

1
2 𝐴−𝑙,𝑚+1,𝑛 [𝑙 − 𝑚]

1
2 ,

𝐵+
𝑙𝑚𝑛 [𝑙 + 𝑚 + 2] 1

2 = 𝑞−
1
2𝐵+

𝑙,𝑚+1,𝑛 [𝑙 + 𝑚 + 1] 1
2 , (3.8a)

𝐵−
𝑙𝑚𝑛 [𝑙 − 𝑚 − 1] 1

2 = 𝑞−
1
2𝐵−

𝑙,𝑚+1,𝑛 [𝑙 − 𝑚]
1
2 .

These recursions are explicitly solved by

𝐴+𝑙𝑚𝑛 = 𝑞
(𝑚+𝑛)/2 [𝑙 + 𝑚 + 1] 1

2 [𝑙 + 𝑛 + 1] 1
2 𝑎+𝑙 ,

𝐴−𝑙𝑚𝑛 = 𝑞
(𝑚+𝑛)/2 [𝑙 − 𝑚] 1

2 [𝑙 − 𝑛] 1
2 𝑎−𝑙 ,

𝐵+
𝑙𝑚𝑛 = 𝑞

(𝑚+𝑛)/2 [𝑙 + 𝑚 + 1] 1
2 [𝑙 − 𝑛 + 1] 1

2 𝑏+𝑙 , (3.8b)

𝐵−
𝑙𝑚𝑛 = 𝑞

(𝑚+𝑛)/2 [𝑙 − 𝑚] 1
2 [𝑙 + 𝑛] 1

2 𝑏−𝑙 ,

where 𝑎±
𝑙
, 𝑏±

𝑙
depend only on 𝑙.

Once more, we apply the equivariance relations (3.2); this time, we use

𝜌(𝑒)𝜋(𝑎) = 𝜋(𝑒 ⊲ 𝑎)𝜌(𝑘) + 𝜋(𝑘−1 ⊲ 𝑎)𝜌(𝑒) = 𝜋(𝑏)𝜌(𝑘) + 𝑞− 1
2 𝜋(𝑎)𝜌(𝑒). (3.9)

Applied to |𝑙𝑚𝑛⟩, it yields an equation between linear combinations of |𝑙+𝑚+𝑛−⟩ and |𝑙−𝑚+𝑛−⟩;
equating coefficients, we find

𝑏+𝑙 = 𝑞
𝑙𝑎+𝑙 , 𝑏−𝑙 = −𝑞−𝑙−1𝑎−𝑙 .

Furthermore, applying also to |𝑙𝑚𝑛⟩ the relation

𝜆(𝑒)𝜋(𝑏) = 𝜋(𝑒 · 𝑏)𝜆(𝑘) + 𝜋(𝑘−1 · 𝑏)𝜆(𝑒)

= 𝑞−1𝜋(𝑎∗)𝜆(𝑘) + 𝑞− 1
2 𝜋(𝑏)𝜆(𝑒), (3.10)

we get, after a little simplification and use of (3.5),

(𝑎−
𝑙+ 1

2
)★ = 𝑞2𝑙+ 3

2 𝑎+𝑙 .

It remains only to determine the parameters 𝑎+
𝑙
. We turn to the algebra commutation relation

𝑏𝑎 = 𝑞𝑎𝑏 and compare coefficients in the expansion of 𝜋(𝑏)𝜋(𝑎) |𝑙𝑚𝑛⟩ = 𝑞 𝜋(𝑎)𝜋(𝑏) |𝑙𝑚𝑛⟩. Those
of |𝑙 + 1, 𝑚 + 1, 𝑛⟩ and |𝑙 − 1, 𝑚 + 1, 𝑛⟩ already coincide; but from the |𝑙, 𝑚 + 1, 𝑛⟩ terms, we get the
identity

𝑞 [2𝑙 + 2] |𝑎+𝑙 |
2 = [2𝑙] |𝑎+

𝑙− 1
2
|2.

This can be solved immediately, to give

𝑎+𝑙 =
𝐶𝜁𝑙 𝑞

−𝑙

[2𝑙 + 1] 1
2 [2𝑙 + 2] 1

2
,
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where 𝐶 is a positive constant, and 𝜁𝑙 is a phase factor which can be absorbed in the basis vectors
|𝑙𝑚𝑛⟩; hereinafter we take 𝜁𝑙 = 1 (we comment on that choice at the end of the section).

Finally, from the relation 𝑎∗𝑎 + 𝑞2𝑏∗𝑏 = 1 we obtain

1 = ⟨000 | 𝜋(𝑎∗𝑎 + 𝑞2𝑏∗𝑏) | 000⟩ = |𝑎+0 |
2 + 𝑞2 |𝑏+0 |

2 = (1 + 𝑞2)𝐶2/[2] = 𝑞 𝐶2,

and thus 𝐶 = 𝑞−
1
2 . We therefore find that

𝑎+𝑙 =
𝑞−𝑙−

1
2

[2𝑙 + 1] 1
2 [2𝑙 + 2] 1

2
, 𝑎−𝑙 =

𝑞𝑙+
1
2

[2𝑙] 1
2 [2𝑙 + 1] 1

2
,

𝑏+𝑙 =
𝑞−

1
2

[2𝑙 + 1] 1
2 [2𝑙 + 2] 1

2
, 𝑏−𝑙 = − 𝑞−

1
2

[2𝑙] 1
2 [2𝑙 + 1] 1

2
,

and substitution in (3.8b) yields the coefficients (3.4). □

It is easy to check that the formulas (3.3) give precisely the left regular representation 𝜋𝜓 of
A(SU𝑞 (2)). Indeed, that representation was implicitly given already by the product rule (2.10).
From [3, Eq. (3.53)] we obtain

𝐶𝑞

( 1
2 𝑙 𝑙+
1
2 𝑚 𝑚+

)
= 𝑞−

1
2 (𝑙−𝑚) [𝑙 + 𝑚 + 1] 1

2

[2𝑙 + 1] 1
2
,

𝐶𝑞

( 1
2 𝑙 𝑙+

−1
2 𝑚 𝑚−

)
= 𝑞

1
2 (𝑙+𝑚) [𝑙 − 𝑚 + 1] 1

2

[2𝑙 + 1] 1
2
,

𝐶𝑞

( 1
2 𝑙 𝑙−
1
2 𝑚 𝑚+

)
= 𝑞

1
2 (𝑙+𝑚+1) [𝑙 − 𝑚] 1

2

[2𝑙 + 1] 1
2
, (3.11)

𝐶𝑞

( 1
2 𝑙 𝑙−

−1
2 𝑚 𝑚−

)
= −𝑞− 1

2 (𝑙−𝑚+1) [𝑙 + 𝑚] 1
2

[2𝑙 + 1] 1
2
.

By setting 𝑗 = 𝑟 = 𝑠 = 1
2 in (2.10), we find

𝜋𝜓 (𝑎)𝜂(𝑡𝑙𝑚𝑛) =
∑︁
±
𝐶𝑞

( 1
2 𝑙 𝑙±
1
2 𝑚 𝑚+

)
𝐶𝑞

( 1
2 𝑙 𝑙±
1
2 𝑛 𝑛+

)
𝜂(𝑡𝑙±𝑚+𝑛+).

Taking the normalization (2.13) into account, this becomes

𝜋𝜓 (𝑎) |𝑙𝑚𝑛⟩ = 𝑞−
1
2
[2𝑙 + 1] 1

2

[2𝑙 + 2] 1
2
𝐶𝑞

( 1
2 𝑙 𝑙+
1
2 𝑚 𝑚+

)
𝐶𝑞

( 1
2 𝑙 𝑙+
1
2 𝑛 𝑛+

)
|𝑙+𝑚+𝑛+⟩

+ 𝑞− 1
2
[2𝑙 + 1] 1

2

[2𝑙] 1
2
𝐶𝑞

( 1
2 𝑙 𝑙−
1
2 𝑚 𝑚+

)
𝐶𝑞

( 1
2 𝑙 𝑙−
1
2 𝑛 𝑛+

)
|𝑙−𝑚+𝑛+⟩

= 𝑞
1
2 (−2𝑙+𝑚+𝑛−1) [𝑙 + 𝑚 + 1] 1

2 [𝑙 + 𝑛 + 1] 1
2

[2𝑙 + 1] 1
2 [2𝑙 + 2] 1

2
|𝑙+𝑚+𝑛+⟩

+ 𝑞 1
2 (2𝑙+𝑚+𝑛+1) [𝑙 − 𝑚]

1
2 [𝑙 − 𝑛] 1

2

[2𝑙] 1
2 [2𝑙 + 1] 1

2
|𝑙−𝑚+𝑛+⟩

= 𝜋(𝑎) |𝑙𝑚𝑛⟩.
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A similar calculation, using (3.11) again, shows that 𝜋(𝑏) = 𝜋𝜓 (𝑏). Since 𝑎 and 𝑏 generate A as a
∗-algebra, we conclude that 𝜋 = 𝜋𝜓 . (It should be noted that 𝜋𝜓 has already been exhibited in [6] in
the same way, albeit with a different convention for the algebra generators.)

The identification (2.13) embeds the prehilbert space 𝑉 densely in the Hilbert space H𝜓 , and
the representation 𝜋𝜓 extends to the GNS representation of 𝐶 (SU𝑞 (2)) on H𝜓 , as described by the
Peter–Weyl theorem [21, 32]. In like manner, all other representations of A exhibited in this paper
extend to 𝐶∗-algebra representations of 𝐶 (SU𝑞 (2)) on the appropriate Hilbert spaces.

▶ The only lack of uniqueness in the proof of Proposition 3.3 involved the choice of the phase
factors 𝜁𝑙 ; if 𝑍 is the linear operator on 𝑉 which multiplies vectors in 𝑉𝑙 ⊗ 𝑉𝑙 by 𝜁𝑙 , then 𝑍

commutes with each 𝜆(ℎ) and 𝜌(𝑔), and extends to a unitary operator on H𝜓 . In other words,
any (𝜆, 𝜌)-equivariant representation 𝜋 extends to H𝜓 and is unitarily equivalent to the left regular
representation. The (standard) choice 𝜁𝑙 = 1 ensures that all coefficients 𝐴±

𝑙𝑚𝑛
and 𝐵±

𝑙𝑚𝑛
are real: it

is indeed an extension of the Conden–Shortley phase convention [4].

4 The spin representation
The left regular representation 𝜋 of A, constructed in the previous section, can be amplified to
𝜋′ = 𝜋 ⊗ id on 𝑉 ⊗ℂ2. In the commutative case when 𝑞 = 1, this yields the spinor representation of
SU(2), because the spinor bundle is parallelizable: 𝑆 ≃ SU(2) ×ℂ2, although one needs to specify
the trivialization. The representation theory of U (and the corepresentation theory of A) follows the
same pattern; only the Clebsch–Gordan coefficients need to be modified [20] when 𝑞 ≠ 1.

To fix notations, we take
𝑊 := 𝑉 ⊗ ℂ2 = 𝑉 ⊗ 𝑉1

2
,

and its Clebsch–Gordan decomposition is the (algebraic) direct sum

𝑊 =

( ∞⊕
2𝑙=0

𝑉𝑙 ⊗ 𝑉𝑙
)
⊗ 𝑉1

2
≃ 𝑉1

2
⊕

∞⊕
2 𝑗=1

(𝑉 𝑗+ 1
2
⊗ 𝑉 𝑗 ) ⊕ (𝑉 𝑗− 1

2
⊗ 𝑉 𝑗 ). (4.1)

We rename the finite-dimensional spaces on the right hand side as

𝑊 = 𝑊
↑
0 ⊕

⊕
2 𝑗⩾1

𝑊
↑
𝑗
⊕𝑊↓

𝑗
, (4.2)

where𝑊↑
𝑗
≃ 𝑉 𝑗+ 1

2
⊗ 𝑉 𝑗 and𝑊↓

𝑗
≃ 𝑉 𝑗− 1

2
⊗ 𝑉 𝑗 , so that

dim𝑊
↑
𝑗
= (2 𝑗 + 1) (2 𝑗 + 2), for 𝑗 = 0, 1

2 , 1,
3
2 , . . . ,

dim𝑊
↓
𝑗
= 2 𝑗 (2 𝑗 + 1), for 𝑗 = 1

2 , 1,
3
2 , . . . . (4.3)

Definition 4.1. We amplify the representation 𝜌 of U on𝑉 to 𝜌′ = 𝜌 ⊗ id on𝑊 = 𝑉 ⊗ℂ2. However,
we replace 𝜆 on 𝑉 by its tensor product with 𝜎1

2
on ℂ2:

𝜆′(ℎ) := (𝜆 ⊗ 𝜎1
2
) (Δℎ) = 𝜆(ℎ(1)) ⊗ 𝜎1

2
(ℎ(2)).
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It is straightforward to check that the representations 𝜆′ and 𝜌′ on 𝑊 commute, and that the
representation 𝜋′ of A on𝑊 is (𝜆′, 𝜌′)-equivariant:

𝜆′(ℎ) 𝜋′(𝑥)𝜓 = 𝜋′(ℎ(1) · 𝑥) 𝜆′(ℎ(2))𝜓,
𝜌′(ℎ) 𝜋′(𝑥)𝜓 = 𝜋′(ℎ(1) ⊲ 𝑥) 𝜌′(ℎ(2))𝜓, (4.4)

for all ℎ ∈ U, 𝑥 ∈ A and 𝜓 ∈ 𝑊 .

To determine an explicit basis for 𝑊 which is well-adapted to (𝜆′, 𝜌′)-equivariance, consider
the following vectors in 𝑉 ⊗ ℂ2:

𝑐𝑙𝑚 |𝑙𝑚𝑛⟩ ⊗ | 12 ,−
1
2⟩ + 𝑠𝑙𝑚 |𝑙, 𝑚 − 1, 𝑛⟩ ⊗ | 12 , +

1
2⟩,

−𝑠𝑙𝑚 |𝑙𝑚𝑛⟩ ⊗ | 12 ,−
1
2⟩ + 𝑐𝑙𝑚 |𝑙, 𝑚 − 1, 𝑛⟩ ⊗ | 12 , +

1
2⟩,

where

𝑐𝑙𝑚 := 𝑞−(𝑙+𝑚)/2 [𝑙 − 𝑚 + 1] 1
2

[2𝑙 + 1] 1
2
, 𝑠𝑙𝑚 := 𝑞 (𝑙−𝑚+1)/2 [𝑙 + 𝑚] 1

2

[2𝑙 + 1] 1
2

are the 𝑞-Clebsch–Gordan coefficients corresponding to the above decomposition (4.1), satisfying
𝑐2
𝑙𝑚

+ 𝑠2
𝑙𝑚

= 1. These are eigenvectors for 𝜆′(𝐶𝑞), where 𝐶𝑞 := 𝑞𝑘2 + 𝑞−1𝑘−2 + (𝑞 − 𝑞−1)2𝑒 𝑓 is the
Casimir element of U, with respective eigenvalues 𝑞2𝑙+2 + 𝑞−2𝑙−2 and 𝑞2𝑙 + 𝑞−2𝑙 . Thus, to get a good
basis, one should offset the index 𝑙 by ±1

2 (as is also suggested by the decomposition (4.2) of𝑊).
For 𝑗 = 𝑙 + 1

2 , 𝜇 = 𝑚 − 1
2 , with 𝜇 = − 𝑗 , . . . , 𝑗 and 𝑛 = − 𝑗−, . . . , 𝑗−, let

| 𝑗 𝜇𝑛↓⟩ := 𝐶 𝑗 𝜇 | 𝑗−𝜇+𝑛⟩ ⊗ | 12 ,−
1
2⟩ + 𝑆 𝑗 𝜇 | 𝑗

−𝜇−𝑛⟩ ⊗ | 12 , +
1
2⟩; (4.5a)

and for 𝑗 = 𝑙 − 1
2 , 𝜇 = 𝑚 − 1

2 , with 𝜇 = − 𝑗 , . . . , 𝑗 and 𝑛 = − 𝑗+, . . . , 𝑗+, let

| 𝑗 𝜇𝑛↑⟩ := −𝑆 𝑗+1,𝜇 | 𝑗+𝜇+𝑛⟩ ⊗ | 12 ,−
1
2⟩ + 𝐶 𝑗+1,𝜇 | 𝑗+𝜇−𝑛⟩ ⊗ | 12 , +

1
2⟩, (4.5b)

where the coefficients are now

𝐶 𝑗 𝜇 := 𝑞−( 𝑗+𝜇)/2 [ 𝑗 − 𝜇] 1
2

[2 𝑗] 1
2
, 𝑆 𝑗 𝜇 := 𝑞 ( 𝑗−𝜇)/2 [ 𝑗 + 𝜇] 1

2

[2 𝑗] 1
2
. (4.5c)

Notice that there are no ↓ vectors for 𝑗 = 0. It is now straightforward, though tedious, to verify that
these vectors are orthonormal bases for the respective subspaces𝑊↓

𝑗
and𝑊↑

𝑗
.

The Hilbert space of spinors is H := H𝜓 ⊗ ℂ2, which is just the completion of the algebraic
direct sum (4.2). We may decompose it as H = H↑ ⊕ H↓, where H↑ and H↓ are the respective
completions of

⊕
2 𝑗⩾0𝑊

↑
𝑗

and
⊕

2 𝑗⩾1𝑊
↓
𝑗
.

Lemma 4.2. The basis vectors | 𝑗 𝜇𝑛↑⟩ and | 𝑗 𝜇𝑛↓⟩ are joint eigenvectors for 𝜆′(𝑘) and 𝜌′(𝑘), and
𝑒, 𝑓 are represented on them as ladder operators:

𝜆′(𝑘) | 𝑗 𝜇𝑛↑⟩ = 𝑞𝜇 | 𝑗 𝜇𝑛↑⟩,
𝜆′(𝑘) | 𝑗 𝜇𝑛↓⟩ = 𝑞𝜇 | 𝑗 𝜇𝑛↓⟩,

𝜌′(𝑘) | 𝑗 𝜇𝑛↑⟩ = 𝑞𝑛 | 𝑗 𝜇𝑛↑⟩,
𝜌′(𝑘) | 𝑗 𝜇𝑛↓⟩ = 𝑞𝑛 | 𝑗 𝜇𝑛↓⟩.

(4.6a)
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Moreover,

𝜆′( 𝑓 ) | 𝑗 𝜇𝑛↑⟩ = [ 𝑗 − 𝜇] 1
2 [ 𝑗 + 𝜇 + 1] 1

2 | 𝑗 , 𝜇 + 1, 𝑛↑⟩,

𝜆′(𝑒) | 𝑗 𝜇𝑛↑⟩ = [ 𝑗 + 𝜇] 1
2 [ 𝑗 − 𝜇 + 1] 1

2 | 𝑗 , 𝜇 − 1, 𝑛↑⟩,

𝜆′( 𝑓 ) | 𝑗 𝜇𝑛↓⟩ = [ 𝑗 − 𝜇] 1
2 [ 𝑗 + 𝜇 + 1] 1

2 | 𝑗 , 𝜇 + 1, 𝑛↓⟩, (4.6b)

𝜆′(𝑒) | 𝑗 𝜇𝑛↓⟩ = [ 𝑗 + 𝜇] 1
2 [ 𝑗 − 𝜇 + 1] 1

2 | 𝑗 , 𝜇 − 1, 𝑛↓⟩,

and

𝜌′( 𝑓 ) | 𝑗 𝜇𝑛↑⟩ = [ 𝑗 − 𝑛 + 1
2 ]

1
2 [ 𝑗 + 𝑛 + 3

2 ]
1
2 | 𝑗 𝜇, 𝑛 + 1, ↑⟩,

𝜌′(𝑒) | 𝑗 𝜇𝑛↑⟩ = [ 𝑗 + 𝑛 + 1
2 ]

1
2 [ 𝑗 − 𝑛 + 3

2 ]
1
2 | 𝑗 𝜇, 𝑛 − 1, ↑⟩,

𝜌′( 𝑓 ) | 𝑗 𝜇𝑛↓⟩ = [ 𝑗 − 𝑛 − 1
2 ]

1
2 [ 𝑗 + 𝑛 + 1

2 ]
1
2 | 𝑗 𝜇, 𝑛 + 1, ↓⟩, (4.6c)

𝜌′(𝑒) | 𝑗 𝜇𝑛↓⟩ = [ 𝑗 + 𝑛 − 1
2 ]

1
2 [ 𝑗 − 𝑛 + 1

2 ]
1
2 | 𝑗 𝜇, 𝑛 − 1, ↓⟩.

▶ The representation 𝜋′ can now be computed in the new spinor basis by conjugating the form of
𝜋 ⊗ id found in Proposition 3.3 by the basis transformation (4.5). However, it is more instructive
to derive these formulas from the property of (𝜆′, 𝜌′)-equivariance. First, we introduce a handy
notation.

Definition 4.3. For 𝑗 = 0, 1
2 , 1,

3
2 , . . . , with 𝜇 = − 𝑗 , . . . , 𝑗 and 𝑛 = − 𝑗 − 1

2 , . . . , 𝑗 +
1
2 , we juxtapose

the pair of spinors

| 𝑗 𝜇𝑛⟩⟩ :=

(
| 𝑗 𝜇𝑛↑⟩
| 𝑗 𝜇𝑛↓⟩

)
,

with the convention that the lower component is zero when 𝑛 = ±( 𝑗 + 1
2 ) or 𝑗 = 0. Furthermore, a

matrix with scalar entries,

𝐴 =

(
𝐴↑↑ 𝐴↑↓
𝐴↓↑ 𝐴↓↓

)
,

is understood to act on | 𝑗 𝜇𝑛⟩⟩ by the rule:

𝐴| 𝑗 𝜇𝑛↑⟩ = 𝐴↑↑ | 𝑗 𝜇𝑛↑⟩ + 𝐴↓↑ | 𝑗 𝜇𝑛↓⟩,
𝐴| 𝑗 𝜇𝑛↓⟩ = 𝐴↓↓ | 𝑗 𝜇𝑛↓⟩ + 𝐴↑↓ | 𝑗 𝜇𝑛↑⟩. (4.7)

Proposition 4.4. The representation 𝜋′ := 𝜋 ⊗ id of A is given by

𝜋′(𝑎) | 𝑗 𝜇𝑛⟩⟩ = 𝛼+𝑗 𝜇𝑛 | 𝑗+𝜇+𝑛+⟩⟩ + 𝛼−𝑗 𝜇𝑛 | 𝑗−𝜇+𝑛+⟩⟩,

𝜋′(𝑏) | 𝑗 𝜇𝑛⟩⟩ = 𝛽+𝑗 𝜇𝑛 | 𝑗+𝜇+𝑛−⟩⟩ + 𝛽−𝑗 𝜇𝑛 | 𝑗−𝜇+𝑛−⟩⟩,

𝜋′(𝑎∗) | 𝑗 𝜇𝑛⟩⟩ = 𝛼̃+𝑗 𝜇𝑛 | 𝑗+𝜇−𝑛−⟩⟩ + 𝛼̃−𝑗 𝜇𝑛 | 𝑗−𝜇−𝑛−⟩⟩, (4.8)

𝜋′(𝑏∗) | 𝑗 𝜇𝑛⟩⟩ = 𝛽+𝑗 𝜇𝑛 | 𝑗+𝜇−𝑛+⟩⟩ + 𝛽−𝑗 𝜇𝑛 | 𝑗−𝜇−𝑛+⟩⟩,
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where 𝛼±
𝑗 𝜇𝑛

and 𝛽±
𝑗 𝜇𝑛

are, up to phase factors depending only on 𝑗 , the following triangular 2 × 2
matrices:

𝛼+𝑗 𝜇𝑛 = 𝑞
(𝜇+𝑛− 1

2 )/2 [ 𝑗 + 𝜇 + 1] 1
2
©­«
𝑞− 𝑗−

1
2
[ 𝑗+𝑛+ 3

2 ]
1/2

[2 𝑗+2] 0

𝑞
1
2

[ 𝑗−𝑛+ 1
2 ]

1/2

[2 𝑗+1] [2 𝑗+2] 𝑞− 𝑗
[ 𝑗+𝑛+ 1

2 ]
1/2

[2 𝑗+1]

ª®¬ ,
𝛼−𝑗 𝜇𝑛 = 𝑞

(𝜇+𝑛− 1
2 )/2 [ 𝑗 − 𝜇] 1

2
©­«
𝑞 𝑗+1 [ 𝑗−𝑛+ 1

2 ]
1/2

[2 𝑗+1] −𝑞 1
2

[ 𝑗+𝑛+ 1
2 ]

1/2

[2 𝑗] [2 𝑗+1]

0 𝑞 𝑗+
1
2
[ 𝑗−𝑛− 1

2 ]
1/2

[2 𝑗]

ª®¬ ,
𝛽+𝑗 𝜇𝑛 = 𝑞

(𝜇+𝑛− 1
2 )/2 [ 𝑗 + 𝜇 + 1] 1

2
©­«

[ 𝑗−𝑛+ 3
2 ]

1/2

[2 𝑗+2] 0

−𝑞− 𝑗−1 [ 𝑗+𝑛+ 1
2 ]

1/2

[2 𝑗+1] [2 𝑗+2] 𝑞−
1
2
[ 𝑗−𝑛+ 1

2 ]
1/2

[2 𝑗+1]

ª®¬ , (4.9)

𝛽−𝑗 𝜇𝑛 = 𝑞
(𝜇+𝑛− 1

2 )/2 [ 𝑗 − 𝜇] 1
2
©­«
−𝑞− 1

2
[ 𝑗+𝑛+ 1

2 ]
1/2

[2 𝑗+1] −𝑞 𝑗 [ 𝑗−𝑛+ 1
2 ]

1/2

[2 𝑗] [2 𝑗+1]

0 − [ 𝑗+𝑛− 1
2 ]

1/2

[2 𝑗]

ª®¬ ,
and the remaining matrices are the hermitian conjugates

𝛼̃±𝑗 𝜇𝑛 = (𝛼∓𝑗±𝜇−𝑛− )
†, 𝛽±𝑗 𝜇𝑛 = (𝛽∓𝑗±𝜇−𝑛+)

†.

Proof. The proof of Proposition 3.3 applies with minor changes. From the analogues of (3.6) and
the relations 𝜆′( 𝑓 )𝜋′(𝑎) = 𝑞− 1

2 𝜋′(𝑎) 𝜆′( 𝑓 ) and 𝜆′(𝑒)𝜋′(𝑎∗) = 𝑞 1
2 𝜋′(𝑎∗) 𝜆′(𝑒), applied to the spinors

| 𝑗 𝜇𝑛⟩⟩, together with the formulas (4.6a) and (4.6b), we determine that 𝜋′(𝑎) has the indicated form,
where the 𝛼±

𝑗 𝜇𝑛
are 2 × 2 matrices. The other cases of (4.8) are handled similarly.

To compute these matrices, we again use the commutation relations of 𝜆′( 𝑓 ) with 𝜋′(𝑎) and
𝜋′(𝑏) to establish recurrence relations, analogous to (3.8a), which yield

𝛼+𝑗 𝜇𝑛 = 𝑞
(𝜇+𝑛− 1

2 )/2 [ 𝑗 + 𝜇 + 1] 1
2 𝐴+𝑗𝑛, 𝛼−𝑗 𝜇𝑛 = 𝑞

(𝜇+𝑛− 1
2 )/2 [ 𝑗 − 𝜇] 1

2 𝐴−𝑗𝑛,

𝛽+𝑗 𝜇𝑛 = 𝑞
(𝜇+𝑛− 1

2 )/2 [ 𝑗 + 𝜇 + 1] 1
2 𝐵+

𝑗𝑛, 𝛽−𝑗 𝜇𝑛 = 𝑞
(𝜇+𝑛− 1

2 )/2 [ 𝑗 − 𝜇] 1
2 𝐵−

𝑗𝑛.

The new matrices 𝐴±
𝑗𝑛

, 𝐵±
𝑗𝑛

may be further refined by using commutation relations involving 𝜌′( 𝑓 )
and 𝜌′(𝑒). For instance, 𝜌′( 𝑓 )𝜋′(𝑎) = 𝑞− 1

2 𝜋′(𝑎) 𝜌′( 𝑓 ) entails(
[ 𝑗 − 𝑛 + 1

2 ]
1
2 [ 𝑗 + 𝑛 + 5

2 ]
1
2 0

0 [ 𝑗 − 𝑛 − 1
2 ]

1
2 [ 𝑗 + 𝑛 + 3

2 ]
1
2

)
𝐴+𝑗𝑛

= 𝐴+𝑗 ,𝑛+1

(
[ 𝑗 − 𝑛 + 1

2 ]
1
2 [ 𝑗 + 𝑛 + 3

2 ]
1
2 0

0 [ 𝑗 − 𝑛 − 1
2 ]

1
2 [ 𝑗 + 𝑛 + 1

2 ]
1
2

)
.

This yields four recurrence relations for the entries of 𝐴+
𝑗𝑛

, one of which has only the trivial solution;
we conclude that

𝐴+𝑗𝑛 =

(
[ 𝑗 + 𝑛 + 3

2 ]
1
2 𝑎+

𝑗↑↑ 0
[ 𝑗 − 𝑛 + 1

2 ]
1
2 𝑎+

𝑗↓↑ [ 𝑗 + 𝑛 + 1
2 ]

1
2 𝑎+

𝑗↓↓

)
,
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where the 𝑎+
𝑗↕↕ are scalars depending only on 𝑗 . In a similar fashion, we arrive at

𝐴−𝑗𝑛 =

(
[ 𝑗 − 𝑛 + 1

2 ]
1
2 𝑎−

𝑗↑↑ [ 𝑗 + 𝑛 + 1
2 ]

1
2 𝑎−

𝑗↑↓
0 [ 𝑗 − 𝑛 − 1

2 ]
1
2 𝑎−

𝑗↓↓

)
,

𝐵+
𝑗𝑛 =

(
[ 𝑗 − 𝑛 + 3

2 ]
1
2 𝑏+

𝑗↑↑ 0
[ 𝑗 + 𝑛 + 1

2 ]
1
2 𝑏+

𝑗↓↑ [ 𝑗 − 𝑛 + 1
2 ]

1
2 𝑏+

𝑗↓↓

)
,

𝐵−
𝑗𝑛 =

(
[ 𝑗 + 𝑛 + 1

2 ]
1
2 𝑏−

𝑗↑↑ [ 𝑗 − 𝑛 + 1
2 ]

1
2 𝑏−

𝑗↑↓
0 [ 𝑗 + 𝑛 − 1

2 ]
1
2 𝑏−

𝑗↓↓

)
.

The analogue of (3.9) leads quickly to the relations

𝑏+
𝑗↑↑ = 𝑞

𝑗+ 1
2 𝑎+

𝑗↑↑, 𝑏+
𝑗↓↑ = −𝑞− 𝑗− 3

2 𝑎+
𝑗↓↑, 𝑏+

𝑗↓↓ = 𝑞
𝑗− 1

2 𝑎+
𝑗↓↓,

𝑏−
𝑗↑↑ = −𝑞− 𝑗− 3

2 𝑎−
𝑗↑↑, 𝑏−

𝑗↑↓ = 𝑞
𝑗− 1

2 𝑎−
𝑗↑↓, 𝑏−

𝑗↓↓ = −𝑞− 𝑗− 1
2 𝑎−

𝑗↓↓. (4.10)

Next, from the analogue of (3.10) we get

(𝑎−
𝑗+ 1

2 ,↑↑
)★ = 𝑞2 𝑗+2𝑎+

𝑗↑↑, (𝑎−
𝑗+ 1

2 ,↑↓
)★ = −𝑎+

𝑗↓↑, (𝑎−
𝑗+ 1

2 ,↓↓
)★ = 𝑞2 𝑗+1𝑎+

𝑗↓↓.

The 𝑎+
𝑗↕↕ parameters may be determined from 𝜋′(𝑏)𝜋′(𝑎) | 𝑗 𝜇𝑛⟩⟩ = 𝑞 𝜋′(𝑎)𝜋′(𝑏) | 𝑗 𝜇𝑛⟩⟩. The

coefficients of | 𝑗 ± 1, 𝜇 + 1, 𝑛⟩⟩ yield only the relation

[2 𝑗 + 1] 𝑎+
𝑗+ 1

2 ,↓↓
𝑎+
𝑗↓↑ = [2 𝑗 + 3] 𝑎+

𝑗+ 1
2 ,↓↑
𝑎+
𝑗↑↑. (4.11)

From the | 𝑗 , 𝜇 + 1, 𝑛⟩⟩ terms, we obtain

𝐵−
𝑗+𝑛+𝐴

+
𝑗𝑛 + 𝐵+

𝑗−𝑛+𝐴
−
𝑗𝑛 = 𝑞

1
2 (𝐴−𝑗+𝑛−𝐵

+
𝑗𝑛 + 𝐴+𝑗−𝑛−𝐵−

𝑗𝑛).

Comparison of the diagonal entries on both sides gives two more relations:

[2 𝑗 + 1] |𝑎+
𝑗↓↑ |

2 = 𝑞2 𝑗+1 ([2 𝑗 + 1] |𝑎+
𝑗− 1

2 ,↑↑
|2 − 𝑞 [2 𝑗 + 3] |𝑎+

𝑗↑↑ |
2) ,

[2 𝑗 + 1] |𝑎+
𝑗− 1

2 ,↓↑
|2 = 𝑞2 𝑗 (𝑞 [2 𝑗 + 1] |𝑎+

𝑗↓↓ |
2 − [2 𝑗 − 1] |𝑎+

𝑗− 1
2 ,↓↓

|2
)
.

Finally, the expectation of 𝜋′(𝑎∗𝑎 + 𝑞2𝑏∗𝑏) = 1 in the vector states for | 𝑗 𝜇𝑛↑⟩ and | 𝑗 𝜇𝑛↓⟩ leads to
the relations

𝑞2 𝑗 [2 𝑗 + 1]2 |𝑎+
𝑗− 1

2 ,↑↑
|2 = 1, 𝑞2 𝑗 [2 𝑗 + 1]2 |𝑎+

𝑗↓↓ |
2 = 1.

Thus all coefficients are now determined, up to a few 𝑗-dependent phases:

𝑎+
𝑗↑↑ = 𝜁 𝑗

𝑞− 𝑗−
1
2

[2 𝑗 + 2] , 𝑎+
𝑗↓↑ = 𝜂 𝑗

𝑞
1
2

[2 𝑗 + 1] [2 𝑗 + 2] , 𝑎+
𝑗↓↓ = 𝜉 𝑗

𝑞− 𝑗

[2 𝑗 + 1] , (4.12)

with |𝜁 𝑗 | = |𝜂 𝑗 | = |𝜉 𝑗 | = 1. The relation (4.11) also implies 𝜁 𝑗+ 1
2
𝜂 𝑗 = 𝜂 𝑗+ 1

2
𝜉 𝑗 . As before, we may

reset these phases to 1 by redefining | 𝑗 𝜇𝑛↑⟩ and | 𝑗 𝜇𝑛↓⟩, without breaking the (𝜆′, 𝜌′)-equivariance.
Substituting (4.12) back in previous formulas then gives (4.9). □
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As already mentioned, formulas (4.9) for the matrices 𝛼±
𝑗 𝜇𝑛

and 𝛽±
𝑗 𝜇𝑛

could have been obtained
also from a direct but tedious computation using equations (4.5) and their inverses.
Remark 4.5. Were we to consider a representation of A that need not be (𝜆′, 𝜌′)-equivariant, we
could as well have defined our spinor space, like in [13], as ℂ2 ⊗ 𝑉 , instead of 𝑉 ⊗ ℂ2. The
Clebsch–Gordan decomposition of ℂ2 ⊗ 𝑉 would be that of equation (4.1), but the 𝑞-Clebsch–
Gordan coefficients appearing in (4.5a) and (4.5b) would be different due to the rule for exchanging
the first two columns in 𝑞-Clebsch–Gordan coefficients [21]:

𝐶𝑞

(
𝑗 𝑙 𝑚

𝑟 𝑠 𝑡

)
= 𝐶𝑞

(
𝑙 𝑗 𝑚

−𝑠 −𝑟 −𝑡

)
,

which results in a substitution of 𝑞 by 𝑞−1 in (4.5c).
However, this is not the correct lifting of the (𝜆, 𝜌)-equivariant representation 𝜋 of A to a

(𝜆′, 𝜌′)-equivariant representation of A on spinor space. We already noted that 𝜋′ as defined by
𝜋 ⊗ id on𝑉 ⊗ℂ2 is (𝜆′, 𝜌′)-equivariant, directly from (𝜆, 𝜌)-equivariance of 𝜋. One checks, simply
by working out both sides of equation (4.4), that the noncocommutativity of U𝑞 (su(2)) spoils
(𝜆′′, 𝜌′′)-equivariance of the representation 𝜋′′ := id ⊗𝜋 of A on the tensor product ℂ2 ⊗ 𝑉 , where
we now define 𝜌′′ := id ⊗𝜌, and

𝜆′′(ℎ) := (𝜎1
2
⊗ 𝜆) (Δℎ) = 𝜎1

2
(ℎ(1)) ⊗ 𝜆(ℎ(2)).

5 The equivariant Dirac operator
Recall the central Casimir element𝐶𝑞 = 𝑞𝑘2+𝑞−1𝑘−2+ (𝑞−𝑞−1)2𝑒 𝑓 ∈ U. The symmetric operators
𝜆′(𝐶𝑞) and 𝜌′(𝐶𝑞) on H, initially defined with dense domain 𝑊 , extend to selfadjoint operators
on H. The finite-dimensional subspaces𝑊↑

𝑗
and𝑊↓

𝑗
are their joint eigenspaces:

𝜆′(𝐶𝑞) | 𝑗 𝜇𝑛↑⟩ = (𝑞2 𝑗+1 + 𝑞−2 𝑗−1) | 𝑗 𝜇𝑛↑⟩, 𝜌′(𝐶𝑞) | 𝑗 𝜇𝑛↑⟩ = (𝑞2 𝑗+2 + 𝑞−2 𝑗−2) | 𝑗 𝜇𝑛↑⟩,
𝜆′(𝐶𝑞) | 𝑗 𝜇𝑛↓⟩ = (𝑞2 𝑗+1 + 𝑞−2 𝑗−1) | 𝑗 𝜇𝑛↓⟩, 𝜌′(𝐶𝑞) | 𝑗 𝜇𝑛↓⟩ = (𝑞2 𝑗 + 𝑞−2 𝑗 ) | 𝑗 𝜇𝑛↓⟩,

directly from (4.6).
Let 𝐷 be a selfadjoint operator on H which commutes strongly with 𝜆′(𝐶𝑞) and 𝜌′(𝐶𝑞); then

the finite-dimensional subspaces 𝑊↑
𝑗

and 𝑊↓
𝑗

reduce 𝐷. We look for the general form of such a
selfadjoint operator 𝐷 which is moreover (𝜆′, 𝜌′)-invariant in the sense that it commutes with 𝜆′(ℎ)
and 𝜌′(ℎ), for each ℎ ∈ U𝑞 (su(2)).

Lemma 5.1. The subspaces𝑊↑
𝑗

and𝑊↓
𝑗

are eigenspaces for 𝐷.

Proof. We may restrict to either the subspace 𝑊↑
𝑗

or 𝑊↓
𝑗
. Since 𝜆′(𝑘) and 𝜌′(𝑘) are required to

commute with 𝐷 and moreover have distinct eigenvalues on these subspaces, it follows that 𝐷 has
a diagonal matrix with respect to the basis | 𝑗 𝜇𝑛↑⟩, respectively | 𝑗 𝜇𝑛↓⟩. If we provisionally write
𝐷 | 𝑗 𝜇𝑛↑⟩ = 𝑑↑

𝑗 𝜇𝑛
| 𝑗 𝜇𝑛↑⟩, then the vanishing of

[𝐷, 𝜆′( 𝑓 )] | 𝑗 𝜇𝑛↑⟩ = (𝑑↑
𝑗 ,𝜇+1,𝑛 − 𝑑

↑
𝑗 𝜇𝑛

) [ 𝑗 − 𝜇] 1
2 [ 𝑗 + 𝜇 + 1] 1

2 | 𝑗 , 𝜇 + 1, 𝑛↑⟩,
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for 𝜇 = − 𝑗 , . . . , 𝑗 − 1, shows that 𝑑↑
𝑗 𝜇𝑛

is independent of 𝜇; and [𝐷, 𝜌′( 𝑓 )] = 0 likewise shows that
𝑑
↑
𝑗 𝜇𝑛

does not depend on 𝑛. The same goes for 𝑑↓
𝑗 𝜇𝑛

, too. Thus we may write

𝐷 | 𝑗 𝜇𝑛↑⟩ = 𝑑↑
𝑗
| 𝑗 𝜇𝑛↑⟩, 𝐷 | 𝑗 𝜇𝑛↓⟩ = 𝑑↓

𝑗
| 𝑗 𝜇𝑛↓⟩, (5.1)

where 𝑑↑
𝑗

and 𝑑↓
𝑗

are real eigenvalues of 𝐷. The respective multiplicities are (2 𝑗 + 1) (2 𝑗 + 2) and
2 𝑗 (2 𝑗 + 1), in view of (4.3). □

One of the conditions for the triple (A,H, 𝐷) to be a spectral triple is boundedness of the
commutators [𝐷, 𝜋′(𝑥)] for 𝑥 ∈ A. This naturally imposes certain restrictions on the eigenvalues
𝑑
↑
𝑗
, 𝑑

↓
𝑗

of the operator 𝐷.
For convenience, we recall the representation 𝜋′ of 𝑎 in the basis | 𝑗 𝜇𝑛⟩⟩, written explicitly on

| 𝑗 𝜇𝑛↑⟩ and | 𝑗 𝜇𝑛↓⟩ as in (4.7):

𝜋′(𝑎) | 𝑗 𝜇𝑛↑⟩ =
∑︁
±
𝛼±
𝑗 𝜇𝑛↑↑ | 𝑗

±𝜇+𝑛+↑⟩ + 𝛼+
𝑗 𝜇𝑛↓↑ | 𝑗

+𝜇+𝑛+↓⟩,

𝜋′(𝑎) | 𝑗 𝜇𝑛↓⟩ =
∑︁
±
𝛼±
𝑗 𝜇𝑛↓↓ | 𝑗

±𝜇+𝑛+↓⟩ + 𝛼−
𝑗 𝜇𝑛↑↓ | 𝑗

−𝜇+𝑛+↑⟩.

Then, a straightforward computation shows that

[𝐷, 𝜋′(𝑎)] | 𝑗 𝜇𝑛↑⟩ =
∑︁
±
𝛼±
𝑗 𝜇𝑛↑↑(𝑑

↑
𝑗± − 𝑑

↑
𝑗
) | 𝑗±𝜇+𝑛+↑⟩ + 𝛼+

𝑗 𝜇𝑛↓↑(𝑑
↓
𝑗+ − 𝑑

↑
𝑗
) | 𝑗+𝜇+𝑛+↓⟩,

[𝐷, 𝜋′(𝑎)] | 𝑗 𝜇𝑛↓⟩ =
∑︁
±
𝛼±
𝑗 𝜇𝑛↓↓(𝑑

↓
𝑗± − 𝑑

↓
𝑗
) | 𝑗±𝜇+𝑛+↓⟩ + 𝛼−

𝑗 𝜇𝑛↑↓(𝑑
↑
𝑗− − 𝑑

↓
𝑗
) | 𝑗−𝜇+𝑛+↑⟩. (5.2)

Recall that the standard Dirac operator /𝐷 on the sphere𝕊3, with the round metric, has eigenvalues
(2 𝑗+ 3

2 ) for 𝑗 = 0, 1
2 , 1,

3
2 , with respective multiplicities (2 𝑗+1) (2 𝑗+2); and−(2 𝑗+ 1

2 ) for 𝑗 = 1
2 , 1,

3
2 ,

with respective multiplicities 2 𝑗 (2 𝑗 + 1): see [1, 18], for instance. Notice that its spectrum is
symmetric about 0.

In [2] a “𝑞-Dirac” operator 𝐷 was proposed, which in our notation corresponds to taking
𝑑
↑
𝑗
= 2[2 𝑗 + 1]/(𝑞 + 𝑞−1) and 𝑑↓

𝑗
= −𝑑↑

𝑗
; these are 𝑞-analogues of the classical eigenvalues of

/𝐷 − 1
2 . For this particular choice of eigenvalues, it follows directly from the explicit form (4.9)

of the matrices 𝛼±
𝑗 𝜇𝑛

that then the right hand sides of (5.2) diverge, and therefore [𝐷, 𝜋′(𝑎)] is
unbounded. This was already noted in [10] and it was suggested that one should instead consider
an operator 𝐷 whose spectrum matches that of the classical Dirac operator. In fact, Proposition 7.3
below shows that this is essentially the only possibility for a Dirac operator satisfying a (modified)
first-order condition.

Let us then consider any operator 𝐷 given by (5.1) – that is, a bi-equivariant one – with
eigenvalues of the following form:

𝑑
↑
𝑗
= 𝑐

↑
1 𝑗 + 𝑐

↑
2, 𝑑

↓
𝑗
= 𝑐

↓
1 𝑗 + 𝑐

↓
2, (5.3)

where 𝑐↑1, 𝑐↑2, 𝑐↓1, 𝑐↓2 are independent of 𝑗 . For brevity, we shall say that the eigenvalues are “linear
in 𝑗”. On the right hand side of (5.2), the “diagonal” coefficients simplify to

𝛼±
𝑗 𝜇𝑛↑↑(𝑑

↑
𝑗± − 𝑑

↑
𝑗
) = 1

2𝛼
±
𝑗 𝜇𝑛↑↑𝑐

↑
1, 𝛼±

𝑗 𝜇𝑛↓↓(𝑑
↓
𝑗± − 𝑑

↓
𝑗
) = 1

2𝛼
±
𝑗 𝜇𝑛↓↓𝑐

↓
1, (5.4)
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which can be uniformly bounded with respect to 𝑗 – see expressions (4.9). For the off-diagonal terms,
involving 𝛼+

𝑗 𝜇𝑛↓↑ and 𝛼−
𝑗 𝜇𝑛↑↓, the differences between the “up” and “down” eigenvalues are linear

in 𝑗 . Since 0 < 𝑞 < 1, it is clear that [𝑁] ∼ (𝑞−1)𝑁−1 for large 𝑁 , and thus 𝛼+
𝑗 𝜇𝑛↓↑ ∼ 𝑞

3 𝑗+𝑛+ 3
2 ⩽ 𝑞2 𝑗+1

for large 𝑗 . Similar easy estimates yield

𝛼+
𝑗 𝜇𝑛↓↑ = 𝑂 (𝑞2 𝑗+1), 𝛽+

𝑗 𝜇𝑛↓↑ = 𝑂 (𝑞2 𝑗+ 1
2 ), (5.5)

𝛼−
𝑗 𝜇𝑛↑↓ = 𝑂 (𝑞2 𝑗 ), 𝛽−

𝑗 𝜇𝑛↑↓ = 𝑂 (𝑞2 𝑗+ 1
2 ), as 𝑗 → ∞. (5.6)

We therefore arrive at

|𝛼+
𝑗 𝜇𝑛↓↑(𝑑

↓
𝑗+ − 𝑑

↑
𝑗
− 1) | ⩽ 𝐶 𝑗𝑞2 𝑗 , |𝛼−

𝑗 𝜇𝑛↑↓(𝑑
↑
𝑗− − 𝑑

↓
𝑗
− 1) | ⩽ 𝐶′ 𝑗𝑞2 𝑗 , (5.7)

for some𝐶 > 0,𝐶′ > 0, independent of 𝑗 ; and similar estimates hold for the off-diagonal coefficients
of 𝜋′(𝑏).

Proposition 5.2. Let 𝐷 be any selfadjoint operator with eigenspaces𝑊↑
𝑗

and𝑊↓
𝑗
, and eigenvalues

(5.1). If the eigenvalues 𝑑↑
𝑗
and 𝑑↓

𝑗
are linear in 𝑗 as in (5.3), then [𝐷, 𝜋′(𝑥)] is a bounded operator

for all 𝑥 ∈ A.

Proof. Since 𝑎 and 𝑏 generate A as a ∗-algebra, it is enough to consider the cases 𝑥 = 𝑎 and 𝑥 = 𝑏.
For 𝑥 = 𝑎 and any 𝜉 ∈ H, the relations (5.2) and (5.4), together with the Schwarz inequality, give
the estimate

∥ [𝐷, 𝜋′(𝑎)] 𝜉∥2 ⩽ 1
4 max{(𝑐↑1)

2, (𝑐↓1)
2} ∥𝜋′(𝑎)𝜉∥2 + ∥𝜉∥2∥𝜂∥2,

where 𝜂 is a vector whose components are estimated by (5.7), which establishes finiteness of ∥𝜂∥
since 0 < 𝑞 < 1. Therefore, [𝐷, 𝜋′(𝑎)] is norm bounded. In the same way, we find that [𝐷, 𝜋′(𝑏)]
is bounded. □

Now, if 𝐷 is a selfadjoint operator as in Proposition 5.2, and if the eigenvalues of 𝐷 satisfy (5.3)
and, moreover,

𝑐
↓
1 = −𝑐↑1, 𝑐

↓
2 = −𝑐↑2 + 𝑐

↑
1, (5.8)

then the spectrum of 𝐷 coincides with that of the classical Dirac operator /𝐷 on the round sphere 𝕊3,
up to rescaling and addition of a constant. Thus, we can regard our spectral triple as an isospectral
deformation of (𝐶∞(𝕊3),H, /𝐷), and in particular, its spectral dimension is 3. We summarize our
conclusions in the following theorem.

Theorem 5.3. The triple (A(SU𝑞 (2)),H, 𝐷), where the eigenvalues of 𝐷 satisfy (5.3) and (5.8), is
a 3+-summable spectral triple. □

At this point, it is appropriate to comment on the relation of our construction with that
of [13]. There, a spinor representation is constructed by tensoring the left regular representa-
tion of A(SU𝑞 (2)) by ℂ2 on the left. This spinor space is then decomposed into two subspaces,
similar to our “up” and “down” subspaces, on which 𝐷 acts diagonally with eigenvalues linear in
the total spin number 𝑗 . The corresponding decomposition of the representation 𝜋′ of A(SU𝑞 (2))
on spinor space is obtained by using the appropriate Clebsch–Gordan coefficients. However, con-
trary to what we have established above, in [13] it is found that a certain commutator [𝐷, 𝜋′(𝑥)]
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is an unbounded operator. In particular, the off-diagonal terms in the representation of [13] do not
have the compact nature we encountered in (5.6). They can be bounded from below by a positive
constant, which leads, when multiplied by a term linear in 𝑗 , to an unbounded operator.

The origin of this notable contrast is the following. Since in [13] no condition of U𝑞 (su(2))-
equivariance is imposed a priori on the representation of A(SU𝑞 (2)), the spinor space 𝑊 could
be identified either with 𝑉 ⊗ ℂ2 or ℂ2 ⊗ 𝑉 , according to convenience. However, as we noted in
Remark 4.5, the choice of ℂ2 ⊗ 𝑉 is not allowed by the condition of (𝜆′, 𝜌′)-equivariance, because
U𝑞 (su(2)) is not cocommutative. Indeed, repeating the construction of a spinor representation and
Dirac operator on the spinor space ℂ2 ⊗ 𝑉 instead of𝑉 ⊗ℂ2 – hence ignoring equivariance – results
eventually in unbounded commutators.

6 The real structure
The next issue we address is the real structure 𝐽 on the spectral triple (A(SU𝑞 (2)),H, 𝐷). We
shall see that by requiring equivariance of 𝐽 it is not possible to satisfy all usual properties of a
real spectral triple like in [8] or [15]. Among other things, these conditions entail for 𝐽 that it
intertwine a left action and a commuting right action of the algebra on the Hilbert space, which then
gets a bimodule structure (the commutant property); and that the bounded commutators [𝐷, 𝑎], for
any element 𝑎 in the algebra, commute with the opposite action by any 𝑏 in the algebra (the first
order condition on 𝐷). However, we shall be able to satisfy these two conditions only up to certain
compact operators.

6.1 The Tomita operator of the regular representation

On the GNS representation space H𝜓 , there is a natural involution 𝑇𝜓 : 𝜂(𝑥) ↦→ 𝜂(𝑥∗), with domain
𝜂(𝐶 (SU𝑞 (2))), which may be regarded as an unbounded (antilinear) operator on H𝜓 . The Tomita–
Takesaki theory [31] shows that this operator is closable (we denote its closure also by 𝑇𝜓) and
that the polar decomposition 𝑇𝜓 =: 𝐽𝜓Δ1/2

𝜓
defines both the positive “modular operator” Δ𝜓 and the

antiunitary “modular conjugation” 𝐽𝜓 . It has already been noted by Chakraborty and Pal [5] that
this 𝐽𝜓 has a simple expression in terms of the matrix elements of our chosen orthonormal basis
for H𝜓 . Indeed, it follows immediately from (2.12) and (2.13) that

𝑇𝜓 |𝑙𝑚𝑛⟩ = (−1)2𝑙+𝑚+𝑛𝑞𝑚+𝑛 |𝑙,−𝑚,−𝑛⟩.

One checks, using (3.3), that

𝑇𝜓𝜋(𝑎) |000⟩ = 𝜋(𝑎∗) |000⟩, 𝑇𝜓𝜋(𝑏) |000⟩ = 𝜋(𝑏∗) |000⟩.

Since 𝜋 is the GNS representation for the state 𝜓, this is enough to conclude that

𝑇𝜓𝜂(𝑥) = 𝜂(𝑥∗) for all 𝑥 ∈ A. (6.1)

The adjoint antilinear operator, satisfying ⟨𝜂 | 𝑇∗
𝜓
| 𝜉⟩ = ⟨𝜉 | 𝑇𝜓 | 𝜂⟩, is given by 𝑇∗

𝜓
|𝑙𝑚𝑛⟩ =

(−1)2𝑙+𝑚+𝑛𝑞−𝑚−𝑛 |𝑙,−𝑚,−𝑛⟩, and since Δ𝜓 = 𝑇∗
𝜓
𝑇𝜓 , we see that every |𝑙𝑚𝑛⟩ lies in DomΔ𝜓 with

Δ𝜓 |𝑙𝑚𝑛⟩ = 𝑞2𝑚+2𝑛 |𝑙𝑚𝑛⟩. Consequently,

𝐽𝜓 |𝑙𝑚𝑛⟩ = (−1)2𝑙+𝑚+𝑛 |𝑙,−𝑚,−𝑛⟩. (6.2)

It is clear that 𝐽2
𝜓
= 1 on H𝜓 .
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Definition 6.1. Let 𝜋◦(𝑥) := 𝐽𝜓 𝜋(𝑥∗) 𝐽−1
𝜓

, so that 𝜋◦ is a ∗-antirepresentation of A on H𝜓 . Equiv-
alently, 𝜋◦ is a ∗-representation of the opposite algebra A(SU1/𝑞 (2)). By Tomita’s theorem [31],
𝜋 and 𝜋◦ are commuting representations.

As an example, we compute
𝜋◦(𝑎) |𝑙𝑚𝑛⟩ = (−1)2𝑙+𝑚+𝑛𝐽𝜓𝜋(𝑎∗) |𝑙,−𝑚,−𝑛⟩

= (−1)2𝑙+𝑚+𝑛𝐽𝜓
(
𝐴+𝑙,−𝑚,−𝑛 |𝑙

+,−𝑚+,−𝑛+⟩ + 𝐴−𝑙,−𝑚,−𝑛 |𝑙
−,−𝑚+,−𝑛+⟩

)
= 𝐴+𝑙,−𝑚,−𝑛 |𝑙

+𝑚+𝑛+⟩ + 𝐴−𝑙,−𝑚,−𝑛 |𝑙
−𝑚+𝑛+⟩

= 𝐴−𝑙+,−𝑚+,−𝑛+ |𝑙
+𝑚+𝑛+⟩ + 𝐴+𝑙− ,−𝑚+,−𝑛+ |𝑙

−𝑚+𝑛+⟩,
where, explicitly,

𝐴−𝑙+,−𝑚+,−𝑛+ = 𝑞
(2𝑙−𝑚−𝑛+1)/2

(
[𝑙 + 𝑚 + 1] [𝑙 + 𝑛 + 1]

[2𝑙 + 1] [2𝑙 + 2]

) 1
2

,

𝐴+𝑙− ,−𝑚+,−𝑛+ = 𝑞
−(2𝑙+𝑚+𝑛+1)/2

(
[𝑙 − 𝑚] [𝑙 − 𝑛]
[2𝑙] [2𝑙 + 1]

) 1
2

.

A glance back at (3.4) shows that these coefficients are identical with those of 𝜋(𝑎) |𝑙𝑚𝑛⟩, after
substituting 𝑞 ↦→ 𝑞−1. A similar phenomenon occurs with the coefficients of 𝜋◦(𝑏). We find,
indeed, that

𝜋◦(𝑎) |𝑙𝑚𝑛⟩ = 𝐴◦+𝑙𝑚𝑛 |𝑙
+𝑚+𝑛+⟩ + 𝐴◦−𝑙𝑚𝑛 |𝑙

−𝑚+𝑛+⟩,
𝜋◦(𝑏) |𝑙𝑚𝑛⟩ = 𝐵◦+

𝑙𝑚𝑛 |𝑙
+𝑚+𝑛−⟩ + 𝐵◦−

𝑙𝑚𝑛 |𝑙
−𝑚+𝑛−⟩,

where
𝐴◦±𝑙𝑚𝑛 (𝑞) = 𝐴

±
𝑙𝑚𝑛 (𝑞

−1), 𝐵◦±
𝑙𝑚𝑛 (𝑞) = 𝑞

−1𝐵±
𝑙𝑚𝑛 (𝑞

−1). (6.3)
We can now verify directly that the representations 𝜋 and 𝜋◦ commute, without need to appeal

to the theorem of Tomita. For instance,
⟨𝑙 + 1, 𝑚 + 1, 𝑛 + 1 | [𝜋(𝑎), 𝜋◦(𝑎)] | 𝑙𝑚𝑛⟩ = 𝐴◦+𝑙+𝑚+𝑛+𝐴

+
𝑙𝑚𝑛 − 𝐴

+
𝑙+𝑚+𝑛+𝐴

◦+
𝑙𝑚𝑛

= 𝑄

(
[𝑙 + 𝑚 + 1] [𝑙 + 𝑚 + 2] [𝑙 + 𝑛 + 1] [𝑙 + 𝑛 + 2]

[2𝑙 + 1] [2𝑙 + 2]2 [2𝑙 + 3]

) 1
2

,

where
𝑄 = 𝑞

1
2 (2𝑙

+−𝑚+−𝑛++1)𝑞
1
2 (−2𝑙+𝑚+𝑛−1) − 𝑞 1

2 (−2𝑙++𝑚++𝑛+−1)𝑞
1
2 (2𝑙−𝑚−𝑛+1) = 0.

Likewise, ⟨𝑙 − 1, 𝑚 + 1, 𝑛 + 1 | [𝜋(𝑎), 𝜋◦(𝑎)] | 𝑙𝑚𝑛⟩ = 0, and one checks that the matrix element
⟨𝑙, 𝑚 + 1, 𝑛 + 1 | [𝜋(𝑎), 𝜋◦(𝑎)] | 𝑙𝑚𝑛⟩ vanishes, too.

The (𝜆, 𝜌)-equivariance of 𝜋 is reflected in an analogous equivariance condition for 𝜋◦. We
now identify this condition explicitly.
Lemma 6.2. The symmetry of the antirepresentation 𝜋◦ of A on H𝜓 is given by the equivariance
conditions:

𝜆(ℎ) 𝜋◦(𝑥)𝜉 = 𝜋◦( ℎ̃(2) · 𝑥) 𝜆(ℎ(1))𝜉,

𝜌(ℎ) 𝜋◦(𝑥)𝜉 = 𝜋◦( ℎ̃(2) ⊲ 𝑥) 𝜌(ℎ(1))𝜉, (6.4)

for all ℎ ∈ U, 𝑥 ∈ A and 𝜉 ∈ 𝑉 , and ℎ ↦→ ℎ̃ is the automorphism of U determined on generators by
𝑘̃ := 𝑘 , 𝑓 := 𝑞−1 𝑓 , and 𝑒 := 𝑞𝑒.
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Proof. We work only on the dense subspace 𝑉 . From (3.1) and (6.2), we get at once

𝐽𝜓𝜆(𝑘)∗𝐽−1
𝜓 = 𝜆(𝑘−1), 𝐽𝜓𝜆( 𝑓 )∗𝐽−1

𝜓 = −𝜆( 𝑓 ), 𝐽𝜓𝜆(𝑒)∗𝐽−1
𝜓 = −𝜆(𝑒), (6.5)

and identical relations with 𝜌 instead of 𝜆. Write 𝛼 for the antiautomorphism of U determined by
𝛼(𝑘) := 𝑘−1, 𝛼( 𝑓 ) := − 𝑓 , and 𝛼(𝑒) := −𝑒; so that 𝐽𝜓𝜆(ℎ)∗𝐽−1

𝜓
= 𝜆(𝛼(ℎ)) for ℎ ∈ U, and similarly

with 𝜌 instead of 𝜆.
Next, the first relation of (3.2) is equivalent to

𝜋(𝑥) 𝜆(𝑆ℎ) = 𝜆(𝑆ℎ(1)) 𝜋(ℎ(2) · 𝑥). (6.6)

Indeed, the left hand side can be expanded as

𝜋(𝑥) 𝜆(𝜀(ℎ(1)) 𝑆ℎ(2)) = 𝜆(𝑆ℎ(1) ℎ(2)) 𝜋(𝑥) 𝜆(𝑆ℎ(3)) = 𝜆(𝑆ℎ(1)) 𝜋(ℎ(2) · 𝑥) 𝜆(ℎ(3)) 𝜆(𝑆ℎ(4))
on applying (3.2); and the rightmost expression equals the right-hand side of (6.6). Taking hermitian
adjoints and conjugating by 𝐽𝜓 , we get

𝜆(𝛼(𝑆ℎ)) 𝜋◦(𝑥) = 𝜋◦(ℎ(2) · 𝑥) 𝜆(𝛼(𝑆ℎ(1))).
It remains only to note that 𝑆𝛼 = 𝛼𝑆 is an automorphism of U, whose inverse is the map ℎ ↦→ ℎ̃

above; and to repeat the argument with 𝜌 instead of 𝜆, changing only the left action of U in
concordance with (3.2). □

An independent check of (6.4) is afforded by the following argument. We may ask which
antirepresentations 𝜋◦ of H𝜓 satisfy these equivariance conditions. It suffices to run the proof of
Proposition 3.3, mutatis mutandis, to determine the possible form of such a 𝜋◦ on the basis vectors
|𝑙𝑚𝑛⟩. For instance, (3.9) is replaced by

𝜌(𝑒)𝜋◦(𝑎) = 𝜋◦(𝑒 ⊲ 𝑎)𝜌(𝑘−1) + 𝜋◦( 𝑘̃ ⊲ 𝑎)𝜌(𝑒) = 𝑞 𝜋◦(𝑏)𝜌(𝑘−1) + 𝑞 1
2 𝜋◦(𝑎)𝜌(𝑒).

One finds that all formulas in that proof are reproduced, except for changes in the powers of 𝑞 that
appear; and, apart from the aforementioned phase ambiguities, one recovers precisely the form of
𝜋◦ given by (6.3).

▶ Before proceeding, we indicate also the symmetry of the Tomita operator 𝑇𝜓 , analogous to (6.5)
above. Combining (6.1) with (3.2), and recalling that 𝜂(𝑥) = 𝜋(𝑥) |000⟩, we find that for generators
ℎ of U,

𝑇𝜓𝜆(ℎ)𝜋(𝑥) |000⟩ = 𝜋(𝑥∗ ⊳ 𝜗(ℎ)∗) |000⟩.
On the other hand,

𝜆(𝜗−1𝑆(𝜗(ℎ∗)))𝑇𝜓𝜋(𝑥) |000⟩ = 𝜋(𝑥∗ ⊳ 𝜗(ℎ)∗) |000⟩.
One checks easily on generators that 𝜗−1𝑆(𝜗(ℎ)∗) = 𝑆(ℎ)∗. Since the vector |000⟩ is separating for
the GNS representation, we conclude that

𝑇𝜓 𝜆(ℎ) 𝑇−1
𝜓 = 𝜆(𝑆ℎ)∗.

Similarly, we find that
𝑇𝜓 𝜌(ℎ) 𝑇−1

𝜓 = 𝜌(𝑆ℎ)∗.
In other words, the antilinear involutory automorphism ℎ ↦→ (𝑆ℎ)∗ of the Hopf ∗-algebra U is
implemented by the Tomita operator for the Haar state of the dual Hopf ∗-algebra A. This is a
known feature of quantum-group duality in the 𝐶∗-algebra framework; for this and several other
implementations by spatial operators, see [25].
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6.2 The real structure on spinors

We are now ready to come back to spinors. Notice that 𝐽𝜓 does not appear explicitly in the
equivariance conditions (6.4) for the right regular representation 𝜋◦ of A on H𝜓 . Thus, we are now
able to construct the “right multiplication” representation of A on spinors from its symmetry alone,
and to deduce the conjugation operator 𝐽 on spinors after the fact.

Proposition 6.3. Let 𝜋′◦ be an antirepresentation of A on H = H𝜓 ⊕ H𝜓 satisfying the following
equivariance conditions:

𝜆′(ℎ) 𝜋′◦(𝑥)𝜉 = 𝜋′◦( ℎ̃(2) · 𝑥) 𝜆′(ℎ(1))𝜉,

𝜌′(ℎ) 𝜋′◦(𝑥)𝜉 = 𝜋′◦( ℎ̃(2) ⊲ 𝑥) 𝜌′(ℎ(1))𝜉. (6.7)

Then, up to some phase factors depending only on the index 𝑗 in the decomposition (4.2), 𝜋′◦ is
given on the spinor basis by

𝜋′◦(𝑎) | 𝑗 𝜇𝑛⟩⟩ = 𝛼◦+𝑗 𝜇𝑛 | 𝑗+𝜇+𝑛+⟩⟩ + 𝛼◦−𝑗 𝜇𝑛 | 𝑗−𝜇+𝑛+⟩⟩,

𝜋′◦(𝑏) | 𝑗 𝜇𝑛⟩⟩ = 𝛽◦+𝑗 𝜇𝑛 | 𝑗+𝜇+𝑛−⟩⟩ + 𝛽◦−𝑗 𝜇𝑛 | 𝑗−𝜇+𝑛−⟩⟩,

𝜋′◦(𝑎∗) | 𝑗 𝜇𝑛⟩⟩ = 𝛼̃◦+𝑗 𝜇𝑛 | 𝑗+𝜇−𝑛−⟩⟩ + 𝛼̃◦−𝑗 𝜇𝑛 | 𝑗−𝜇−𝑛−⟩⟩, (6.8)

𝜋′◦(𝑏∗) | 𝑗 𝜇𝑛⟩⟩ = 𝛽◦+𝑗 𝜇𝑛 | 𝑗+𝜇−𝑛+⟩⟩ + 𝛽◦−𝑗 𝜇𝑛 | 𝑗−𝜇−𝑛+⟩⟩,

where 𝛼◦±
𝑗 𝜇𝑛

and 𝛽◦±
𝑗 𝜇𝑛

are the triangular 2×2 matrices given by 𝛼◦±
𝑗 𝜇𝑛

(𝑞) = 𝛼±
𝑗 𝜇𝑛

(𝑞−1) and 𝛽◦±
𝑗 𝜇𝑛

(𝑞) =
𝑞−1𝛽±

𝑗 𝜇𝑛
(𝑞−1), with 𝛼±

𝑗 𝜇𝑛
and 𝛽±

𝑗 𝜇𝑛
given by (4.9).

Proof. We retrace the steps of the proof of Proposition 4.4, mutatis mutandis. Since 𝑘̃ · 𝑎 = 𝑘 · 𝑎 =

𝑞
1
2 𝑎, the relations involving 𝜆′(𝑘) and 𝜌′(𝑘) are unchanged. We quickly conclude that 𝜋′◦ must

have the form (6.8), and it remains to determine the coefficient matrices.
The commutation relations of 𝜆′( 𝑓 ) with 𝜋′◦(𝑎) and 𝜋′◦(𝑏) give:

𝛼◦+𝑗 𝜇𝑛 = 𝑞
− 1

2 (𝜇+𝑛−
1
2 ) [ 𝑗 + 𝜇 + 1] 1

2 𝐴◦+𝑗𝑛 , 𝛼◦−𝑗 𝜇𝑛 = 𝑞
− 1

2 (𝜇+𝑛−
1
2 ) [ 𝑗 − 𝜇] 1

2 𝐴◦−𝑗𝑛 ,

𝛽◦+𝑗 𝜇𝑛 = 𝑞
− 1

2 (𝜇+𝑛−
1
2 ) [ 𝑗 + 𝜇 + 1] 1

2 𝐵◦+
𝑗𝑛 , 𝛽◦−𝑗 𝜇𝑛 = 𝑞

− 1
2 (𝜇+𝑛−

1
2 ) [ 𝑗 − 𝜇] 1

2 𝐵◦−
𝑗𝑛 .

The matrices 𝐴◦±
𝑗𝑛

, 𝐵◦±
𝑗𝑛

may be determined, as before, by the commutation relations involving
𝜌′( 𝑓 ) and 𝜌′(𝑒). One finds that the 𝑛-dependent factors such as [ 𝑗 + 𝑛+ 3

2 ]
1
2 and so on, are the same

as the respective entries of 𝐴±
𝑗𝑛

, 𝐵±
𝑗𝑛

; let 𝑎◦+
𝑗↑↑, etc., be the remaining factors which depend on 𝑗 only.

Then (4.10) is replaced by

𝑏◦+
𝑗↑↑ = 𝑞

− 𝑗− 3
2 𝑎◦+

𝑗↑↑, 𝑏◦+
𝑗↓↑ = −𝑞 𝑗+ 1

2 𝑎◦+
𝑗↓↑, 𝑏◦+

𝑗↓↓ = 𝑞
− 𝑗− 1

2 𝑎◦+
𝑗↓↓,

𝑏◦−
𝑗↑↑ = −𝑞 𝑗+ 1

2 𝑎◦−
𝑗↑↑, 𝑏◦−

𝑗↑↓ = 𝑞
− 𝑗− 1

2 𝑎◦−
𝑗↑↓, 𝑏◦−

𝑗↓↓ = −𝑞 𝑗− 1
2 𝑎◦−

𝑗↓↓.

Next, we find

(𝑎◦−
𝑗+ 1

2 ,↑↑
)★ = 𝑞−2 𝑗−2𝑎◦+

𝑗↑↑, (𝑎◦−
𝑗+ 1

2 ,↑↓
)★ = −𝑎◦+

𝑗↓↑, (𝑎◦−
𝑗+ 1

2 ,↓↓
)★ = 𝑞−2 𝑗−1𝑎◦+

𝑗↓↓.
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Since 𝜋′◦ is an antirepresentation, 𝑎𝑏 = 𝑞−1𝑏𝑎 implies 𝜋′◦(𝑏)𝜋′◦(𝑎) = 𝑞−1 𝜋′◦(𝑎)𝜋′◦(𝑏). The
matrix elements of both sides lead to three relations:

[2 𝑗 + 1] 𝑎◦+
𝑗+ 1

2 ,↓↓
𝑎◦+
𝑗↓↑ = [2 𝑗 + 3] 𝑎◦+

𝑗+ 1
2 ,↓↑
𝑎◦+
𝑗↑↑, (6.9)

which is formally identical to (4.11), and

[2 𝑗 + 1] |𝑎◦+
𝑗↓↑ |

2 = 𝑞−2 𝑗−1 ([2 𝑗 + 1] |𝑎◦+
𝑗− 1

2 ,↑↑
|2 − 𝑞−1 [2 𝑗 + 3] |𝑎◦+

𝑗↑↑ |
2) ,

[2 𝑗 + 1] |𝑎◦+
𝑗− 1

2 ,↓↑
|2 = 𝑞−2 𝑗 (𝑞−1 [2 𝑗 + 1] |𝑎◦+

𝑗↓↓ |
2 − [2 𝑗 − 1] |𝑎◦+

𝑗− 1
2 ,↓↓

|2
)
.

Finally, the relation 𝑎𝑎∗ + 𝑏𝑏∗ = 1 yields 𝜋′◦(𝑎∗)𝜋′◦(𝑎) + 𝜋′◦(𝑏∗)𝜋′◦(𝑏) = 1; its diagonal matrix
elements gives the last two relations:

𝑞−2 𝑗 [2 𝑗 + 1]2 |𝑎◦+
𝑗− 1

2 ,↑↑
|2 = 1, 𝑞−2 𝑗 [2 𝑗 + 1]2 |𝑎◦+

𝑗↓↓ |
2 = 1.

All coefficients are now determined except for their phases:

𝑎◦+
𝑗↑↑ = 𝜁

◦
𝑗

𝑞 𝑗+
1
2

[2 𝑗 + 2] , 𝑎◦+
𝑗↓↑ = 𝜂

◦
𝑗

𝑞−
1
2

[2 𝑗 + 1] [2 𝑗 + 2] , 𝑎◦+
𝑗↓↓ = 𝜉

◦
𝑗

𝑞 𝑗

[2 𝑗 + 1] , (6.10)

and (6.9) also entails the phase relations 𝜁◦
𝑗
𝜂◦
𝑗+ 1

2
= 𝜂◦

𝑗
𝜉◦
𝑗+ 1

2
. Once more, we choose all phases to

be +1 by convention. Substituting (6.10) back in previous formulas, we find

𝛼◦±𝑗 𝜇𝑛 (𝑞) = 𝛼±𝑗 𝜇𝑛 (𝑞−1), 𝛽◦±𝑗 𝜇𝑛 (𝑞) = 𝑞−1𝛽±𝑗 𝜇𝑛 (𝑞−1). (6.11)

in perfect analogy with (6.3). □

Definition 6.4. The conjugation operator 𝐽 is the antilinear operator onHwhich is defined explicitly
on the orthonormal spinor basis by

𝐽 | 𝑗 𝜇𝑛↑⟩ := 𝑖2(2 𝑗+𝜇+𝑛) | 𝑗 ,−𝜇,−𝑛, ↑⟩,
𝐽 | 𝑗 𝜇𝑛↓⟩ := 𝑖2(2 𝑗−𝜇−𝑛) | 𝑗 ,−𝜇,−𝑛, ↓⟩. (6.12)

It is immediate from this presentation that 𝐽 is antiunitary and that 𝐽2 = −1, since each 4 𝑗 ±2(𝜇+𝑛)
is an odd integer.

Proposition 6.5. The invariant operator 𝐷 of Section 5 commutes with the conjugation operator 𝐽:

𝐽𝐷𝐽−1 = 𝐷. (6.13)

Proof. This is clear from the diagonal form of both 𝐷 and 𝐽 on their common eigenspaces𝑊↑
𝑗

and
𝑊

↓
𝑗
, given by the respective equations (5.1) and (6.12). □

Remark 6.6. Proposition 6.5 is a minimal requirement for (A(SU𝑞 (2)),H, 𝐷, 𝐽) to constitute a real
spectral triple. However, here is where we part company with the axiom scheme for real spectral
triples proposed in [8]. Indeed, the conjugation operator 𝐽 that we have defined by (6.12) is not
the modular conjugation for the spinor representation of A. That modular operator is 𝐽𝜓 ⊕ 𝐽𝜓 ,
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which does not have a diagonal form in our chosen spinor basis (unless 𝑞 = 1). It is clear that
conjugation of 𝜋′(A(SU𝑞 (2)) by the modular operator would yield a representation of the opposite
algebra A(SU1/𝑞 (2)), and the commutation relation analogous to (6.13) would then force 𝐷 to be
equivariant under the corresponding symmetry of 𝑈1/𝑞 (𝑠𝑢(2)), denoted by (𝜆′′, 𝜌′′) in our earlier
Remark 4.5. It is not hard to check that this extra equivariance condition would force 𝐷 to be merely
a scalar operator, thereby negating the possibility of an equivariant 3+-summable real spectral triple
based on A(SU𝑞 (2)) with the modular conjugation operator. This result is consonant with the
“no-go theorem” of Schmüdgen [28] for nontrivial commutator representations of Woronowicz
differential calculi on SU𝑞 (2).

The remedy that we propose here is to modify 𝐽, in keeping with the symmetry of the spinor
representation, to a non-Tomita conjugation operator. We shall see, however, that the expected
properties of real spectral triples do hold “up to compact perturbations”.

It should be noted that 𝐽 satisfies the analogue of (6.5) for the representations 𝜆′ and 𝜌′:

𝐽𝜆′(𝑘)𝐽−1 = 𝜆′(𝑘−1), 𝐽𝜆′(𝑒)𝐽−1 = −𝜆′( 𝑓 ),
𝐽𝜌′(𝑘)𝐽−1 = 𝜌′(𝑘−1), 𝐽𝜌′(𝑒)𝐽−1 = −𝜌′( 𝑓 ), (6.14)

which follows directly from the definition (6.12) and the relations (4.6).

Proposition 6.7. The antiunitary operator 𝐽 intertwines the left and right spinor representations:

𝐽 𝜋′(𝑥∗) 𝐽−1 = 𝜋′◦(𝑥), for all 𝑥 ∈ A. (6.15)

Proof. It follows directly from the proof of Lemma 6.2, using the relations (6.14) instead of (6.5),
that the antirepresentation 𝑥 ↦→ 𝐽 𝜋′(𝑥∗) 𝐽−1 complies with the equivariance conditions (6.7). By
Proposition 6.3, it coincides with 𝜋′◦ up to an equivalence obtained by resetting the phase factors
in (6.10). It remains only to check that 𝜁◦

𝑗
= 𝜂◦

𝑗
= 𝜉◦

𝑗
= 1 for the aforementioned antirepresentation.

This check is easily effected by calculating 𝐽 𝜋′(𝑎∗) 𝐽−1 directly on the basis vectors | 𝑗 𝜇𝑛↑⟩. We
compute

𝐽𝜋′(𝑎∗)𝐽−1 | 𝑗 𝜇𝑛↑⟩ = 𝑖−2(2 𝑗−𝜇−𝑛)𝐽𝜋′(𝑎∗) | 𝑗 ,−𝜇,−𝑛, ↑⟩
= 𝑖−2(2 𝑗−𝜇−𝑛)𝐽

(
𝛼̃+
𝑗 ,−𝜇,−𝑛,↑↑ | 𝑗

+,−𝜇+,−𝑛+↑⟩ + 𝛼̃+
𝑗 ,−𝜇,−𝑛,↓↑ | 𝑗

+,−𝜇+,−𝑛+↓⟩
+ 𝛼̃−

𝑗 ,−𝜇,−𝑛,↑↑ | 𝑗
−,−𝜇+,−𝑛+↑⟩

)
= 𝛼̃+

𝑗 ,−𝜇,−𝑛,↑↑ | 𝑗
+𝜇+𝑛+↑⟩ − 𝛼̃+

𝑗 ,−𝜇,−𝑛,↓↑ | 𝑗
+𝜇+𝑛+↓⟩ + 𝛼̃−

𝑗 ,−𝜇,−𝑛,↑↑ | 𝑗
−𝜇+𝑛+↑⟩

= 𝛼−
𝑗+,−𝜇+,−𝑛+,↑↑ | 𝑗

+𝜇+𝑛+↑⟩ − 𝛼−
𝑗+,−𝜇+,−𝑛+,↓↑ | 𝑗

+𝜇+𝑛+↓⟩ + 𝛼+
𝑗− ,−𝜇+,−𝑛+,↑↑ | 𝑗

−𝜇+𝑛+↑⟩

= 𝑞−
1
2 (𝜇+𝑛−

1
2 )

(
𝑞 𝑗+

1
2
[ 𝑗 + 𝜇 + 1] 1

2 [ 𝑗 + 𝑛 + 3
2 ]

1
2

[2 𝑗 + 2] | 𝑗+𝜇+𝑛+↑⟩

+ 𝑞− 1
2
[ 𝑗 + 𝜇 + 1] 1

2 [ 𝑗 − 𝑛 + 1
2 ]

1
2

[2 𝑗 + 1] [2 𝑗 + 2] | 𝑗+𝜇+𝑛+↓⟩ + 𝑞− 𝑗−1 [ 𝑗 − 𝜇]
1
2 [ 𝑗 − 𝑛 + 1

2 ]
1
2

[2 𝑗 + 1] | 𝑗−𝜇+𝑛+↑⟩
)

= 𝛼◦+
𝑗 𝜇𝑛↑↑ | 𝑗

+𝜇+𝑛+↑⟩ + 𝛼◦+
𝑗 𝜇𝑛↓↑ | 𝑗

+𝜇+𝑛+↓⟩ + 𝛼◦−
𝑗 𝜇𝑛↑↑ | 𝑗

−𝜇+𝑛+↑⟩
= 𝜋′◦(𝑎) | 𝑗 𝜇𝑛↑⟩,

where the 𝛼◦±
𝑗 𝜇𝑛

coefficients are taken according to (6.11).
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In the same way, one finds that 𝐽𝜋′(𝑏∗)𝐽−1 | 𝑗 𝜇𝑛↑⟩ = 𝜋′◦(𝑏) | 𝑗 𝜇𝑛↑⟩, again using (6.11) for
𝛽◦±
𝑗 𝜇𝑛

; and similar calculations show that both sides of (6.15) coincide on the basis vector | 𝑗 𝜇𝑛↓⟩.
(These four calculations, taken together, afford a direct proof of (6.15) without need to consider the
symmetries of 𝐽.) □

7 Algebraic properties of the spectral triple
In this section, we discuss the properties of the real spectral triple (A(SU𝑞 (2)),H, 𝐷, 𝐽), in
particular its commutant property and its first-order condition. We shall see that these are only
satisfied up to certain compact operators, quite similarly to [11].

We can simplify our discussion somewhat by replacing the spinor representation 𝜋′ of A =

A(SU𝑞 (2)) of Proposition 4.4 by a so-called approximate representation 𝜋′ : A → B(H), such
that 𝜋′(𝑥) − 𝜋′(𝑥) is a compact operator for each 𝑥 ∈ A. In other words, although 𝜋′ need not
preserve the algebra relations of A, the mappings 𝜋′ and 𝜋′ have the same image in the Calkin
algebra B(H)/K(H), that is, they define the same ∗-homomorphism of A into the Calkin algebra.

We denote by 𝐿𝑞 the positive trace-class operator given by

𝐿𝑞 | 𝑗 𝜇𝑛⟩⟩ := 𝑞 𝑗 | 𝑗 𝜇𝑛⟩⟩ for 𝑗 ∈ 1
2ℕ,

and let K𝑞 be the two-sided ideal of B(H) generated by 𝐿𝑞; it consists of trace-class operators.
The ideal K𝑞 is indeed contained in the ideal of infinitesimals of order 𝛼, that is, compact operators
whose 𝑛-th singular value 𝜇𝑛 satisfies 𝜇𝑛 = 𝑂 (𝑛−𝛼), for all 𝛼 > 0. Thus the following analysis
holds modulo infinitesimals of arbitrary high order.
Proposition 7.1. The following equations define a mapping 𝜋′ : A → B(H) on generators, which
is a ∗-representation moduloK𝑞, and is approximate to the spin representation 𝜋′ of Proposition 4.4
in the sense that 𝜋′(𝑥) − 𝜋′(𝑥) ∈ K𝑞 for each 𝑥 ∈ A:

𝜋′(𝑎) | 𝑗 𝜇𝑛⟩⟩ = 𝛼+
𝑗 𝜇𝑛

| 𝑗+𝜇+𝑛+⟩⟩ + 𝛼−
𝑗 𝜇𝑛

| 𝑗−𝜇+𝑛+⟩⟩,

𝜋′(𝑏) | 𝑗 𝜇𝑛⟩⟩ = 𝛽+
𝑗 𝜇𝑛

| 𝑗+𝜇+𝑛−⟩⟩ + 𝛽−
𝑗 𝜇𝑛

| 𝑗−𝜇+𝑛−⟩⟩,

𝜋′(𝑎∗) | 𝑗 𝜇𝑛⟩⟩ = 𝛼̃+
𝑗 𝜇𝑛

| 𝑗+𝜇−𝑛−⟩⟩ + 𝛼̃−
𝑗 𝜇𝑛

| 𝑗−𝜇−𝑛−⟩⟩, (7.1)

𝜋′(𝑏∗) | 𝑗 𝜇𝑛⟩⟩ = 𝛽̃+
𝑗 𝜇𝑛

| 𝑗+𝜇−𝑛+⟩⟩ + 𝛽̃−
𝑗 𝜇𝑛

| 𝑗−𝜇−𝑛+⟩⟩,

where

𝛼+
𝑗 𝜇𝑛

:=
√︃

1 − 𝑞2 𝑗+2𝜇+2

(√︁
1 − 𝑞2 𝑗+2𝑛+3 0

0
√︁

1 − 𝑞2 𝑗+2𝑛+1

)
,

𝛼−
𝑗 𝜇𝑛

:= 𝑞2 𝑗+𝜇+𝑛+ 1
2

√︃
1 − 𝑞2 𝑗−2𝜇

(
𝑞
√︁

1 − 𝑞2 𝑗−2𝑛+1 0
0

√︁
1 − 𝑞2 𝑗−2𝑛−1

)
,

𝛽+
𝑗 𝜇𝑛

:= 𝑞 𝑗+𝑛−
1
2

√︃
1 − 𝑞2 𝑗+2𝜇+2

(
𝑞
√︁

1 − 𝑞2 𝑗−2𝑛+3 0
0

√︁
1 − 𝑞2 𝑗−2𝑛+1

)
, (7.2)

𝛽−
𝑗 𝜇𝑛

:= −𝑞 𝑗+𝜇
√︃

1 − 𝑞2 𝑗−2𝜇

(√︁
1 − 𝑞2 𝑗+2𝑛+1 0

0
√︁

1 − 𝑞2 𝑗+2𝑛−1

)
,
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and
𝛼̃±
𝑗 𝜇𝑛

= 𝛼∓
𝑗±𝜇−𝑛− , 𝛽

±
𝑗 𝜇𝑛

= 𝛼∓
𝑗±𝜇−𝑛+ . (7.3)

Proof. First of all, we claim that the defining relations (2.1) are preserved by 𝜋′ modulo the ideal
K𝑞 of B(H), that is, 𝜋′(𝑏)𝜋′(𝑎) − 𝑞 𝜋′(𝑎)𝜋′(𝑏) ∈ K𝑞, and so on. Indeed, it can be verified by a
direct but tedious check on the spinor basis that 𝜋′(𝑏)𝜋′(𝑎) − 𝑞 𝜋′(𝑎)𝜋′(𝑏) = 𝐿4

𝑞𝐴 where 𝐴 is a
bounded operator; the same is true for each of the other relations listed in (2.1).

It is well known, and easily checked from (2.1), that A is generated as a vector space by the
products 𝑎𝑘𝑏𝑙𝑏∗𝑚 and 𝑏𝑙𝑏∗𝑚𝑎∗𝑛, for 𝑘, 𝑙, 𝑚, 𝑛 ∈ ℕ. We may thus define 𝜋′(𝑥) for any 𝑥 ∈ A by
extending (7.1) multiplicatively on such products, and then extending further by linearity. With this
convention, we conclude that

𝜋′(𝑥𝑦) − 𝜋′(𝑥)𝜋′(𝑦) ∈ K𝑞 for all 𝑥, 𝑦 ∈ A. (7.4)

The defining formulas also entail that 𝜋′(𝑥)∗ = 𝜋′(𝑥∗) for each 𝑥 ∈ A.
If 𝜋′(𝑥) − 𝜋′(𝑥) ∈ K𝑞 and 𝜋′(𝑦) − 𝜋′(𝑦) ∈ K𝑞, then

𝜋′(𝑥𝑦) − 𝜋′(𝑥)𝜋′(𝑦) = 𝜋′(𝑥)
(
𝜋′(𝑦) − 𝜋′(𝑦)

)
+

(
𝜋′(𝑥) − 𝜋′(𝑥)

)
𝜋′(𝑦) ∈ K𝑞,

and therefore 𝜋′(𝑥𝑦) − 𝜋′(𝑥𝑦) lies in K𝑞 also; thus, it suffices to verify this property in the cases
𝑥 = 𝑎, 𝑏.

On comparing the coefficients (7.2) with the corresponding ones of 𝜋′(𝑎) and 𝜋′(𝑏) from (4.9),
we get, for instance,

𝛼+
𝑗 𝜇𝑛↑↑ − 𝛼

+
𝑗 𝜇𝑛↑↑ =

𝑞4 𝑗+4
√︁

1 − 𝑞2 𝑗+2𝜇+2
√︁

1 − 𝑞2 𝑗+2𝑛+3

1 − 𝑞4 𝑗+4 = 𝑞4 𝑗+4 𝛼+
𝑗 𝜇𝑛↑↑ ,

𝛼+
𝑗 𝜇𝑛↓↓ − 𝛼

+
𝑗 𝜇𝑛↓↓ =

𝑞4 𝑗+2
√︁

1 − 𝑞2 𝑗+2𝜇+2
√︁

1 − 𝑞2 𝑗+2𝑛+1

1 − 𝑞4 𝑗+2 = 𝑞4 𝑗+2 𝛼+
𝑗 𝜇𝑛↓↓ . (7.5a)

and similarly,

𝛼−
𝑗 𝜇𝑛↑↑ − 𝛼

−
𝑗 𝜇𝑛↑↑ = 𝑞

4 𝑗+2 𝛼−
𝑗 𝜇𝑛↑↑ , 𝛼−

𝑗 𝜇𝑛↓↓ − 𝛼
−
𝑗 𝜇𝑛↓↓ = 𝑞

4 𝑗 𝛼−
𝑗 𝜇𝑛↓↓ . (7.5b)

We estimate the off-diagonal terms, using the inequalities 𝑞±𝜇 ⩽ 𝑞− 𝑗 , 𝑞±𝑛 ⩽ 𝑞− 𝑗− 1
2 , [𝑁]−1 < 𝑞𝑁−1:

|𝛼+
𝑗 𝜇𝑛↓↑ | = 𝑞

(𝜇+𝑛+ 1
2 )/2 [ 𝑗 + 𝜇 + 1] 1

2 [ 𝑗 − 𝑛 + 1
2 ]

1
2

[2 𝑗 + 1] [2 𝑗 + 2] ⩽
𝑞−2 𝑗−2

[2 𝑗 + 1] [2 𝑗 + 2] < 𝑞
2 𝑗−1,

|𝛼−
𝑗 𝜇𝑛↑↓ | = 𝑞

(𝜇+𝑛+ 1
2 )/2 [ 𝑗 − 𝜇] 1

2 [ 𝑗 + 𝑛 + 1
2 ]

1
2

[2 𝑗] [2 𝑗 + 1] ⩽
𝑞−2 𝑗−1

[2 𝑗] [2 𝑗 + 1] < 𝑞
2 𝑗−2.

On account of (7.5) and analogous relations for the coefficients of 𝜋′(𝑏), we find that

𝜋′(𝑎) − 𝜋′(𝑎) ≡ 𝑇𝜋′(𝑎)𝑇 mod K𝑞,

𝜋′(𝑏) − 𝜋′(𝑏) ≡ 𝑇𝜋′(𝑏)𝑇 mod K𝑞,

where 𝑇 is the operator defined by

𝑇 | 𝑗 𝜇𝑛⟩⟩ :=

(
𝑞2 𝑗+ 3

2 0
0 𝑞2 𝑗+ 1

2

)
| 𝑗 𝜇𝑛⟩⟩ =

(
𝑞

3
2 0

0 𝑞
1
2

)
𝐿2
𝑞 | 𝑗 𝜇𝑛⟩⟩. (7.6)

Clearly, 𝑇 ∈ K𝑞, so that by boundedness of 𝜋′(𝑥) it follows that 𝜋′(𝑥) −𝜋′(𝑥) ∈ K𝑞 for 𝑥 = 𝑎, 𝑏. □
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Using the conjugation operator 𝐽, we can also define an approximate antirepresentation of
A by 𝜋′◦(𝑥) := 𝐽𝜋′(𝑥)𝐽−1. It is immediate that 𝜋′◦(𝑥) − 𝜋′◦(𝑥) ∈ K𝑞, with 𝜋′◦ as defined in
Proposition 6.3. Explicitly, we can write

𝜋′◦(𝑎) | 𝑗 𝜇𝑛⟩⟩ = 𝛼◦+
𝑗 𝜇𝑛

| 𝑗+𝜇+𝑛+⟩⟩ + 𝛼◦−
𝑗 𝜇𝑛

| 𝑗−𝜇+𝑛+⟩⟩,

𝜋′◦(𝑏) | 𝑗 𝜇𝑛⟩⟩ = 𝛽◦+
𝑗 𝜇𝑛

| 𝑗+𝜇+𝑛−⟩⟩ + 𝛽◦−
𝑗 𝜇𝑛

| 𝑗−𝜇+𝑛−⟩⟩,

𝜋′◦(𝑎∗) | 𝑗 𝜇𝑛⟩⟩ = 𝛼̃◦+
𝑗 𝜇𝑛

| 𝑗+𝜇−𝑛−⟩⟩ + 𝛼̃◦−
𝑗 𝜇𝑛

| 𝑗−𝜇−𝑛−⟩⟩,

𝜋′◦(𝑏∗) | 𝑗 𝜇𝑛⟩⟩ = 𝛽̃◦+
𝑗 𝜇𝑛

| 𝑗+𝜇−𝑛+⟩⟩ + 𝛽̃◦−
𝑗 𝜇𝑛

| 𝑗−𝜇−𝑛+⟩⟩,

where

𝛼◦±
𝑗 𝜇𝑛

= 𝛼̃±
𝑗 ,−𝜇,−𝑛 , 𝛼̃◦±

𝑗 𝜇𝑛
= 𝛼±

𝑗 ,−𝜇,−𝑛 , 𝛽◦±
𝑗 𝜇𝑛

= −𝛽̃±
𝑗 ,−𝜇,−𝑛

, 𝛽̃
◦±
𝑗 𝜇𝑛

= −𝛽±
𝑗 ,−𝜇,−𝑛

.

▶ It turns out that the approximate representations 𝜋′ and 𝜋′◦ almost commute, in the following
sense.

Proposition 7.2. For each 𝑥, 𝑦 ∈ A, the commutant [𝜋′◦(𝑥), 𝜋′(𝑦)] lies in K𝑞.

Proof. In view of our earlier remarks on the almost-multiplicativity of 𝜋′, and thus also of 𝜋′◦, it is
enough to check this for the cases 𝑥, 𝑦 = 𝑎, 𝑎∗, 𝑏, 𝑏∗. We omit the detailed calculation, which we
have performed with a symbolic computer program. In each case, the commutator [𝜋′◦(𝑥), 𝜋′(𝑦)]
decomposes as a direct sum of operators in the subspaces 𝑊↑

𝑗
and 𝑊↓

𝑗
separately, in view of (7.2)

and (6.12), and the explicit calculation shows that for each pair of generators 𝑥, 𝑦, we obtain
[𝜋′◦(𝑥), 𝜋′(𝑦)] = 𝐿2

𝑞𝐴 where 𝐴 is a bounded operator. □

If we further impose the first-order condition up to compact operators in the ideal K𝑞, it turns
out that this (almost) determines the Dirac operator.

Proposition 7.3. Up to rescaling, adding constants, and adding elements of K𝑞, there is only one
operator 𝐷 of the form (5.1) which satisfies the first order condition modulo K𝑞, that is, each
[𝐷, 𝜋′(𝑦)] is bounded, and

[𝜋′◦(𝑥), [𝐷, 𝜋′(𝑦)]] ∈ K𝑞 for all 𝑥, 𝑦 ∈ A. (7.7)

This operator 𝐷 has eigenvalues that are linear in 𝑗 .

Proof. Suppose first that 𝐷 is an equivariant selfadjoint operator of the type considered in Section 5,
with eigenvalues linear in 𝑗 ; that is,𝐷 is determined by (5.1) and (5.3). Since each operator appearing
in (7.7) decomposes into a pair of operators on the “up” and “down” spinor subspaces, it is clear that
the nested commutators are independent of the parameters 𝑐↑2 and 𝑐↓2; and that 𝑐↑1 and 𝑐↓1 are merely
scale factors on both subspaces. Again we take 𝑥 and 𝑦 to be generators: explicit calculations show
that in each case, [𝜋′◦(𝑥), [𝐷, 𝜋′(𝑦)]] = 𝐿2

𝑞𝐵 with 𝐵 a bounded operator.
To prove the converse, assume only that 𝐷 satisfies the equivariance condition (5.1), and that

[𝐷, 𝜋′(𝑎)] and [𝐷, 𝜋′(𝑏)] are bounded.
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We may decompose 𝜋′(𝑎) = 𝜋′(𝑎)+ + 𝜋′(𝑎)− according to whether the index 𝑗 in (7.1) is raised
or lowered; and similarly for 𝜋′(𝑏), 𝜋′◦(𝑎), and 𝜋′◦(𝑏). Proposition 7.2 shows that, modulo K𝑞:

𝜋′(𝑎)+𝜋′◦(𝑎)+ ≡ 𝜋′◦(𝑎)+𝜋′(𝑎)+,
𝜋′(𝑎)−𝜋′◦(𝑎)− ≡ 𝜋′◦(𝑎)−𝜋′(𝑎)−,

𝜋′(𝑎)+𝜋′◦(𝑎)− + 𝜋′(𝑎)−𝜋′◦(𝑎)+ ≡ 𝜋′◦(𝑎)+𝜋′(𝑎)− + 𝜋′◦(𝑎)−𝜋′(𝑎)+.

By (7.2), the operators 𝜋′(𝑎) and 𝜋′(𝑏), as well as 𝐷, are diagonal for the decomposition
H = H↑ ⊕ H↓. On the subspace H↑, we obtain

[[𝐷, 𝜋′(𝑎)], 𝜋′◦(𝑎)] | 𝑗 𝜇𝑛↑⟩
=

(
𝐷𝜋′(𝑎)𝜋′◦(𝑎) + 𝜋′◦(𝑎)𝜋′(𝑎)𝐷 − 𝜋′(𝑎)𝐷𝜋′◦(𝑎) − 𝜋′◦(𝑎)𝐷𝜋′(𝑎)

)
| 𝑗 𝜇𝑛↑⟩

=

(
(𝑑↑

𝑗+1 + 𝑑
↑
𝑗
− 2𝑑↑

𝑗+) 𝜋
′(𝑎)+𝜋′◦(𝑎)+ + (𝑑↑

𝑗−1 + 𝑑
↑
𝑗
− 2𝑑↑

𝑗− ) 𝜋
′(𝑎)−𝜋′◦(𝑎)−

+ 2𝑑↑
𝑗
(𝜋′(𝑎)+𝜋′◦(𝑎)− + 𝜋′(𝑎)−𝜋′◦(𝑎)+) − 𝑑↑

𝑗+ (𝜋
′(𝑎)−𝜋′◦(𝑎)+ + 𝜋′◦(𝑎)−𝜋′(𝑎)+)

− 𝑑↑
𝑗− (𝜋

′(𝑎)+𝜋′◦(𝑎)− + 𝜋′◦(𝑎)+𝜋′(𝑎)−) + 𝑅
)
| 𝑗 𝜇𝑛↑⟩, (7.8)

where 𝑅 ∈ K𝑞. On the subspace H↓, we get the precisely analogous expression with the arrows
reversed.

In order that the expression on the right hand side of (7.8) come from an element of K𝑞 applied
to | 𝑗 𝜇𝑛↑⟩, and likewise for | 𝑗 𝜇𝑛↓⟩, it is necessary and sufficient that the scalars

𝑤
↑
𝑗

:= 𝑑↑
𝑗+1 + 𝑑

↑
𝑗
− 2𝑑↑

𝑗+ , 𝑤
↓
𝑗

:= 𝑑↓
𝑗+1 + 𝑑

↓
𝑗
− 2𝑑↓

𝑗+ (7.9)

satisfy 𝑤↑
𝑗
= 𝑂 (𝑞 𝑗 ) and 𝑤↓

𝑗
= 𝑂 (𝑞 𝑗 ) as 𝑗 → ∞.

In the particular case where 𝑤↑
𝑗
= 0 and 𝑤↓

𝑗
= 0 for all 𝑗 , (7.9) gives elementary recurrence

relations for 𝑑↑
𝑗

and 𝑑↓
𝑗
, whose solutions are precisely the expressions (5.3) that are linear in 𝑗 ,

namely,
𝑑
↑
𝑗
= 𝑐

↑
1 𝑗 + 𝑐

↑
2, 𝑑

↓
𝑗
= 𝑐

↓
1 𝑗 + 𝑐

↓
2.

The general case gives a pair of perturbed recurrence relations, that may be treated by generating-
function methods [16]; their solutions differ from the linear case by terms that are𝑂 (𝑞 𝑗 ) as 𝑗 → ∞.
Thus, the corresponding operator 𝐷 differs from one whose eigenvalues are linear in 𝑗 by an element
of K𝑞. □

We finish by summarizing the implications of the above Propositions 7.1, 7.2 and 7.3 for the
spectral triple (A(SU𝑞 (2)),H, 𝐷, 𝐽), where A(SU𝑞 (2)) acts on H via the spinor representation 𝜋′.

The representations 𝜋′ and 𝜋′◦ do not commute, since the conjugation operator 𝐽 differs from
the Tomita conjugation for 𝜋′. However, we do obtain commutation “up to infinitesimals”; since
[𝜋′◦(𝑥), 𝜋′(𝑦)] ≡ [𝜋′◦(𝑥), 𝜋′(𝑦)] mod K𝑞, Proposition 7.2 entails the analogous result for the exact
representations:

[𝜋′◦(𝑥), 𝜋′(𝑦)] ∈ K𝑞 for all 𝑥, 𝑦 ∈ A.
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To examine the first-order property, we note first that if 𝑥, 𝑦 ∈ A and [𝐷, 𝜋′(𝑦) − 𝜋′(𝑦)] lies
in K𝑞, then

[𝜋′◦(𝑥), [𝐷, 𝜋′(𝑦)]] =
[
𝜋′◦(𝑥) + (𝜋′◦(𝑥) − 𝜋′◦(𝑥)), [𝐷, 𝜋′(𝑦) + (𝜋′(𝑦) − 𝜋′(𝑦))]

]
≡ [𝜋′◦(𝑥), [𝐷, 𝜋′(𝑦)]] ≡ 0 mod K𝑞 . (7.10)

Since 𝐷 commutes with the positive operator 𝑇 defined in (7.6), we find in the case of a generator
𝑦 = 𝑎, 𝑎∗, 𝑏 or 𝑏∗, that

[𝐷, 𝜋′(𝑦) − 𝜋′(𝑦)] = [𝐷,𝑇𝜋′(𝑦)𝑇] = 𝑇 [𝐷, 𝜋′(𝑦)]𝑇,

which lies in K𝑞 since [𝐷, 𝜋′(𝑦)] is bounded, by Proposition 5.2. Thus, [𝐷, 𝜋′(𝑦)] is bounded,
too – as required by Proposition 7.3. The general case of [𝐷, 𝜋′(𝑦) − 𝜋′(𝑦)] ∈ K𝑞 then follows
from (7.4). Thus (7.10) holds for general 𝑥, 𝑦 ∈ A. Combining that with Proposition 7.3, we arrive
at the following characterization of our spectral triple over A(SU𝑞 (2)).

Theorem 7.4. The real spectral triple (A(SU𝑞 (2)),H, 𝐷, 𝐽) defined here, with A(SU𝑞 (2)) acting
on H via the spinor representation 𝜋′, satisfies both the commutant property and the first order
condition up to infinitesimals:

[𝜋′◦(𝑥), 𝜋′(𝑦)] ∈ K𝑞,

[𝜋′◦(𝑥), [𝐷, 𝜋′(𝑦)]] ∈ K𝑞,
for all 𝑥, 𝑦 ∈ A(SU𝑞 (2)). □

In [17] it was argued that there are obstructions to the construction of “deformed spectral triples”
satisfying a type of first order condition for the Dirac operator. Theorem 7.4 above shows a way to
overcome these obstructions.
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