
Combinatorics of renormalization as matrix calculus

Kurusch Ebrahimi-Fard,1 José M. Gracia-Bondı́a,2
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Abstract
We give a simple presentation of the combinatorics of renormalization in perturbative quan-

tum field theory in terms of triangular matrices. The prescription, that may be of calculational
value, is derived from first principles, to wit, the “Birkhoff decomposition” in the Hopf-algebraic
description of renormalization by Connes and Kreimer.

1 Introduction
A Hopf algebra structure underlying the combinatorics of perturbative renormalization was recog-
nized by Kreimer [1]. Some have worried about the practical usefulness of his insight for organizing
everyday computations in quantum field theories. A partial answer to this legitimate question is
given in [2], for instance. This paper presents another partial answer, in a different vein. We
show that the Feynman rules collectively possess a triangular matrix representation, such that the
renormalization map becomes a matrix operation. This infinite matrix can be truncated almost ad
libitum.

The procedure is general, largely independent of the renormalization scheme (although we il-
lustrate everything with the MS-scheme in dimensional regularization), and essentially independent
of the particular field theory model one works with. The latter enters just in filling up the matrix
entries, generally entailing further simplification. Only knowledge of linear algebra and quantum
fields are required; no Hopf algebra is (openly) used. More detail is found in [3].

First we recall the algebraic behaviour of the subtraction map 𝐾: the whole paper turns around
its Rota–Baxter property. In Section 3, 𝐾 is lifted to the matrix level and the computational recipe
for the matrix counterterm and matrix renormalization maps is found. In the following section
we verify that this reproduces the diagrammatic Bogoliubov operation; we take examples from the
𝜙4

4 model, and compare with the tables in [4]. In Section 5 we rework the matrix representation using
the map 𝐾+ that picks up the finite parts. The next two sections contain mathematical summaries.
In Section 7 we sketch our derivation of the matrix representation. Finally we examine the outlook.
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2 The subtraction map as a Rota–Baxter operator
Consider Laurent series

𝑆(𝜀) = 𝑎−𝑛
𝜀𝑛

+ 𝑎−𝑛+1

𝜀𝑛−1 + · · · + 𝑎−1
𝜀

+ 𝑎0 + 𝑎1𝜀 + · · · . (1)

With the ordinary multiplication, they form a commutative algebra 𝑉 with unit. Consider further
the operation 𝐾 which picks out the pure pole part

𝐾 [𝑆] (𝜀) = 𝑎−𝑛
𝜀𝑛

+ 𝑎−𝑛+1

𝜀𝑛−1 + · · · + 𝑎−1
𝜀
,

and the operation 𝐾+ := id − 𝐾 keeping the finite part,

𝐾+ [𝑆] (𝜀) = 𝑎0 + 𝑎1𝜀 + · · · .

The projector condition 𝐾2 = 𝐾 ensures that the intersection between 𝐾 (𝑉) and 𝐾+(𝑉) is zero. The
product of two elements of 𝐾 (𝑉) remains in 𝐾 (𝑉) – and likewise for 𝐾+(𝑉). The key property

𝐾 [𝑆1] 𝐾 [𝑆2] = 𝐾
[
𝐾 [𝑆1]𝑆2 + 𝑆1𝐾 [𝑆2] − 𝑆1𝑆2

]
, (2)

is easy to check – see Section 6. It makes 𝐾 a Rota–Baxter operator [5]; also 𝐾+ is a Rota–Baxter
operator. All this applies in particular to series corresponding to dimensionally regularized integrals
in the MS-scheme subtraction. Our arguments are purely combinatorial, so we need not worry about
the precise form of the 𝑎𝑖 coefficients. We adopt for the subtraction operator 𝐾 the notation of [6],
followed in [4]; sometimes we write 𝐾− for clarity.

3 Setting up the recipe
In this section we suppose given the pair (𝑉, 𝐾) of a commutative algebra with unit and a Rota–Baxter
projector, first as an abstract framework; we always have in mind the algebra of unrenormalized
Feynman amplitudes of the form (1). Consider upper triangular matrices of finite size with entries
in 𝑉 , of two types: nilpotent, i.e., with 0’s on the diagonal, and unipotent, i.e., with 1’s on the
diagonal:

𝑍 =

©«

0 ∗ . . . . . . ∗
0 0 . . . 𝑍𝑖 𝑗

...
...
. . .

. . .
. . .

...
...
. . .

. . .
. . . ∗

0 . . . . . . 0 0

ª®®®®®®®¬
; 𝜑 =

©«

1 ∗ . . . . . . ∗
0 1 . . . 𝜑𝑖 𝑗

...
...
. . .

. . .
. . .

...
...
. . .

. . .
. . . ∗

0 . . . . . . 0 1

ª®®®®®®®¬
.

We define Rota–Baxter operationsK− = K andK+, on algebras𝑀up(𝑉) of upper triangular matrices
with scalar diagonals and with entries in 𝑉 , by extending the maps 𝐾 and 𝐾+ componentwise,

(K[𝜑])𝑖 𝑗 := 𝐾 [𝜑𝑖 𝑗 ], (K+ [𝜑])𝑖 𝑗 := 𝐾+ [𝜑𝑖 𝑗 ] .

Verification for K, K+ of the analogue of (2) is immediate; but the algebras 𝑀up(𝑉) are no longer
commutative. We seek to factorize an arbitrary unipotent element 𝜑 in the form

𝜑 = 𝜑+ 𝜑
−1
− , (3)
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where the factors 𝜑− ∈ 1 + K[𝑀up(𝑉)], 𝜑+ ∈ K+ [𝑀up(𝑉)] are also unipotent; note that they are
unique. This can be called a matrix Birkhoff decomposition.

If K[log 𝜑] and K+ [log 𝜑] happened to commute, it would be enough to choose 𝜑+ = 𝑒K+ [log 𝜑]

and 𝜑− = 𝑒−K[log 𝜑] . In general, that is not so; but we are able to compensate for the lack of
commutativity between the images of K− and K+. For that, consider the equations

𝜑− = 1 −K−
[
(𝜑 − 1)𝜑−

]
and 𝜑−1

+ = 1 −K+
[
𝜑−1
+ (𝜑 − 1)

]
,

respectively solved by

𝜑− = 1 −K− [𝜑 − 1] +K− [(𝜑 − 1)K− [𝜑 − 1]] − · · · ; (4)
𝜑−1
+ = 1 −K+ [𝜑 − 1] +K+ [K+ [𝜑 − 1] (𝜑 − 1)] − · · · . (5)

Both series terminate. Atkinson’s theorem [7] asserts that these matrices 𝜑−, 𝜑−1
+ verify (3). The

proof runs as follows:

𝜑−1
+ 𝜑− = 1 −K+

[
𝜑−1
+ (𝜑 − 1)

]
−K−

[
(𝜑 − 1)𝜑−

]
+K+

[
𝜑−1
+ (𝜑 − 1)

]
K−

[
(𝜑 − 1)𝜑−

]
= 1 − 𝜑−1

+ (𝜑 − 1)𝜑−,

after some work with the Rota–Baxter property.
The matrix 𝜑+ is what we are really after. It can obviously be obtained as 𝜑𝜑−, or by inverting

(5), using the geometric series formula

𝜑+ = 1 − (𝜑−1
+ − 1) + (𝜑−1

+ − 1)2 − · · · .

A better course is perhaps to observe that, by the same token as in (4), we obtain

𝜑+ = 1 −K+
[
(𝜑−1 − 1)𝜑+

]
.

Thus, the respective formulas for the components of 𝜑− and 𝜑+ are

𝜑−𝑖 𝑗 = −𝐾− [𝜑𝑖 𝑗 ] +
𝑗−𝑖−1∑︁
𝑘=1

∑︁
𝑖<𝑙1<𝑙2<···<𝑙𝑘< 𝑗

(−)𝑘−1𝐾−
[
𝜑𝑖𝑙1 𝐾− [𝜑𝑙1𝑙2 · · ·𝐾− [𝜑𝑙𝑘 𝑗 ] · · · ]

]
,

𝜑+𝑖 𝑗 = −𝐾+ [𝜑−1
𝑖 𝑗 ] +

𝑗−𝑖−1∑︁
𝑘=1

∑︁
𝑖<𝑙1<𝑙2<···<𝑙𝑘< 𝑗

(−)𝑘−1𝐾+
[
𝜑−1
𝑖𝑙1
𝐾+ [𝜑−1

𝑙1𝑙2
· · ·𝐾+ [𝜑−1

𝑙𝑘 𝑗
] · · · ]

]
. (6)

These similar formulas are our workhorses; with the appropriate definition of 𝜑, the matrix 𝜑−
will be seen to contain all the information on counterterms in renormalization; and 𝜑+ on the
renormalized quantities.

4 Making the recipe work
Now we make explicit how the Feynman rules specify such operators 𝜑. Recall that if Γ𝑖 ⊆ Γ 𝑗 is
a superficially divergent subgraph of Γ 𝑗 , the cograph Γ 𝑗/Γ𝑖 is obtained by shrinking Γ𝑖 to a vertex
within Γ 𝑗 . We only consider subgraphs that are generalized vertices [6]. Chosen an 𝑛-point function,
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the spaces of vectors on which the matrices act are spanned by the corresponding (superficially
divergent, connected, amputated) Feynman graphs. We may use the familiar bra-ket notation to
denote the diagrams as vectors. A basis |Γ1⟩, |Γ2⟩, |Γ3⟩, . . . for such a space can be ordered in many
ways, the only conditions being that |Γ1⟩ = |∅⟩ – the empty diagram – and that each cograph of
any Γ𝑙 occurs in the basis as some Γ𝑚 with 𝑚 < 𝑙. It is then convenient to order the basis by number
of loops (or vertices, if we work on coordinate space); but the order within a given loop-number
sector is immaterial. Once the external structure and the basis are fixed, we fill up the entries of a
matrix by the rule:

for 𝑖 ≠ 𝑗 , 𝜑𝑖 𝑗 =
∑︁
Γ′

(unrenormalized) amplitude of Γ′ if Γ𝑖 ≃ Γ 𝑗/Γ′ ,

otherwise 𝜑𝑖 𝑗 = 0. This entails triangularity, since 𝜑𝑖 𝑗 = 0 if 𝑖 > 𝑗 . We set 𝜑𝑖𝑖 = 1 for all 𝑖. Note
that Γ′ need not belong to the basis list (it might be disconnected, for one thing). Let �̃�(Γ′) be the
unrenormalized amplitude of Γ′. We just said that the coefficient of |Γ𝑖⟩ in 𝜑( |Γ 𝑗 ⟩) is

∑
Γ′ �̃�(Γ′) for

Γ𝑖 ≃ Γ 𝑗/Γ′. The notation is appropriate because �̃� is the abstract object represented by the matrix 𝜑
(see Section 7); it has the property that

�̃�(Γ𝑖Γ 𝑗 ) := �̃�(Γ𝑖 ∪ Γ 𝑗 ) = �̃�(Γ𝑖) �̃�(Γ 𝑗 ).

This property is shared by the elements of 𝜑− and 𝜑+. As a bonus, it allows to simplify the notation
later on, by simply omitting �̃�.

When we truncate the matrices we are not obliged to include all the diagrams belonging
to the higher sector – and we can also choose, for whatever purpose, particular classes of dia-
grams, subject to the aforementioned two conditions. With that, the first row of 𝜑 is given by
1, �̃�(Γ2), �̃�(Γ3), . . . , the unrenormalized amplitudes of all the diagrams; and the analogously de-
fined first row (1, �̃�−(Γ2), �̃�−(Γ3), . . . ) of 𝜑− will yield all the counterterms of the theory!

We take as a simple example the space of graphs relevant to the 4-point function for the 𝜙4
4

model, truncated to the 12 tadpole-free diagrams (including the empty one) up to three loops. We
adopt the order of [4] for the basis, as follows:

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7 Γ8 Γ9 Γ10 Γ11 Γ12

∅

Notice that Γ2 = Γ7/Γ′ where the sunset diagram Γ′ = does not appear in the basis list. We
find that 𝜑 is equal to

©«

1 �̃�(Γ2) �̃�(Γ3) �̃�(Γ4) �̃�(Γ5) �̃�(Γ6) �̃�(Γ7) �̃�(Γ8) �̃�(Γ9) �̃�(Γ10) �̃�(Γ11) �̃�(Γ12)
1 2�̃�(Γ2) �̃�(Γ2) 2�̃�(Γ3) + �̃�2 (Γ2) �̃�(Γ4) + �̃�2 (Γ2) �̃�(Γ′) 0 �̃�(Γ3) �̃�2 (Γ2) �̃�(Γ4) 2�̃�(Γ4)

1 0 3�̃�(Γ2) �̃�(Γ2) 0 0 0 0 0 �̃�(Γ2)
1 0 �̃�(Γ2) 0 0 2�̃�(Γ2) 2�̃�(Γ2) �̃�(Γ2) 0

1 0 0 0 0 0 0 0
1 0 0 0 0 0 0

1 0 0 0 0 0
1 0 0 0 0

1 0 0 0
1 0 0

1 0
1

ª®®®®®®®®®®®®®®®®®®®¬
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The abundance of zeros is welcome in the calculation: with this concrete form of 𝜑 the series (4)
stops after three iterations. Omitting �̃� from the notation as advertised, one reads off from (6) the
first row of 𝜑−, containing the counterterms for the eleven nontrivial diagrams, that we write as the
column matrix 𝜑𝑇− 𝑗1 in the following display. These expressions for �̃�−(Γ 𝑗 ) coincide with those
listed in the tables in [4], where they are denoted −𝐾𝑅(Γ 𝑗 ). But note that here the Bogoliubov
preparation map 𝑅 does not appear explicitly; our result, with one exception, is not recursively
presented, and, with the help of some symbolic programming, can be obtained at one stroke. It is
clear that the method will jointly handle large numbers of multi-loop diagrams with ease. (Of course,
we are not claiming that it is always quicker than the standard procedures.)

©«

1

�̃�−
( )

�̃�−
( )
�̃�−

( )
�̃�−

( )
�̃�−

( )
�̃�−

( )
�̃�−

( )
�̃�−

( )
�̃�−

( )
�̃�−

( )
�̃�−

( )

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

=

©«

1

−𝐾 [ ]
𝐾 [ ] 𝐾 [ ]

−𝐾 [ ] + 𝐾 [ 𝐾 [ ]]
−𝐾 [ ] 𝐾 [ ] 𝐾 [ ]

−𝐾 [ ] �̃�−
( )

−𝐾 [ ] + 𝐾 [ 𝐾 [ ]]

−𝐾 [ ]

−𝐾
[ ]

+ 2𝐾 [ 𝐾 [ ]] − 𝐾
[ (

𝐾 [ ]
)2]

−𝐾
[ ]

+ 2𝐾 [ 𝐾 [ ]] − 𝐾
[ (

𝐾 [ ]
)2]

−𝐾
[ ]

+ 𝐾 [ ] 𝐾 [ ] + 𝐾 [ ] − [𝐾 [ ]]{3}

−𝐾 [ ] + 𝐾 [ 2𝐾 [ ]] + 2𝐾 [ 𝐾 [ ]] − 2[𝐾 [ ]]{3}

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

.

Above we wrote [𝐾 [ ]]{3} := 𝐾 [ 𝐾 [ 𝐾 [ ]]]. The graphs Γ3, Γ5, Γ6 are cutvertex, for
which �̃� and the renormalization map are known to factorize. For them (6) prima facie gives a
more complicated expression, that can be reduced to the expressions shown by some Rota–Baxter
gymnastics. We give the example of �̃�−

( )
. From our matrix operations:

�̃�−
( )

= −𝐾
[ ]

+ 𝐾
[

𝐾 [ ]
]
+ 𝐾

[
𝐾
[ ] ]

+ 𝐾
[

𝐾 [ ]
]
+ 𝐾

[
𝐾 [ 2]

]
− 3[𝐾 [ ]]{3} .

Since

𝐾
[ ]

= 𝐾
[ ]

= −𝐾 [ ] 𝐾
[ ]

+ 𝐾
[
𝐾 [ ]

]
+ 𝐾

[
𝐾
[ ] ]

,

we get

�̃�−
( )

= 𝐾 [ ] 𝐾
[ ]

+ 𝐾
[ 2𝐾 [ ]

]
+ 𝐾

[
𝐾 [ 2]

]
− 3[𝐾 [ ]]{3}

= 𝐾 [ ] 𝐾
[ ]

+ 𝐾 [ 3] + 𝐾 [ 2] 𝐾 [ ] − 3[𝐾 [ ]]{3} .
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To continue, we invoke the classical Bohnenblust–Spitzer identity [8]:

𝑛! [𝐾 [𝐴]]{𝑛} := 𝑛! 𝐾
[
𝐴𝐾 [𝐴 . . . 𝐾 [𝐴] . . . ]

]︸                          ︷︷                          ︸
𝑛 times

=
∑︁
𝑃∈Π𝑛

∏
𝑝∈ 𝑃

( |𝑝 | − 1)!𝐾 (𝐴|𝑝 |),

which is itself derivable from the Rota–Baxter identity; here Π𝑛 is the set of partitions 𝑃 of the set
{1, . . . , 𝑛}. For the present case,

6[𝐾 [ ]]{3} = 𝐾 [ ] 𝐾 [ ] 𝐾 [ ] + 3𝐾 [ 2] 𝐾 [ ] + 2𝐾
[ 3] ,

implying that

�̃�−
( )

= 𝐾 [ ] 𝐾
[ ]

− 1
2𝐾 [ ] 𝐾 [ ] 𝐾 [ ] − 1

2𝐾 [ ] 𝐾 [ 2] = 𝐾 [ ] 𝐾
[ ]

−𝐾 [ ] 𝐾 [ 𝐾 [ ]] =
(
−𝐾 [ ]

) (
−𝐾

[ ]
+ 𝐾 [ 𝐾 [ ]]

)
= �̃�−

( )
�̃�−

( )
.

According to the theory underlying the matrix representation (Section 7), the factorization property
of �̃�− is automatic: we did not prove anything, just performed an internal check.

5 The matrix representation in terms of 𝐾+

Renormalization theory is usually formulated in terms of subtractions [4, 6, 9]. For good reasons:
for instance, in the MS-scheme the counterterms are local, independent of the mass and the renor-
malization scale; this helps to establish renormalization group equations. Also, the derivation of the
whole procedure is simpler in terms of subtractions. However, the understanding of renormalization
as an approximation process, rather than a cancellation of infinities, is thereby lost. Recently ’t Hooft
expressed the desideratum of a renormalization scheme exclusively containing dressed vertices [10].
We take here a step in this direction by rephrasing the renormalization of (regularized) Feynman
graphs with subdivergences in terms of 𝐾+. The magic of the triangular matrix representation
implies that the matrix 𝜑+ must give, graph by graph, the completely renormalized expressions
(id − 𝐾)𝑅(Γ) = 𝐾+𝑅(Γ). Inspection of the equations in Section 3, on the other hand, shows that
the same calculation method for 𝜑− in terms of 𝐾− yields (1, �̃�+(Γ2), �̃�+(Γ3), . . . ) in terms of 𝐾+,
provided one starts by inverting the matrix 𝜑. This is a small price to pay, and again a bit of symbolic
programming goes a long way. We illustrate the procedure with the same model example:
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©«

�̃�+
( )
�̃�+

( )
�̃�+

( )
�̃�+

( )
�̃�+

( )
�̃�+

( )
�̃�+

( )
�̃�+

( )
�̃�+

( )

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

=

©«

𝐾+ [ ] 𝐾+ [ ]

𝐾+
[ ]

+ 𝐾+ [ ] 𝐾+ [ ] − 𝐾+ [ 𝐾+ [ ]]
𝐾+ [ ] 𝐾+ [ ] 𝐾+ [ ]

𝐾+ [ ]
(
𝐾+

[ ]
+ 𝐾+ [ ] 𝐾+ [ ] − 𝐾+ [ 𝐾+ [ ]]

)
𝐾+

[ ]
+ 𝐾+ [ ] 𝐾+ [ ] − 𝐾+

[
𝐾+ [ ]

]{
𝐾+

[ ]
+ 2𝐾+

[ ]
𝐾+ [ ] − 𝐾+ [ ] 𝐾+ [ 2]

− 2𝐾+
[

𝐾+
[ ] ]

− 𝐾+ [ 2𝐾+ [ ]] + 2[𝐾+ [ ]]{3}

}
{
𝐾+

[ ]
+ 2𝐾+

[ ]
𝐾+ [ ] − 𝐾+ [ ] 𝐾+ [ 2]

− 2𝐾+
[

𝐾+
[ ] ]

− 𝐾+ [ 2𝐾+ [ ]] + 2[𝐾+ [ ]]{3}

}
{
𝐾+

[ ]
+ 𝐾+

[ ]
𝐾+ [ ] − 𝐾+ [ ] 𝐾+ [ 2]

− 𝐾+
[ ]

+ [𝐾+ [ ]]{3}

}
{
𝐾+

[ ]
+ 2𝐾+

[ ]
𝐾+ [ ] − 𝐾+ [ ] 𝐾+ [ 2]

− 2𝐾+
[

𝐾+ [ ]
]
+ 𝐾+

[ (
𝐾+ [ ]

)2] }

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

.

The simpler cases have been omitted. The reader is reminded that 𝐾+ [ ] actually means
𝐾+ [�̃�( )], and so on.

6 More on Rota–Baxter operators
A few extra comments on the Rota–Baxter property of 𝐾− and 𝐾+ are in order. In the work by
Kreimer, the Rota–Baxter property appears for the first time in [11], under the name “multiplicativity
constraint”. The maps 𝐾−, 𝐾+ may be regarded as generalized integrals. Indeed, let us insert a
parameter 𝜃 (a Rota–Baxter weight) before the last term of (2):

𝐾 [𝑆1] 𝐾 [𝑆2] = 𝐾
[
𝐾 [𝑆1]𝑆2 + 𝑆1𝐾 [𝑆2] − 𝜃𝑆1𝑆2

]
.

The case 𝜃 = 0 corresponds to a property of the integral 𝐼 [ 𝑓 ] (𝑥) :=
∫ 𝑥
0 𝑓 (𝑡) 𝑑𝑡, to wit,

𝐼 [ 𝑓1] 𝐼 [ 𝑓2] = 𝐼
[
𝐼 [ 𝑓1] 𝑓2 + 𝑓1𝐼 [ 𝑓2]

]
, (7)

which is just integration by parts. For 𝑔 fixed, the solution of the equation 𝑓 = 1 − 𝐼 [𝑔 𝑓 ] with 𝐼
satisfying (7) is given by

𝑓 = 1 − 𝐼 [𝑔] + 𝐼 [𝑔𝐼 [𝑔]] − · · · = 𝑒−𝐼 [𝑔] ,

which follows from (7) for 𝑓1 = 𝑓2 = 𝑓 , and illustrates our approach in this paper.
Although (2) is elementary, we wish to prove it here. This is warranted because the Rota–Baxter

property is persistently ignored in field theory treatises; and this neglect is not without consequences.
For instance, in Section 5.3.3 of the standard text [9], we find a tortured argument to try to prove
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�̃�−(Γ𝑖 ∪ Γ 𝑗 ) = �̃�−(Γ𝑖)�̃�−(Γ 𝑗 ), in which the intermediate formulas (5.3.15) and (5.3.16) are plain
wrong. To see why (2) holds, notice that

𝐾 [𝑆1]𝑆2 + 𝑆1𝐾 [𝑆2] − 𝑆1𝑆2 = 𝐾 [𝑆1] (𝐾 [𝑆2] + 𝐾+ [𝑆2]) − (𝐾 [𝑆1] + 𝐾+ [𝑆1])𝐾+ [𝑆2]
= 𝐾 [𝑆1]𝐾 [𝑆2] − 𝐾+ [𝑆1]𝐾+ [𝑆2],

and applying 𝐾 to this equality kills the term 𝐾+ [𝑆1] 𝐾+ [𝑆2], leaving 𝐾 [𝑆1] 𝐾 [𝑆2] unchanged.

7 The rationale for the matrix representation
The not so mathematically-minded might wish to skip this section. In the formalism Kreimer
developed jointly with Connes [12, 13], Feynman diagrams are organized in a Hopf algebra HF

of graphs; Feynman rules are understood as linear and multiplicative maps �̃� of HF into an
algebra𝑉 (commutative, with unit) of quantum amplitudes; and the disentangling of subdivergences
is formulated as a factorization problem (Birkhoff decomposition). The original version had a strong
geometrical flavour, but its supporting algebraic frame has emerged since then [5].

The space HF is the algebra of polynomials with connected Feynman graphs as indeterminates,
multiplication being given by simple juxtaposition of graphs. Connes and Kreimer introduced
on HF a coproduct Δ : HF → HF ⊗ HF, serving to encode the superficially divergent subgraphs,
by setting Δ(Γ) :=

∑
Γ′ Γ′ ⊗ Γ/Γ′, in the notation of Section 4. For the coproducts of a Hopf

algebra H one writes Δ𝑎 =
∑
𝑎 (1) ⊗ 𝑎 (2) , for 𝑎 ∈ H.

Let (𝑉, 𝐾) be a commutative Rota–Baxter algebra, and consider Hom(H, 𝑉), the space of
linear maps from H to 𝑉 ; this is an algebra with the convolution operation, given by 𝑓 ★ 𝑔 =∑
𝑓 (𝑎 (1)) 𝑔(𝑎 (2)), for 𝑎 ∈ H. In our case the multiplicative (that is, product-respecting) elements

of Hom(HF, 𝑉), with 𝑉 the algebra of Feynman amplitudes, are of particular interest. Clearly they
are determined by their action on the subspaceF of connected graphs. We construct a representation
Ψ of Hom(HF, 𝑉) by infinite triangular matrices with entries in 𝑉 by taking the composition

Ψ[ 𝑓 ] : 𝑉 ⊗ F
id𝑉⊗Δ−−−−−→ 𝑉 ⊗ HF ⊗ F

id𝑉⊗ 𝑓 ⊗idF−−−−−−−−→ 𝑉 ⊗ 𝑉 ⊗ F
𝑚𝑉⊗idF−−−−−−→ 𝑉 ⊗ F, (8)

where 𝑚𝑉 is just multiplication on𝑉 . The plot works because the external structure of the cographs
Γ/Γ′ is the same as that of Γ, so Δ actually sends F into HF ⊗ F. Thus for any 𝑓 ∈ Hom(HF, 𝑉)
a connected graph is sent by Ψ[ 𝑓 ] into a linear combination of connected graphs with coefficients
in 𝑉 , corresponding to the same 𝑛-point function. In fact, Ψ is an antirepresentation, since
Ψ[ 𝑓 ★ 𝑔] = Ψ[𝑔]Ψ[ 𝑓 ].

With the operator K given by K[ 𝑓 ] (𝑎) := 𝐾 [ 𝑓 (𝑎)], the space Hom(HF, 𝑉) becomes a (noncom-
mutative) Rota–Baxter algebra; then Ψ[K[ 𝑓 ]] = K[Ψ[ 𝑓 ]], with K the known matrix Rota–Baxter
map. Let finally �̃� ∈ Hom(HF, 𝑉) be the Feynman rule, which is multiplicative, and denote

𝜑 := Ψ[�̃�] .

This will be a unipotent matrix. We have at last reproduced the setting of this paper. The matrix
decomposition (3) is a consequence of Connes’ and Kreimer’s algebraic Birkhoff decomposition
�̃� = �̃�−1

− ★ �̃�+, where the two factors are multiplicative as well [12]. Proofs and details are found
in [3].
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8 Conclusion
Inspired by the Connes–Kreimer Hopf algebra formalism, we have exhibited the combinatorics of re-
normalization as a collective process, mechanized by means of simple matrix calculus. Our approach
neatly resolves the tension between the “additive” and the “multiplicative” sides of renormalization:
the recursive diagrammatic subtraction of subdivergences is the outcome of a multiplicative process
(this is not quite a trivial remark: a direct check of the relation �̃�+(Γ) = 𝐾+𝑅(Γ) if and only if
�̃�−(Γ) = −𝐾−𝑅(Γ) involves somewhat messy calculations). As a consequence, the renormalization
of the Lagrangian’s parameters by counterterms takes place by composition of series; the latter has
been known since 1855 to have a triangular matrix representation [14]. All this is more or less clear
from the analysis in [6, 13, 15]; but probably deserves further elucidation.

Also, we have rewritten the renormalization map in terms of the projection 𝐾+ on the finite part.
In dimensional regularization this prescription falls short of ’t Hooft’s desideratum [10], as some
of the terms in 𝜑+ contain coefficients of the pole parts; this objection, nevertheless, loses force
in regularization-free schemes like BPHZ and Epstein–Glaser renormalization, that also possess a
Rota–Baxter property [16].
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