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Abstract
We discuss the local index formula of Connes–Moscovici for the isospectral noncommutative

geometry that we have recently constructed on quantum SU(2). We work out the cosphere
bundle and the dimension spectrum as well as the local cyclic cocycles yielding the index
formula.

1 Introduction
Recent investigations show that the “quantum space” underlying the quantum group SU𝑞 (2) is
an important arena for testing and implementing ideas coming from noncommutative differential
geometry. In [8] it has been endowed with an isospectral tridimensional geometry via a bi-
equivariant 3+-summable spectral triple (A(SU𝑞 (2)),H, 𝐷). Earlier, a “singular” (in the sense of
not admitting a commutative limit) spectral triple was constructed in [2]. The latter geometry was
put in the general theory of Connes–Moscovici [7] by a systematic discussion of the local index
formula [5]. In this paper, we present a similar analysis for the former geometry. It turns out that
most of the results coincide with those of [5].

The main idea of that paper is to construct a (quantum) cosphere bundle 𝕊∗
𝑞 on SU𝑞 (2), that

considerably simplifies the computations concerning the local index formula. Essentially, with the
operator derivation 𝛿 defined by 𝛿(𝑇) := |𝐷 |𝑇 − 𝑇 |𝐷 |, one considers an operator 𝑥 in the algebra
B =

⋃∞
𝑛=0 𝛿

𝑛 (A) up to smoothing operators; these give no contribution to the residues appearing
in the local cyclic cocycle giving the local index formula. The removal of the irrelevant smoothing
operators is accomplished by introducing a symbol map from SU𝑞 (2) to the cosphere bundle 𝕊∗

𝑞.
The latter is defined by its algebra 𝐶∞(𝕊∗

𝑞) of “smooth functions” which is, by definition, the image
of a map

𝜌 : B → 𝐶∞(𝐷2
𝑞+ × 𝐷2

𝑞− × 𝕊1)



where 𝐷2
𝑞± are two quantum disks. One finds that an element 𝑥 in the algebra B can be determined

up to smoothing operators by 𝜌(𝑥).
In our present case, the cosphere bundle coincides with the one obtained in [5]; the same being

true for the dimension spectrum. Indeed, using this much simpler form of operators up to smoothing
ones, it is not difficult to compute the dimension spectrum and obtain simple expressions for the
residues appearing in the local index formula. We find that the dimension spectrum is simple and
given by the set {1, 2, 3}.

The cyclic cohomology of the algebra A(SU𝑞 (2)) has been computed explicitly in [10], where
it was found to be given in terms of a single generator. We express this element in terms of a
single local cocycle similarly to the computations in [5]. But contrary to the latter, we get an extra
term involving 𝑃 |𝐷 |−3 which drops in [5], being traceclass for the case considered there. Here
𝑃 = 1

2 (1 + 𝐹) with 𝐹 = Sign𝐷, the sign of the operator 𝐷.
Finally as a simple example, we compute the Fredholm index of 𝐷 coupled with the unitary

representative of the generator of 𝐾1(A(SU𝑞 (2))).

2 The isospectral geometry of SU𝒒 (2)
We recall the construction of the spectral triple (A(SU𝑞 (2)),H, 𝐷) of [8]. Let A = A(SU𝑞 (2)) be
the ∗-algebra generated by 𝑎 and 𝑏, subject to the following commutation rules:

𝑏𝑎 = 𝑞𝑎𝑏, 𝑏∗𝑎 = 𝑞𝑎𝑏∗, 𝑏𝑏∗ = 𝑏∗𝑏,

𝑎∗𝑎 + 𝑞2𝑏∗𝑏 = 1, 𝑎𝑎∗ + 𝑏𝑏∗ = 1. (2.1)

In the following we shall take 0 < 𝑞 < 1. Note that we have exchanged 𝑎 ↔ 𝑎∗, 𝑏 ↔ −𝑏 with
respect to the notation of [2] and [5].

The Hilbert space of spinors H has an orthonormal basis labelled as follows. For each 𝑗 =

0, 1
2 , 1, . . . , we abbreviate 𝑗+ = 𝑗+ 1

2 and 𝑗− = 𝑗− 1
2 . The orthonormal basis consists of vectors | 𝑗 𝜇𝑛↑⟩

for 𝑗 = 0, 1
2 , 1, . . . , 𝜇 = − 𝑗 , . . . , 𝑗 and 𝑛 = − 𝑗+, . . . , 𝑗+; together with | 𝑗 𝜇𝑛↓⟩ for 𝑗 = 1

2 , 1, . . . ,
𝜇 = − 𝑗 , . . . , 𝑗 and 𝑛 = − 𝑗−, . . . , 𝑗−. We adopt a vector notation by juxtaposing the pair of spinors

| 𝑗 𝜇𝑛⟩⟩ :=

(
| 𝑗 𝜇𝑛↑⟩
| 𝑗 𝜇𝑛↓⟩

)
, (2.2)

and with the convention that the lower component is zero when 𝑛 = ±( 𝑗 + 1
2 ) or 𝑗 = 0. In this

way, we get a decomposition H = H↑ ⊕ H↓ into subspaces spanned by the “up” and “down” kets,
respectively.

The spinor representation is the ∗-representation 𝜋 of A on H – denoted by 𝜋′ in [8] – defined as
follows. We set 𝜋(𝑎) := 𝑎+ + 𝑎− and 𝜋(𝑏) := 𝑏+ + 𝑏−, where 𝑎± and 𝑏± are the following operators
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in H:

𝑎+ | 𝑗 𝜇𝑛⟩⟩ := 𝑞 (𝜇+𝑛−
1
2 )/2 [ 𝑗 + 𝜇 + 1] 1

2
©­«
𝑞− 𝑗−

1
2
[ 𝑗+𝑛+ 3

2 ]
1/2

[2 𝑗+2] 0

𝑞
1
2

[ 𝑗−𝑛+ 1
2 ]

1/2

[2 𝑗+1] [2 𝑗+2] 𝑞− 𝑗
[ 𝑗+𝑛+ 1

2 ]
1/2

[2 𝑗+1]

ª®¬ | 𝑗+𝜇+𝑛+⟩⟩,
𝑎− | 𝑗 𝜇𝑛⟩⟩ := 𝑞 (𝜇+𝑛−

1
2 )/2 [ 𝑗 − 𝜇] 1

2
©­«
𝑞 𝑗+1 [ 𝑗−𝑛+ 1

2 ]
1/2

[2 𝑗+1] −𝑞 1
2

[ 𝑗+𝑛+ 1
2 ]

1/2

[2 𝑗] [2 𝑗+1]

0 𝑞 𝑗+
1
2
[ 𝑗−𝑛− 1

2 ]
1/2

[2 𝑗]

ª®¬ | 𝑗−𝜇+𝑛+⟩⟩,
𝑏+ | 𝑗 𝜇𝑛⟩⟩ := 𝑞 (𝜇+𝑛−

1
2 )/2 [ 𝑗 + 𝜇 + 1] 1

2
©­«

[ 𝑗−𝑛+ 3
2 ]

1/2

[2 𝑗+2] 0

−𝑞− 𝑗−1 [ 𝑗+𝑛+ 1
2 ]

1/2

[2 𝑗+1] [2 𝑗+2] 𝑞−
1
2
[ 𝑗−𝑛+ 1

2 ]
1/2

[2 𝑗+1]

ª®¬ | 𝑗+𝜇+𝑛−⟩⟩,
𝑏− | 𝑗 𝜇𝑛⟩⟩ := 𝑞 (𝜇+𝑛−

1
2 )/2 [ 𝑗 − 𝜇] 1

2
©­«
−𝑞− 1

2
[ 𝑗+𝑛+ 1

2 ]
1/2

[2 𝑗+1] −𝑞 𝑗 [ 𝑗−𝑛+ 1
2 ]

1/2

[2 𝑗] [2 𝑗+1]

0 − [ 𝑗+𝑛− 1
2 ]

1/2

[2 𝑗]

ª®¬ | 𝑗−𝜇+𝑛−⟩⟩. (2.3)

Here [𝑁] := (𝑞−𝑁 − 𝑞𝑁 )/(𝑞−1 − 𝑞) is a “𝑞-integer”.
The Dirac operator 𝐷 that was exhibited in [8] is diagonal in the given orthonormal basis of H,

and is one of a family of selfadjoint operators of the form

𝐷 | 𝑗 𝜇𝑛⟩⟩ =
(
𝑑↑ 𝑗 + 𝑐↑ 0

0 𝑑↓ 𝑗 + 𝑐↓
)
| 𝑗 𝜇𝑛⟩⟩, (2.4)

where 𝑑↑, 𝑑↓, 𝑐↑, 𝑐↓ are real numbers not depending on 𝑗 , 𝜇, 𝑛. In order that the sign of 𝐷 be
nontrivial we need to assume 𝑑↓𝑑↑ < 0, so we may as well take 𝑑↑ > 0 and 𝑑↓ < 0.

Apart from the issue of their signs, the particular constants that appear in (2.4) are fairly
immaterial: 𝑐↑ and 𝑐↓ do not affect the index calculations later on while 𝑑↑ and |𝑑↓ | yield scaling
factors on some noncommutative integrals. Thus little generality is lost by making the following
choice,

𝐷 | 𝑗 𝜇𝑛⟩⟩ =
(
2 𝑗 + 3

2 0
0 −2 𝑗 − 1

2

)
| 𝑗 𝜇𝑛⟩⟩. (2.5)

whose spectrum (with multiplicity!) coincides with that of the classical Dirac operator of the sphere
𝕊3 equipped with the round metric (indeed, the spin geometry of the 3-sphere can now be recovered
by taking 𝑞 = 1).

We let 𝐷 = 𝐹 |𝐷 | be the polar decomposition of 𝐷 where |𝐷 | := (𝐷2) 1
2 and 𝐹 = Sign𝐷.

Explicitly, we see that

𝐹 | 𝑗 𝜇𝑛⟩⟩ =
(
1 0
0 −1

)
| 𝑗 𝜇𝑛⟩⟩, |𝐷 | | 𝑗 𝜇𝑛⟩⟩ =

(
2 𝑗 + 3

2 0
0 2 𝑗 + 1

2

)
| 𝑗 𝜇𝑛⟩⟩.

Clearly, 𝑃↑ := 1
2 (1 + 𝐹) and 𝑃↓ := 1

2 (1 − 𝐹) = 1 − 𝑃↑ are the orthogonal projectors whose range
spaces are H↑ and H↓, respectively.

Proposition 2.1. The triple (A(SU𝑞 (2)),H, 𝐷) is a regular 3+-summable spectral triple.
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Proof. It was already shown in [8] that this spectral triple is 3+-summable: indeed, this follows easily
from the growth of the eigenvalues in (2.5). The remaining issue is its regularity. Recall [1, 7, 9]
that this means that the algebra generated by A and [𝐷,A] should lie within the smooth domain⋂∞
𝑛=0 Dom 𝛿𝑛 of the operator derivation 𝛿(𝑇) := |𝐷 |𝑇 − 𝑇 |𝐷 |.

Since 2 𝑗 + 3
2 = 2 𝑗+ + 1

2 and 2 𝑗 + 1
2 = 2 𝑗− + 3

2 and due to the triangular forms of the matrices
in (2.3), the off-diagonal terms vanish in the 2 × 2-matrix expressions for 𝛿(𝑎+) and 𝛿(𝑎−). Indeed
one finds,

𝛿(𝑎+) | 𝑗 𝜇𝑛⟩⟩ =
(
2 𝑗 + 5

2 0
0 2 𝑗 + 3

2

)
𝑎+ | 𝑗 𝜇𝑛⟩⟩ − 𝑎+

(
2 𝑗 + 3

2 0
0 2 𝑗 + 1

2

)
| 𝑗 𝜇𝑛⟩⟩,

𝛿(𝑎−) | 𝑗 𝜇𝑛⟩⟩ =
(
2 𝑗 + 1

2 0
0 2 𝑗 − 1

2

)
𝑎− | 𝑗 𝜇𝑛⟩⟩ − 𝑎−

(
2 𝑗 + 3

2 0
0 2 𝑗 + 1

2

)
| 𝑗 𝜇𝑛⟩⟩.

In both cases we obtain

𝛿(𝑎+) = 𝑃↑𝑎+𝑃↑ + 𝑃↓𝑎+𝑃↓, 𝛿(𝑎−) = −𝑃↑𝑎−𝑃↑ − 𝑃↓𝑎−𝑃↓. (2.6)

Replacing 𝑎 by 𝑏, the same triangular matrix structure leads to

𝛿(𝑏+) = 𝑃↑𝑏+𝑃↑ + 𝑃↓𝑏+𝑃↓, 𝛿(𝑏−) = −𝑃↑𝑏−𝑃↑ − 𝑃↓𝑏−𝑃↓. (2.7)

Thus 𝛿(𝜋(𝑎)) = 𝛿(𝑎+) + 𝛿(𝑎−) is bounded, with ∥𝛿(𝜋(𝑎))∥ ⩽ ∥𝜋(𝑎)∥; and likewise for 𝜋(𝑏). Next,
𝛿( [𝐷, 𝑎+]) = [𝐷, 𝛿(𝑎+)], so that

𝛿( [𝐷, 𝑎+]) | 𝑗 𝜇𝑛⟩⟩ =
(
2 𝑗 + 5

2 0
0 −2 𝑗 − 3

2

)
𝛿(𝑎+) | 𝑗 𝜇𝑛⟩⟩ − 𝛿(𝑎+)

(
2 𝑗 + 3

2 0
0 −2 𝑗 − 1

2

)
| 𝑗 𝜇𝑛⟩⟩,

since all matrices appearing are diagonal. This, together with the analogous calculation for
𝛿( [𝐷, 𝑎−]), shows that

𝛿( [𝐷, 𝑎+]) = 𝑃↑𝑎+𝑃↑ − 𝑃↓𝑎+𝑃↓, 𝛿( [𝐷, 𝑎−]) = 𝑃↑𝑎−𝑃↑ − 𝑃↓𝑎−𝑃↓. (2.8)

A similar argument for 𝑏 gives

𝛿( [𝐷, 𝑏+]) = 𝑃↑𝑏+𝑃↑ − 𝑃↓𝑏+𝑃↓, 𝛿( [𝐷, 𝑏−]) = 𝑃↑𝑏−𝑃↑ − 𝑃↓𝑏−𝑃↓. (2.9)

Combining (2.6), (2.8), and the analogous relations with 𝑎 replaced by 𝑏, we see that both A

and [𝐷,A] lie within Dom 𝛿. An easy induction shows that they also lie within Dom 𝛿𝑘 for
𝑘 = 2, 3, . . . . □

This proposition continues to hold if we replace A(SU𝑞 (2)) by a suitably completed algebra,
which is stable under the holomorphic function calculus.

▶ Let Ψ0(A) be the algebra generated by 𝛿𝑘 (A) and 𝛿𝑘 ( [𝐷,A]) for all 𝑘 ⩾ 0 (the notation suggests
that, in the spirit of [7] one thinks of it as an “algebra of pseudodifferential operators of order 0”).
Since, for instance,

𝑃↑𝜋(𝑎)𝑃↑ = 1
2𝛿

2(𝜋(𝑎)) + 1
2𝛿( [𝐷, 𝜋(𝑎)]),

𝑃↑𝑎+𝑃
↑ = 1

2𝑃
↑𝜋(𝑎)𝑃↑ + 1

2𝑃
↑𝛿(𝜋(𝑎))𝑃↑,
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we see that Ψ0(A) is in fact generated by the diagonal-corner operators 𝑃↑𝑎±𝑃↑, 𝑃↓𝑎±𝑃↓, 𝑃↑𝑏±𝑃↑,
𝑃↓𝑏±𝑃↓ together with the other-corner operators 𝑃↓𝑎+𝑃↑, 𝑃↑𝑎−𝑃↓, 𝑃↓𝑏+𝑃↑, and 𝑃↑𝑏−𝑃↓. Following
[5], let B be the algebra generated by all 𝛿𝑛 (A) for 𝑛 ⩾ 0. It is a subalgebra of Ψ0(A) and it is
generated by the diagonal operators

𝑎̃± := ±𝛿(𝑎±) = 𝑃↑𝑎±𝑃↑ + 𝑃↓𝑎±𝑃↓, 𝑏̃± := ±𝛿(𝑏±) = 𝑃↑𝑏±𝑃↑ + 𝑃↓𝑏±𝑃↓, (2.10)

and by the off-diagonal operators 𝑃↓𝑎+𝑃↑ + 𝑃↑𝑎−𝑃↓ and 𝑃↓𝑏+𝑃↑ + 𝑃↑𝑏−𝑃↓.
▶ For later convenience we shall introduce an approximate representation 𝜋 found in [8], which
coincides with 𝜋 up to compact operators. Note first that the off-diagonal coefficients in (2.3)
give rise to smoothing operators in OP−∞ (see Appendix A), due to the terms appearing in their
denominators; we can furthermore simplify the diagonal terms.

We set 𝜋(𝑎) := 𝑎+ + 𝑎− and 𝜋(𝑏) := 𝑏+ + 𝑏− with the following definitions:

𝑎+ | 𝑗 𝜇𝑛⟩⟩ :=
√︃

1 − 𝑞2 𝑗+2𝜇+2

(√︁
1 − 𝑞2 𝑗+2𝑛+3 0

0
√︁

1 − 𝑞2 𝑗+2𝑛+1

)
| 𝑗+𝜇+𝑛+⟩⟩,

𝑎− | 𝑗 𝜇𝑛⟩⟩ := 𝑞2 𝑗+𝜇+𝑛+ 1
2

(
𝑞 0
0 1

)
| 𝑗−𝜇+𝑛+⟩⟩,

𝑏+ | 𝑗 𝜇𝑛⟩⟩ := 𝑞 𝑗+𝑛−
1
2

√︃
1 − 𝑞2 𝑗+2𝜇+2

(
𝑞 0
0 1

)
| 𝑗+𝜇+𝑛−⟩⟩,

𝑏− | 𝑗 𝜇𝑛⟩⟩ := −𝑞 𝑗+𝜇
(√︁

1 − 𝑞2 𝑗+2𝑛+1 0
0

√︁
1 − 𝑞2 𝑗+2𝑛−1

)
| 𝑗−𝜇+𝑛−⟩⟩. (2.11)

These formulas can be obtained from (2.3) by truncation, using the pair of estimates(
(𝑞−1 − 𝑞) [𝑛]

)−1 − 𝑞𝑛 = 𝑞3𝑛 +𝑂 (𝑞5𝑛),
1 −

√︁
1 − 𝑞𝛼 ⩽ 𝑞𝛼, for any 𝛼 ⩾ 0.

The operators 𝜋(𝑥) − 𝜋(𝑥) are given by sequences of rapid decay, and hence are elements in OP−∞

(as defined in Appendix A). Therefore, we can replace 𝜋 by 𝜋 when dealing with the local cocycle
in the local index theorem in the next section.
Remark 1. These operators differ slightly from the approximate representation given in [8]. Using
the inequality 1−

√︁
1 − 𝑞𝛼 ⩽ 𝑞𝛼, they can be seen to differ from the operators therein by a compact

operator in the principal ideal K𝑞 generated by the operator 𝐿𝑞 : | 𝑗 𝜇𝑛⟩⟩ ↦→ 𝑞 𝑗 | 𝑗 𝜇𝑛⟩⟩. Note that
K𝑞 ⊂ OP−∞.

Now, observe that

[|𝐷 |, 𝜋(𝑎)] = 𝑎+ − 𝑎−, [𝐷, 𝜋(𝑎)] = 𝐹 (𝑎+ − 𝑎−),
[|𝐷 |, 𝜋(𝑏)] = 𝑏+ − 𝑏−, [𝐷, 𝜋(𝑏)] = 𝐹 (𝑏+ − 𝑏−), (2.12)

and also that 𝐹 commutes with 𝑎± and 𝑏±. The operators 𝑎± and 𝑏± have a simpler expression if
we use the following relabelling of the orthonormal basis of H,

𝑣
𝑗

𝑥𝑦↑ := | 𝑗 , 𝑥 − 𝑗 , 𝑦 − 𝑗 − 1
2 , ↑⟩ for 𝑥 = 0, . . . , 2 𝑗 ; 𝑦 = 0, . . . , 2 𝑗 + 1,

𝑣
𝑗

𝑥𝑦↓ := | 𝑗 , 𝑥 − 𝑗 , 𝑦 − 𝑗 + 1
2 , ↓⟩ for 𝑥 = 0, . . . , 2 𝑗 ; 𝑦 = 0, . . . , 2 𝑗 − 1. (2.13)
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We again employ the pairs of vectors

𝑣
𝑗
𝑥𝑦 :=

(
𝑣
𝑗

𝑥𝑦↑
𝑣
𝑗

𝑥𝑦↓

)
,

where the lower component is understood to be zero if 𝑦 = 2 𝑗 or 2 𝑗+1, or if 𝑗 = 0. The simplification
is that on these vector pairs, all the 2 × 2 matrices in (2.11) become scalar matrices,

𝑎+𝑣
𝑗
𝑥𝑦 =

√︃
1 − 𝑞2𝑥+2

√︃
1 − 𝑞2𝑦+2 𝑣

𝑗+

𝑥+1,𝑦+1,

𝑎−𝑣
𝑗
𝑥𝑦 = 𝑞

𝑥+𝑦+1 𝑣
𝑗−
𝑥𝑦 ,

𝑏+𝑣
𝑗
𝑥𝑦 = 𝑞

𝑦

√︃
1 − 𝑞2𝑥+2 𝑣

𝑗+

𝑥+1,𝑦,

𝑏−𝑣
𝑗
𝑥𝑦 = −𝑞𝑥

√︃
1 − 𝑞2𝑦 𝑣

𝑗−

𝑥,𝑦−1. (2.14)

These formulas coincide with those found in [5, Sec. 6] up to a doubling of the Hilbert space and
the change of conventions 𝑎 ↔ 𝑎∗, 𝑏 ↔ −𝑏. Indeed, since the spin representation is isomorphic
to a direct sum of two copies of the regular representation, the formulas in (2.14) exhibit the same
phenomenon for the approximate representations.

3 The cosphere bundle
In [5] Connes constructs a “cosphere bundle” using the regular representation of A(SU𝑞 (2)). In
view of (2.14), the same cosphere bundle may be obtained directly from the spin representation
by adapting that construction, as we now proceed to do. In what follows, we use the algebra
A = A(SU𝑞 (2)), but we could as well replace it with its completion 𝐶∞(SU𝑞 (2)), which is closed
under holomorphic functional calculus (see Appendix A).

We recall two well-known infinite dimensional representations 𝜋± of A(SU𝑞 (2)) by bounded
operators on the Hilbert space ℓ2(ℕ). On the standard orthonormal basis { 𝜀𝑥 : 𝑥 ∈ ℕ }, they are
given by

𝜋±(𝑎) 𝜀𝑥 :=
√︃

1 − 𝑞2𝑥+2 𝜀𝑥+1, 𝜋±(𝑏) 𝜀𝑥 := ±𝑞𝑥 𝜀𝑥 . (3.1)

We may identify the Hilbert space H spanned by all 𝑣 𝑗
𝑥𝑦↑ and 𝑣

𝑗

𝑥𝑦↓ with the subspace H′ of
ℓ2(ℕ)𝑥 ⊗ ℓ2(ℕ)𝑦 ⊗ ℓ2(ℤ)2 𝑗 ⊗ ℂ2 determined by the parameter restrictions in (2.13). Thereby, we
get the correspondence

𝑎+ ↔ 𝜋+(𝑎) ⊗ 𝜋−(𝑎) ⊗ 𝑉 ⊗ 12,

𝑎− ↔ −𝑞 𝜋+(𝑏) ⊗ 𝜋−(𝑏∗) ⊗ 𝑉∗ ⊗ 12,

𝑏+ ↔ −𝜋+(𝑎) ⊗ 𝜋−(𝑏) ⊗ 𝑉 ⊗ 12,

𝑏− ↔ −𝜋+(𝑏) ⊗ 𝜋−(𝑎∗) ⊗ 𝑉∗ ⊗ 12, (3.2)

where 𝑉 is the unilateral shift operator 𝜀2 𝑗 ↦→ 𝜀2 𝑗+1 in ℓ2(ℤ). This again, apart from the 2 × 2
identity matrix 12, coincides with the formula (204) in [5], up to the aforementioned exchange of
the generators.
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The shift 𝑉 in the action of the operators 𝑎± and 𝑏± on H can be encoded using the ℤ-grading
coming from the one-parameter group of automorphisms 𝛾(𝑡) generated by |𝐷 |,

𝛾(𝑡) =
(
𝛾↑↑(𝑡) 𝛾↑↓(𝑡)
𝛾↓↑(𝑡) 𝛾↓↓(𝑡)

)
, where


𝛾↑↑(𝑡) : 𝑃↑𝑇𝑃↑ ↦→ 𝑃↑𝑒𝑖𝑡 |𝐷 |𝑇𝑒−𝑖𝑡 |𝐷 |𝑃↑,

𝛾↑↓(𝑡) : 𝑃↑𝑇𝑃↓ ↦→ 𝑃↑𝑒𝑖𝑡 |𝐷 |𝑇𝑒−𝑖𝑡 |𝐷 |𝑃↓,

𝛾↓↑(𝑡) : 𝑃↓𝑇𝑃↑ ↦→ 𝑃↓𝑒𝑖𝑡 |𝐷 |𝑇𝑒−𝑖𝑡 |𝐷 |𝑃↑,

𝛾↓↓(𝑡) : 𝑃↓𝑇𝑃↓ ↦→ 𝑃↓𝑒𝑖𝑡 |𝐷 |𝑇𝑒−𝑖𝑡 |𝐷 |𝑃↓,

(3.3)

for any operator 𝑇 on H. On the subalgebra of “diagonal” operators 𝑇 = 𝑃↑𝑇𝑃↑ + 𝑃↓𝑇𝑃↓, the
compression 𝛾↑↑ ⊕ 𝛾↓↓ detects the shift of 𝑗 of the restrictions of 𝑇 to H↑ and H↓ respectively. For
example, 𝛾↑↑(𝑡) ⊕ 𝛾↓↓(𝑡) : 𝑎± ↦→ 𝑒±𝑖𝑡𝑎±, so that the ℤ-grading encodes the correct shifts 𝑗 → 𝑗 ± 1

2
in the formulas for 𝑎±; and likewise for 𝑏±.

From equation (3.1) it follows that 𝑏− 𝑏∗ ∈ ker 𝜋±, and so the representations 𝜋± are not faithful
on A(SU𝑞 (2)). We define two algebras A(𝐷2

𝑞±) to be the corresponding quotients,

0 → ker 𝜋± → A(SU𝑞 (2))
𝑟±−→ A(𝐷2

𝑞±) → 0. (3.4)

We elaborate a little on the structure of the algebras A(𝐷2
𝑞±). For convenience, we shall omit the

quotient maps 𝑟± in this discussion. Then 𝑏 = 𝑏∗ in A(𝐷2
𝑞±), and from the defining relations (2.1)

of A(SU𝑞 (2)), we obtain

𝑏𝑎 = 𝑞 𝑎𝑏, 𝑎∗𝑏 = 𝑞 𝑏𝑎∗, 𝑎∗𝑎 + 𝑞2𝑏2 = 1, 𝑎𝑎∗ + 𝑏2 = 1. (3.5)

These algebraic relations define two isomorphic quantum 2-spheres 𝕊2
𝑞+ ≃ 𝕊2

𝑞− =: 𝕊2
𝑞 which have a

classical subspace 𝕊1 given by the characters 𝑏 ↦→ 0, 𝑎 ↦→ 𝜆 with |𝜆 | = 1. A substitution 𝑞 ↦→ 𝑞2,
followed by 𝑏 ↦→ 𝑞−2𝑏 shows that 𝕊2

𝑞 is none other than the equatorial Podleś sphere [11]. Thus, the
above quotients of A(SU𝑞 (2)) with respect to ker 𝜋± either coincide with A(𝕊2

𝑞) or are quotients
of it. Now, from (3.1) one sees that the spectrum of 𝜋±(𝑏) is either real positive or real negative,
depending on the ± sign. Hence, the algebras A(𝐷2

𝑞+) and A(𝐷2
𝑞−) describe the two hemispheres

of 𝕊2
𝑞 and may be thought of as quantum disks, thus justifying the notation 𝐷𝑞±.
There is a symbol map 𝜎 : A(𝐷2

𝑞±) → A(𝕊1) that maps these “noncommutative disks” to their
common boundary 𝕊1, which is the equator of the equatorial Podleś sphere 𝕊2

𝑞. Explicitly, the
symbol map is given as a ∗-homomorphism on the generators of A(𝐷2

𝑞,±) by

𝜎(𝑟±(𝑎)) := 𝑢; 𝜎(𝑟±(𝑏)) := 0, (3.6)

where 𝑢 is the unitary generator of A(𝕊1).
Recall the algebra B defined around (2.10) with generators 𝑎̃±, 𝑏̃± and 𝑃↓𝑎+𝑃↑ + 𝑃↑𝑎−𝑃↓,

𝑃↓𝑏+𝑃↑ + 𝑃↑𝑏−𝑃↓. The following result emulates Proposition 4 of [5] and establishes the corre-
spondence (3.2). The results of [8] on the approximate representation are crucial to its proof.

Proposition 3.1. There is a ∗-homomorphism

𝜌 : B → A(𝐷2
𝑞+) ⊗ A(𝐷2

𝑞−) ⊗ A(𝕊1) (3.7)
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defined on generators by

𝜌(𝑎̃+) := 𝑟+(𝑎) ⊗ 𝑟−(𝑎) ⊗ 𝑢, 𝜌(𝑎̃−) := −𝑞 𝑟+(𝑏) ⊗ 𝑟−(𝑏∗) ⊗ 𝑢∗,
𝜌(𝑏̃+) := −𝑟+(𝑎) ⊗ 𝑟−(𝑏) ⊗ 𝑢, 𝜌(𝑏̃−) := −𝑟+(𝑏) ⊗ 𝑟−(𝑎∗) ⊗ 𝑢∗.

while the off-diagonal operators 𝑃↓𝑎+𝑃↑ + 𝑃↑𝑎−𝑃↓ and 𝑃↓𝑏+𝑃↑ + 𝑃↑𝑏−𝑃↓ are declared to lie in the
kernel of 𝜌.

Proof. First note that the 𝑗-dependence of the operators in B is taken care of by the factor 𝑢. Thus,
it is enough to show that the following prescription,

𝜌1(𝑎̃+) := 𝜋+(𝑎) ⊗ 𝜋−(𝑎), 𝜌1(𝑎̃−) := −𝑞 𝜋+(𝑏) ⊗ 𝜋−(𝑏∗),
𝜌1(𝑏̃+) := −𝜋+(𝑎) ⊗ 𝜋−(𝑏), 𝜌1(𝑏̃−) := −𝜋+(𝑏) ⊗ 𝜋−(𝑎∗),

together with 𝜌1(𝑃↓𝑎+𝑃↑ + 𝑃↑𝑎−𝑃↓) = 𝜌1(𝑃↓𝑏+𝑃↑ + 𝑃↑𝑏−𝑃↓) := 0, defines a ∗-homomorphism
𝜌1 : B → A(𝐷2

𝑞+) ⊗ A(𝐷2
𝑞−). In the notation, we have replaced the representations 𝜋± of

A(SU𝑞 (2)) by corresponding faithful representations of A(𝐷2
𝑞±) (omitting the maps 𝑟±).

We define a map Π : H → (ℓ2(ℕ) ⊗ ℓ2(ℕ)) ⊗ℂ2, which simply forgets the 𝑗-index on the basis
vectors 𝑣 𝑗𝑥𝑦:

Π : 𝑣 𝑗𝑥𝑦 =

(
𝑣
𝑗

𝑥𝑦↑
𝑣
𝑗

𝑥𝑦↓

)
↦→ 𝜀𝑥𝑦 :=

(
𝜀𝑥𝑦↑
𝜀𝑥𝑦↓

)
,

where 𝜀𝑥𝑦↑ := 𝜀𝑥 ⊗ 𝜀𝑦 and 𝜀𝑥𝑦↓ := 𝜀𝑥 ⊗ 𝜀𝑦 in the two respective copies of ℓ2(ℕ) ⊗ ℓ2(ℕ) in its tensor
product with ℂ2.

For any operator 𝑇 in B, we define the map 𝜌1 by

𝜌1(𝑇)𝜀𝑥𝑦 = lim
𝑗→∞

Π(𝑇𝑣 𝑗𝑥𝑦). (3.8)

This map is well-defined, since 𝑇 is a polynomial in the generators of B. Each such generator shifts
the indices 𝑥, 𝑦, 𝑗 by ±1

2 , with a coefficient matrix that can be bounded uniformly in 𝑥, 𝑦 and 𝑗

(cf. [8]) so that the limit 𝑗 → ∞ exists.
First of all, it can be directly verified, using estimates given in [8, Sec. 7], that the off-diagonal

operators 𝑃↓𝑎+𝑃↑ + 𝑃↑𝑎−𝑃↓ and 𝑃↓𝑏+𝑃↑ + 𝑃↑𝑏−𝑃↓ are in the kernel of 𝜌1. Next, the differences
between the generators and the approximate generators 𝑎± − 𝑎̃± (and similarly 𝑏̃± − 𝑏±) lie in the
kernel of 𝜌1, as well. Hence we can replace 𝑎̃± and 𝑏̃± by 𝑎± and 𝑏±, respectively.

Since the coefficients in the definition of 𝑎± and 𝑏± (equation (2.14)) are 𝑗-independent, we
conclude that 𝜌1 is of the desired form. For example, we compute:

𝜌1(𝑎̃+)𝜀𝑥𝑦 = 𝜌1(𝑎+)𝜀𝑥𝑦 = lim
𝑗→∞

√︃
1 − 𝑞2𝑥+2

√︃
1 − 𝑞2𝑦+2Π(𝑣 𝑗

+

𝑥+1,𝑦+1)

=

√︃
1 − 𝑞2𝑥+2

√︃
1 − 𝑞2𝑦+2𝜀𝑥+1,𝑦+1 = (𝜋+(𝑎) ⊗ 𝜋−(𝑎) ⊗ 12)𝜀𝑥𝑦 .

Since a product of the operators 𝑎± and 𝑏± still does not contain 𝑗-dependent coefficients, 𝜌1
respects the multiplication in B. By linearity of the limit, 𝜌1 is an algebra map. □
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Definition 3.2. The cosphere bundle on SU𝑞 (2) is defined as the range of the map 𝜌 in A(𝐷2
𝑞+) ⊗

𝐴(𝐷2
𝑞−) ⊗ A(𝕊1) and is denoted by A(𝕊∗

𝑞).

Note that 𝕊∗
𝑞 coincides with the cosphere bundle defined in [5, 6], where it is regarded as a

noncommutative space over which 𝐷2
𝑞+ × 𝐷2

𝑞− × 𝕊1 is fibred.
The symbol map 𝜌 rectifies the correspondence (3.2). Denote by 𝑄 the orthogonal projector

on ℓ2(ℕ) ⊗ ℓ2(ℕ) ⊗ ℓ2(ℤ) ⊗ ℂ2 with range H′, which is the Hilbert subspace previously identified
with H just before (3.2). Using (3.2) in combination with Proposition 3.1, we conclude that

𝑇 −𝑄(𝜌(𝑇) ⊗ 12)𝑄 ∈ OP−∞ for all 𝑇 ∈ B. (3.9)

Here, the action of 𝜌(𝑇) on ℓ2(ℕ) ⊗ ℓ2(ℕ) ⊗ ℓ2(ℤ) is determined by regarding ℓ2(ℤ) as the Hilbert
space of square-summable Fourier series on 𝕊1.

4 The dimension spectrum
We again follow [5] for the computation of the dimension spectrum. We define three linear
functionals 𝜏↑0 , 𝜏↓0 and 𝜏1 on the algebras A(𝐷2

𝑞±). Since their definitions for both disks 𝐷2
𝑞+ and

𝐷2
𝑞− are identical, we shall omit the ± for notational convenience.

For 𝑥 ∈ A(𝐷2
𝑞) we define,

𝜏1(𝑥) :=
1

2𝜋

∫
𝑆1
𝜎(𝑥),

𝜏
↑
0 (𝑥) := lim

𝑁→∞
Tr𝑁 𝜋(𝑥) − (𝑁 + 3

2 )𝜏1(𝑥),

𝜏
↓
0 (𝑥) := lim

𝑁→∞
Tr𝑁 𝜋(𝑥) − (𝑁 + 1

2 )𝜏1(𝑥),

where 𝜎 is the symbol map (3.6), and Tr𝑁 is the truncated trace

Tr𝑁 (𝑇) :=
𝑁∑︁
𝑘=0

⟨𝜀𝑘 | 𝑇𝜀𝑘⟩.

The definition of the two different maps 𝜏↑0 and 𝜏↓0 is suggested by the constants 3
2 and 1

2 appearing
in our choice of the Dirac operator; it will simplify some residue formulas later on. We find that

Tr𝑁 (𝜋(𝑎)) = (𝑁 + 3
2 )𝜏1(𝑎) + 𝜏

↑
0 (𝑎) +𝑂 (𝑁−𝑘 )

= (𝑁 + 1
2 )𝜏1(𝑎) + 𝜏

↓
0 (𝑎) +𝑂 (𝑁−𝑘 ) for all 𝑘 > 0.

Let us denote by 𝑟 the restriction homomorphism from A(𝐷2
𝑞+) ⊗ 𝐴(𝐷2

𝑞−) ⊗ A(𝕊1) onto the
first two legs of the tensor product. In particular, we will use it as a map

𝑟 : A(𝕊∗
𝑞) → A(𝐷2

𝑞+) ⊗ 𝐴(𝐷2
𝑞−).

In the following, we adopt the notation [7]:⨏
𝑇 := Res𝑧=0 Tr𝑇 |𝐷 |−𝑧 .
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Theorem 4.1. The dimension spectrum of the spectral triple (A(SU𝑞 (2)),H, 𝐷) is simple and
given by {1, 2, 3}; the corresponding residues are⨏

𝑇 |𝐷 |−3 = 2(𝜏1 ⊗ 𝜏1)
(
𝑟𝜌(𝑇)0) ,⨏

𝑇 |𝐷 |−2 =
(
𝜏1 ⊗ (𝜏↑0 + 𝜏↓0 ) + (𝜏↑0 + 𝜏↓0 ) ⊗ 𝜏1

) (
𝑟𝜌(𝑇)0) ,⨏

𝑇 |𝐷 |−1 = (𝜏↑0 ⊗ 𝜏↓0 + 𝜏↓0 ⊗ 𝜏↑0 )
(
𝑟𝜌(𝑇)0) ,

with 𝑇 ∈ Ψ0(A).
Proof. If we identify H′ ⊂ ℓ2(ℕ) ⊗ ℓ2(ℕ) ⊗ ℓ2(ℤ) ⊗ℂ2 with H as above, the one-parameter group
of automorphisms 𝛾(𝑡) induces a ℤ-grading on A(𝕊∗

𝑞), in its representation on H′. We denote
by 𝜌(𝑇)0 the degree-zero part of the diagonal operator 𝜌(𝑇), for 𝑇 ∈ B. For the calculation of
the dimension spectrum we need to find the poles of the zeta function 𝜁𝑇 (𝑧) := Tr(𝑇 |𝐷 |−𝑧) for all
𝑇 ∈ Ψ0(A). From our discussion of the generators of Ψ0(A), we see that we only need to adjoin
𝑃↑B to B.

In the zeta function 𝜁𝑇 (𝑧) for 𝑇 ∈ B, we can replace 𝑇 by 𝑄(𝜌(𝑇) ⊗ 12)𝑄 since their difference
is a smoothing operator by (3.9). The operator 𝑄(𝜌(𝑇) ⊗ 12)𝑄 commutes with the projector 𝑃↑ so
we can first calculate

Tr(𝑃↑𝑄(𝜌(𝑇) ⊗ 12)𝑄 |𝐷 |−𝑧) =
∞∑︁

2 𝑗=0
(2 𝑗 + 3

2 )
−𝑧 (Tr2 𝑗 ⊗ Tr2 𝑗+1) (𝑟𝜌(𝑇)0)

= (𝜏1 ⊗ 𝜏1) (𝑟𝜌(𝑇)0) 𝜁 (𝑧 − 2) + (𝜏1 ⊗ 𝜏↓0 + 𝜏↑0 ⊗ 𝜏1) (𝑟𝜌(𝑇)0) 𝜁 (𝑧 − 1)
+ (𝜏↑0 ⊗ 𝜏↓0 ) (𝑟𝜌(𝑇)

0) 𝜁 (𝑧) + 𝑓↑(𝑧), (4.1)

where 𝑓↑(𝑧) is holomorphic in 𝑧 ∈ ℂ. Similarly,

Tr(𝑃↓𝑄(𝜌(𝑇) ⊗ 12)𝑄 |𝐷 |−𝑧) =
∞∑︁

2 𝑗=0
(2 𝑗 + 3

2 )
−𝑧 (Tr2 𝑗+1 ⊗ Tr2 𝑗 ) (𝑟𝜌(𝑇)0)

= (𝜏1 ⊗ 𝜏1) (𝑟𝜌(𝑇)0) 𝜁 (𝑧 − 2) + (𝜏1 ⊗ 𝜏↑0 + 𝜏↓0 ⊗ 𝜏1) (𝑟𝜌(𝑇)0) 𝜁 (𝑧 − 1)
+ (𝜏↓0 ⊗ 𝜏↑0 ) (𝑟𝜌(𝑇)

0) 𝜁 (𝑧) + 𝑓↓(𝑧), (4.2)

where 𝑓↓(𝑧) is holomorphic in 𝑧. Since 𝜁 (𝑧) has a simple pole at 𝑧 = 1, we see that the zeta function
𝜁𝑇 has simple poles at 1, 2 and 3. □

From the above proof, we derive the following formulas which will be used later on:⨏
𝑃↑𝑇 |𝐷 |−3 = (𝜏1 ⊗ 𝜏1)

(
𝑟𝜌(𝑇)0) ,⨏

𝑃↑𝑇 |𝐷 |−2 =
(
𝜏1 ⊗ 𝜏↓0 + 𝜏↑0 ⊗ 𝜏1

) (
𝑟𝜌(𝑇)0) ,⨏

𝑃↑𝑇 |𝐷 |−1 = (𝜏↑0 ⊗ 𝜏↓0 )
(
𝑟𝜌(𝑇)0) , (4.3)

with 𝑇 any element in Ψ0(A).
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5 Local index formula (𝒅 = 3)
We begin by discussing the local cyclic cocycles giving the local index formula, in the general case
when the spectral triple (A,H, 𝐷) has simple discrete dimension spectrum not containing 0 and
bounded above by 3.

Let us recall that with a general (odd) spectral triple (A,H, 𝐷) there comes a Fredholm index
of the operator 𝐷 as an additive map 𝜑 : 𝐾1(A) → ℤ defined as follows. If 𝐹 = Sign𝐷 and 𝑃 is
the projector 𝑃 = 1

2 (1 + 𝐹), then
𝜑( [𝑢]) = Index(𝑃𝑢𝑃), (5.1)

with 𝑢 ∈ Mat𝑟 (A) a unitary representative of the 𝐾1 class (the operator 𝑃𝑢𝑃 is automatically
Fredholm). The above map is computed by pairing 𝐾1(A) with “nonlocal” cyclic cocycles 𝜒𝑛 given
in terms of the operator 𝐹 and of the form

𝜒𝑛 (𝑎0, . . . , 𝑎𝑛) = 𝜆𝑛 Tr(𝑎0 [𝐹, 𝑎1] · · · [𝐹, 𝑎𝑛]), for all 𝑎 𝑗 ∈ A, (5.2)

where 𝜆𝑛 is a suitable normalization constant. The choice of the integer 𝑛 is determined by the
degree of summability of the Fredholm module (H, 𝐹) over A; any such module is declared to
be 𝑝-summable if the commutator [𝐹, 𝑎] is an element in the 𝑝-th Schatten ideal L𝑝 (H), for any
𝑎 ∈ 𝐴. The minimal 𝑛 in (5.2) needs to be taken such that 𝑛 ⩾ 𝑝.

On the other hand, the Connes–Moscovici local index theorem [7] expresses the index map in
terms of a local cocycle 𝜙odd in the (𝑏, 𝐵) bicomplex of A which is a local representative of the
cyclic cohomology class of 𝜒𝑛 (the cyclic cohomology Chern character). The cocycle 𝜙odd is given
in terms of the operator 𝐷 and is made of a finite number of terms 𝜙odd = (𝜙1, 𝜙3, . . . ); the pairing
of the cyclic cohomology class [𝜙odd] ∈ 𝐻𝐶odd(A) with 𝐾1(A) gives the Fredholm index (5.1)
of 𝐷 with coefficients in 𝐾1(A). The components of the cyclic cocycle 𝜙odd are explicitly given
in [7]; we shall presently give them for our case.

We know from Proposition 2.1 that our spectral triple (A,H, 𝐷) withA = A(SU𝑞 (2)) has metric
dimension equal to 3. As for the corresponding Fredholm module (H, 𝐹) over A = A(SU𝑞 (2)),
it is 1-summable since all commutators [𝐹, 𝜋(𝑥)], with 𝑥 ∈ A, are off-diagonal operators given by
sequences of rapid decay. Hence each [𝐹, 𝜋(𝑥)] is trace-class and we need only the first Chern
character 𝜒1(𝑎0, 𝑎1) = Tr(𝑎0 [𝐹, 𝑎1]), with 𝑎1, 𝑎2 ∈ A (we shall omit discussing the normalization
constant for the time being and come back to it in the next section). An explicit expression for this
cyclic cocycle on the PBW-basis of SU𝑞 (2) was obtained in [10].

The local cocycle has two components, 𝜙odd = (𝜙1, 𝜙3), the cocycle condition (𝑏 + 𝐵)𝜙odd = 0
reading 𝐵𝜙1 = 0, 𝑏𝜙1 + 𝐵𝜙3 = 0, 𝑏𝜙3 = 0 (see Appendix A); it is explicitly given by

𝜙1(𝑎0, 𝑎1) :=
⨏

𝑎0 [𝐷, 𝑎1] |𝐷 |−1 − 1
4

⨏
𝑎0 ∇([𝐷, 𝑎1]) |𝐷 |−3 + 1

8

⨏
𝑎0 ∇2( [𝐷, 𝑎1]) |𝐷 |−5,

𝜙3(𝑎0, 𝑎1, 𝑎2, 𝑎3) :=
1
12

⨏
𝑎0 [𝐷, 𝑎1] [𝐷, 𝑎2] [𝐷, 𝑎3] |𝐷 |−3,

where ∇(𝑇) := [𝐷2, 𝑇] for any operator 𝑇 on H. Under the assumption that [𝐹, 𝑎] is traceclass for
each 𝑎 ∈ A, these expressions can be rewritten as follows:

𝜙1(𝑎0, 𝑎1) =
⨏

𝑎0 𝛿(𝑎1)𝐹 |𝐷 |−1 − 1
2

⨏
𝑎0 𝛿

2(𝑎1)𝐹 |𝐷 |−2 + 1
4

⨏
𝑎0 𝛿

3(𝑎1)𝐹 |𝐷 |−3,

𝜙3(𝑎0, 𝑎1, 𝑎2, 𝑎3) =
1
12

⨏
𝑎0 𝛿(𝑎1) 𝛿(𝑎2) 𝛿(𝑎3)𝐹 |𝐷 |−3. (5.3)
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We now quote Proposition 2 of [5], referring to that paper for its proof.

Proposition 5.1. Let (A,H, 𝐷) be a spectral triple with discrete simple dimension spectrum not
containing 0 and bounded above by 3. If [𝐹, 𝑎] is trace-class for all 𝑎 ∈ A, then the Chern character
𝜒1 is equal to 𝜙odd − (𝑏 + 𝐵)𝜙ev where the cochain 𝜙ev = (𝜙0, 𝜙2) is given by

𝜙0(𝑎) := Tr(𝐹𝑎 |𝐷 |−𝑧)
��
𝑧=0,

𝜙2(𝑎0, 𝑎1, 𝑎2) :=
1
24

⨏
𝑎0 𝛿(𝑎1) 𝛿2(𝑎2)𝐹 |𝐷 |−3.

The absence of 0 in the dimension spectrum is needed for the definition of 𝜙0. The cochain
𝜙ev = (𝜙0, 𝜙2) was named 𝜂-cochain in [5]. In components, the equivalence of the characters means
that

𝜙1 = 𝜒1 + 𝑏𝜙0 + 𝐵𝜙2 , 𝜙3 = 𝑏𝜙2 .

The following general result, in combination with the above proposition, shows that 𝜒1 can be
given (up to coboundaries) in terms of one single (𝑏, 𝐵)-cocycle 𝜓1.

Proposition 5.2. Let (A,H, 𝐷) be a spectral triple with discrete simple dimension spectrum not
containing 0 and bounded above by 3. Assume that [𝐹, 𝑎] is trace class for all 𝑎 ∈ A, and set
𝑃 := 1

2 (1 + 𝐹). Then, the local Chern character 𝜙odd is equal to 𝜓1 − (𝑏 + 𝐵)𝜙′ev, where

𝜓1(𝑎0, 𝑎1) := 2
⨏

𝑎0 𝛿(𝑎1)𝑃 |𝐷 |−1 −
⨏

𝑎0 𝛿
2(𝑎1)𝑃 |𝐷 |−2 + 2

3

⨏
𝑎0 𝛿

3(𝑎1)𝑃 |𝐷 |−3,

and 𝜙′ev = (𝜙′0, 𝜙
′
2) is given by

𝜙′0(𝑎) := Tr(𝑎 |𝐷 |−𝑧)
��
𝑧=0,

𝜙′2(𝑎0, 𝑎1, 𝑎2) := − 1
24

⨏
𝑎0 𝛿(𝑎1) 𝛿2(𝑎2)𝐹 |𝐷 |−3.

Proof. One needs to verify the following equalities between cochains in the (𝑏, 𝐵) bicomplex:

𝜙1 + 𝑏𝜙′0 + 𝐵𝜙
′
2 = 𝜓1, 𝜙3 + 𝑏𝜙′2 = 0.

The second equality follows from a direct computation of 𝑏𝜙′2 and comparing with equation (5.3).
Note that this identity proves that 𝜓1 is indeed a cyclic cocycle. One also shows that

𝐵𝜙′2(𝑎0, 𝑎1) =
1
12

⨏
𝑎0 𝛿

3(𝑎1)𝐹 |𝐷 |−3.

Then, using the asymptotic expansion [7]:

|𝐷 |−𝑧𝑎 ∼
∑︁
𝑘⩾0

(
−𝑧
𝑘

)
𝛿𝑘 (𝑎) |𝐷 |−𝑧−𝑘

modulo very low powers of |𝐷 |, one computes

𝑏𝜙′0(𝑎0, 𝑎1) =
⨏

𝑎0 𝛿(𝑎1) |𝐷 |−1 − 1
2

⨏
𝑎0 𝛿

2(𝑎1) |𝐷 |−2 + 1
3

⨏
𝑎0 𝛿

3(𝑎1) |𝐷 |−3,

and it is now immediate that 𝜙1 + 𝑏𝜙′0 + 𝐵𝜙
′
2 gives the cyclic cocycle 𝜓1. □
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Remark 2. The term involving 𝑃 |𝐷 |−3 would vanish if the latter were traceclass, which is the case
in [5] (this is the statement that the metric dimension of the projector 𝑃 is 2).

Combining these two propositions, it follows that the cyclic 1-cocycles 𝜒1 and 𝜓1 are related as:

𝜒1 = 𝜓1 − 𝑏𝛽, (5.4)

where 𝛽(𝑎) = 2 Tr(𝑃𝑎 |𝐷 |−𝑧)
��
𝑧=0 .

6 The pairing between 𝑯𝑪1 and 𝑲1

In this section, we shall calculate the value of the index map (5.1) when 𝑈 is the unitary operator
representing the generator of 𝐾1(A(SU𝑞 (2))),

𝜑( [𝑈]) = Index(𝑃𝑈𝑃) := dim ker 𝑃𝑈𝑃 − dim ker 𝑃𝑈∗𝑃,

with
𝑈 =

(
𝑎 𝑏

−𝑞𝑏∗ 𝑎∗

)
, (6.1)

acting on the doubled Hilbert space H ⊗ ℂ2 via the representation 𝜋 ⊗ 12. The projector 𝑃 was
denoted 𝑃↑ in Section 2. One expects this index to be nonzero, since the 𝐾-homology class of
(A,H, 𝐷) is non-trivial. This has been remarked also in [3], where our spectral triple is decomposed
in terms of the spectral triple constructed in [2].

We first compute the above index directly, which is possible due to the simple nature of this
particular example. A short computation shows that the kernel of the operator 𝑃𝑈∗𝑃 is trivial,
whereas the kernel of 𝑃𝑈𝑃 contains only elements proportional to the vector(

|0, 0,−1
2 , ↑⟩

−𝑞−1 |0, 0, 1
2 , ↑⟩

)
,

leading to 𝜑( [𝑈]) = Index(𝑃𝑈𝑃) = 1.

▶ Recall that for A = A(SU𝑞 (2)), our Fredholm module (H, 𝐹) over A(SU𝑞 (2)) is 1-summable.
From the previous section we know that Index(𝑃𝑈𝑃) can be computed using the local cyclic cocycle
𝜓1 – see Equation (5.4). To prepare for this index computation via 𝜓1, we recall the following
lemma [4, IV.1.𝛾], which fixes the normalization constant in front of 𝜒1. For completeness we
recall the proof.

Lemma 6.1. Let (H, 𝐹) be a 1-summable Fredholm module over A with 𝑃 = 1
2 (1 + 𝐹); let

𝑢 ∈ Mat𝑟 (A) be unitary with a suitable 𝑟 . Then 𝑃𝑢𝑃 is a Fredholm operator on 𝑃H and

Index(𝑃𝑢𝑃) = −1
2 Tr(𝑢∗ [𝐹, 𝑢]) = −1

2 𝜒1(𝑢∗, 𝑢).

Proof. We claim that 𝑃𝑢∗𝑃 is a parametrix for 𝑃𝑢𝑃, that is, an inverse modulo compact operators
on 𝑃H. Indeed, since 𝑃 − 𝑢∗𝑃𝑢 = −1

2𝑢
∗ [𝐹, 𝑢] is traceclass by 1-summability, by composing it

from both sides with 𝑃 it follows that 𝑃 − 𝑃𝑢∗𝑃𝑢𝑃 is traceclass. Therefore,

Index(𝑃𝑢𝑃) = Tr(𝑃 − 𝑃𝑢∗𝑃𝑢𝑃) − Tr(𝑃 − 𝑃𝑢𝑃𝑢∗𝑃), (6.2)

and the identities 𝑃 − 𝑃𝑢∗𝑃𝑢𝑃 = −1
2𝑃𝑢

∗ [𝐹, 𝑢]𝑃 and [𝐹, 𝑢] 𝑢∗ + 𝑢 [𝐹, 𝑢∗] = 0, together with
[𝐹, [𝐹, 𝑢]]+ = 0, imply the statement. □
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Thus, the index of 𝑃𝑈𝑃, for the𝑈 of (6.1) is given, up to an overall −1
2 factor, by

𝜓1(𝑈−1,𝑈) = 2
⨏
𝑈∗
𝑘𝑙 𝛿(𝑈𝑙𝑘 )𝑃 |𝐷 |−1 −

⨏
𝑈∗
𝑘𝑙 𝛿

2(𝑈𝑙𝑘 )𝑃 |𝐷 |−2 + 2
3

⨏
𝑈∗
𝑘𝑙 𝛿

3(𝑈𝑙𝑘 )𝑃 |𝐷 |−3,

with summation over 𝑘, 𝑙 = 0, 1 understood. We compute this expression using equation (4.3).
First note that since the entries of 𝑈 are generators of A(SU𝑞 (2)), we see from (2.6) and (2.7) that
𝜌(𝛿2(𝑈𝑘𝑙)) = 𝜌(𝑈𝑘𝑙), a relation that simplifies the above formula. We compute the degree 0 part
of 𝜌(𝑈∗

𝑘𝑙
𝛿(𝑈𝑙𝑘 )) with respect to the grading coming from 𝛾(𝑡) – the only part that contributes to

the trace – using the algebra relations of A(𝐷2
𝑞±),

𝜌(𝑈∗
𝑘𝑙 𝛿(𝑈𝑙𝑘 ))

0 = 2(1 − 𝑞2) 1 ⊗ 𝑟−(𝑏)2.

Using the basic equalities

𝜏1(1) = 1, 𝜏1(𝑟±(𝑏)𝑛) = 0, 𝜏
↑
0 (1) = −𝜏↓0 (1) = −1

2 , 𝜏
↑
0 (𝑟±(𝑏)

𝑛) = 𝜏↓0 (𝑟±(𝑏)
𝑛) = (±1)𝑛

1 − 𝑞𝑛 ,

we find that

𝜓1(𝑈−1,𝑈) = 2(1 − 𝑞2) (2𝜏↑0 ⊗ 𝜏↓0 + 2
3
𝜏1 ⊗ 𝜏1)

(
1 ⊗ 𝑟−(𝑏)2) − (𝜏1 ⊗ 𝜏↓0 + 𝜏↑0 ⊗ 𝜏1)

(
1 ⊗ 1

)
= −2.

Taking the proper coefficients, we finally obtain

Index(𝑃𝑈𝑃) = −1
2𝜓1(𝑈−1,𝑈) = 1.

A Pseudodifferential calculus and cyclic cohomology
Recall [1, 7, 9] that a spectral triple (A,H, 𝐷) is regular (or smooth, or 𝑄𝐶∞) if the algebra
generated by A and [𝐷,A] lies within the smooth domain

⋂∞
𝑛=0 Dom 𝛿𝑛 of the operator derivation

𝛿(𝑇) := |𝐷 |𝑇 − 𝑇 |𝐷 |. This condition permits to introduce the analogue of Sobolev spaces H𝑠 :=
Dom(1 + 𝐷2)𝑠/2 for 𝑠 ∈ ℝ. Let H∞ :=

⋂
𝑠⩾0 𝐻

𝑠, which is a core for |𝐷 |. Then 𝑇 : H∞ → H∞ has
analytic order ⩽ 𝑘 if 𝑇 extends to a bounded operator from H𝑘+𝑠 to H𝑠 for all 𝑠 ⩾ 0. It turns out
that A(H∞) ⊂ H∞.

Assume that |𝐷 | is invertible – which is a generic case of the 𝐷 used in this paper (for a careful
treatment of the noninvertible case, see [1]). The space OP𝛼 of operators of order ⩽ 𝛼 consists of
those 𝑇 : H∞ → H∞ such that

|𝐷 |−𝛼𝑇 ∈
∞⋂
𝑛=1

Dom 𝛿𝑛.

(Operators of order 𝛼 have analytic order 𝛼). In particular, OP0 =
⋂∞
𝑛=1 Dom 𝛿𝑛, the algebra of

operators of order ⩽ 0, includes 𝐴 ∪ [𝐷,A] and their iterated commutators with |𝐷 |. Moreover,
[𝐷2,OP𝛼] ⊂ OP𝛼+1 and OP−∞ :=

⋂
𝛼⩽0 OP𝛼 is a two-sided ideal in OP0.

The algebra structure can be read off in terms of an asymptotic expansion: 𝑇 ∼ ∑∞
𝑗=0 𝑇𝑗 whenever

𝑇 and each 𝑇𝑗 are operators from H∞ to H∞; and for each 𝑚 ∈ ℤ, there exists 𝑁 such that for all
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𝑀 > 𝑁 , the operator 𝑇 − ∑𝑀
𝑗=1 𝑇𝑗 has analytic order ⩽ 𝑚. For instance, for complex powers of |𝐷 |

(defined by the Cauchy formula) there is a binomial expansion:

[|𝐷 |𝑧, 𝑇] ∼
∞∑︁
𝑘=1

(
𝑧

𝑘

)
𝛿𝑘 (𝑇) |𝐷 |𝑧−𝑘 .

Thus far, we have employed finitely generated algebras A(𝑋), where 𝑋 = SU𝑞 (2), 𝐷2
𝑞±, 𝕊1

or 𝕊2
𝑞. In each case, we can enlarge them to algebras 𝐶∞(𝑋) by replacing polynomials in the

generators (given in a prescribed order) by series with coefficients of rapid decay: this is clear
when 𝑋 = 𝕊1, where smooth functions have rapidly decaying Fourier series. Using the symbol
maps (3.4), (3.6) and (3.7) together with Lemma 2 of [6], we can check that each such 𝐶∞(𝑋) is
closed under holomorphic functional calculus. The foregoing results apply, mutatis mutandis, to
the regular spectral triple (𝐶∞(SU𝑞 (2)),H, 𝐷).
▶ For convenience, we also summarize here the cyclic cohomology of the algebra A(SU𝑞 (2)).
A cyclic 𝑛-cochain on an algebra A is an element 𝜑 ∈ 𝐶𝑛

𝜆
(A), the collection of (𝑛 + 1)-linear

functionals on A which in addition are cyclic, 𝜆𝜑 = 𝜑, with

𝜆𝜑(𝑎0, 𝑎1, . . . , 𝑎𝑛) = (−1)𝑛𝜑(𝑎𝑛, 𝑎0, . . . , 𝑎𝑛−1).

There is a cochain complex (𝐶•
𝜆
(A) =

⊕
𝑛 𝐶

𝑛
𝜆
(A), 𝑏) with (Hochschild) coboundary operator

𝑏 : 𝐶𝑛 (A) → 𝐶𝑛+1(A) defined by

𝑏𝜑(𝑎0, 𝑎1, . . . , 𝑎𝑛+1) :=
𝑛∑︁
𝑗=0

(−1) 𝑗𝜑(𝑎0, . . . , 𝑎 𝑗𝑎 𝑗+1, . . . , 𝑎𝑛+1) + (−1)𝑛+1𝜑(𝑎𝑛+1𝑎0, 𝑎1, . . . , 𝑎𝑛).

The cyclic cohomology 𝐻𝐶•(A) of the algebra A is the cohomology of this complex,

𝐻𝐶𝑛 (A) := 𝐻𝑛 (𝐶•
𝜆 (A), 𝑏).

Equivalently, 𝐻𝐶•(A) can be described [4, 9] by using the second filtration of a (𝑏, 𝐵) bicomplex
of arbitrary (i.e., noncyclic) cochains on A. Here the operator 𝐵 decreases the degree 𝐵 : 𝐶𝑛 (A) →
𝐶𝑛−1(A), and is defined as 𝐵 = 𝑁𝐵0, with

(𝐵0𝜑) (𝑎0, . . . , 𝑎𝑛−1) := 𝜑(1, 𝑎0, . . . , 𝑎𝑛−1) − (−1)𝑛𝜑(𝑎0, . . . , 𝑎𝑛−1, 1)

(𝑁𝜓) (𝑎0, . . . , 𝑎𝑛−1) :=
𝑛−1∑︁
𝑗=0

(−1) (𝑛−1) 𝑗𝜓(𝑎 𝑗 , . . . , 𝑎𝑛−1, 𝑎0, . . . , 𝑎 𝑗−1).

It is straightforward to check that 𝐵2 = 0 and that 𝑏𝐵+𝐵𝑏 = 0; thus (𝑏+𝐵)2 = 0. By putting together
these two operators, one gets a bicomplex (𝐶•(A), 𝑏, 𝐵) with 𝐶 𝑝−𝑞 (A) in bidegree (𝑝, 𝑞). To a
cyclic 𝑛-cocycle one associates the (𝑏, 𝐵) cocycle 𝜑, (𝑏 + 𝐵)𝜑 = 0, having only one nonvanishing
component 𝜑𝑛,0 given by 𝜑𝑛,0 := (−1) ⌊𝑛/2⌋𝜓.

▶ The cyclic cohomology of the algebra A(SU𝑞 (2)) was computed in [10]. The even components
vanish while the odd ones were found to be one-dimensional and generated by the cyclic 1-cocycle
𝜏odd ∈ 𝐻𝐶1(A(SU𝑞 (2))) which was obtained as a character of a 1-summable Fredholm module,

𝜏odd(𝑎𝑙𝑏𝑚 (𝑏∗)𝑛, 𝑎𝑙
′
𝑏𝑚

′ (𝑏∗)𝑛′) = (𝑛 − 𝑚)
𝑞𝑙 (𝑚

′+𝑛′) ∏𝑙
𝑖=1(1 − 𝑞2𝑖)∏𝑙

𝑖=0(1 − 𝑞2𝑖+2𝑛+2𝑛′)
𝛿𝑛+𝑛′,𝑚+𝑚′ 𝛿𝑙,−𝑙′
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where we use the notation 𝑎−𝑙 = (𝑎∗)𝑙 for 𝑙 > 0. Since 𝐻𝐶1(A(SU𝑞 (2))) is one-dimensional, the
characters of the 1-summable Fredholm modules found in [5] and in this paper, are all cohomologous
to this cyclic cocycle.
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