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ABSTRACT 

 
Numerical experiments concerning high Froude number flow without background rotation past an isolated three-
dimensional obstacle are performed and comparisons with the results obtained and R. Smith´s linear theory are 
made. Linear and non-linear effects are investigated.  
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1. Introduction   
  
Theories on the dynamics of orographic flows were first 

developed in the 1940’s and 1950’s. From then until recently 
the field has been divided according to scale. Early work on 
mesoscale mountain airflow was focused on an effort to 
understand the role of internal gravity waves in phenomena 
that could be observed in wave clouds, strong downslope 
winds, clear-air turbulence (CAT) and glider  ascents, see for 
example Queney (1948).  

Theories and models of mountain flows are now 
addressing a wider range of physical dimensions and 
scientists are developing ways to understand the connections 
between differing scales, Smith (1979, 1989), Blumen 
(1990), Baines (1995). 

The interaction of rapidly moving flow with an obstacle 
may generate gravity waves. These waves may propagate 
upwards and break when reaching the stratosphere 
generating clear air turbulence. 

Under certain circumstances these waves cannot 
propagate in the vertical and are advected downstream 
carrying with them great amounts of energy that generate 
very strong winds on the lee of the orography. These winds 
can produce structural damage on buildings located 
downstream of the mountain.  

In this paper the behaviour of a continuously stratified 
flow past an isolated mountain is investigated by means of 
computer simulations performed in a Sun workstation at the 

Laboratory for Atmospheric and Planetary Research of the 
University of Costa Rica. The choice of flow parameters is 
such as to ensure the flow regime is within the range covered 
by Smith’s linear theory. The model used is a non-linear, 
non-hydrostatic model developed at the University of 
Reading by P. Miranda. In the linear regime the flow is 
expected to approach the behaviour predicted by linear 
theory, deviations from this behaviour will be analised and 
discussed. 

A linear theory of stratified hydrostatic flow past an 
isolated mountain was developed by R. Smith in 1980. His 
work complements and extends that of Wurtele (1957) and 
Crapper (1959, 1962) which are an extension of the linear 
theory of Lyra and Queney with constant background flow 
speed u and background stratification N  to three 
dimensions. Smith´s linear theory was put forth in an attempt 
to investigate the nature of the wave´s hydrostatic part and 
also the nature of the flow near the mountain. 

 Smith (1980) found that the small-amplitude theory 
describes how the flow tends to be diverted around the 
topography. An important parameter in describing the 
behaviour of the flow is the Froude number, which, 

throughout this paper will be chosen to be NhuFr = . In 

this definition u  represents the background speed of the 
flow, N is the background stratification of the flow and h is 
the height of the obstacle.  
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Given that in small-amplitude theory it is assumed that 
h is small the Froude number of the flow investigated will 
be large, this means the speed of propagation of the gravity 
waves moving horizontally upstream is far smaller than the 
background speed of the flow. 

In the numerical experiment discussed in this paper the 

flow parameters were chosen to be such that 10=h  m, 
120 −= msu , 1210 −−= sN , thus the Froude number is 

equal to 200 which corresponds to a linear regime. 
 
2. The numerical model 
The numerical model used is a three-dimensional, non-

hydrostatic, non-linear, dry numerical model developed at 
the University of Reading by P. Miranda. The model has 
been described in various papers, amongst them Miranda and 
James (1992) and Gutiérrez     (1997).  

The model uses second-order centred finite differences. 
The variables are located on a staggered grid (Arakawa C-
grid). The time differencing also uses a second-order centred 
scheme. The model is written for constant grid spacing in 
each of the two horizontal directions, although ∆x may be 
different from ∆y . The vertical grid spacing is treated as a 

variable. The finite-difference equations are solved only for 
the interior points. Values of the variables at the boundaries 
or just outside them (needed due to the staggering of the 
grid) are obtained from the boundary conditions. 

The boundary conditions imposed at the lateral 
boundaries and at the top of the model domain are intended 
to minimise wave reflections at those boundaries. The 
elimination of the wave reflections from the lateral 
boundaries or from the top of the model is very important in 
order to be able to isolate and investigate the interaction of 
continuously stratified flow with isolated orography. 

On the top of the model this is done by the inclusion of 
an absorption layer. Lateral boundary conditions are given 
by an extrapolation technique known as a radiative boundary 
condition. 

Bottom boundary conditions for the horizontal wind field 
are free-slip conditions, ∂ ∂σ ∂ ∂σu v= = 0 . For the 

potential temperature the condition, ∂θ ∂σ′ = 0  is 

applied. 
For each experiment, the data input to the model consists 

of the reference state potential temperature ( )θs z  and the 

wind field ( )u vs s, , the reference pressure at  z = 0 and the 

reference pressure at the top of the model. The surface 

pressure and the actual distribution of ( )θs x y z, ,  are 

obtained iteratively, in a procedure that ensures the existence 
of hydrostatic equilibrium. 

 
3. Smith´s linear theory 
Smith (1980) investigated the steady flow of a vertically 

infinite, continuously stratified Boussinesq fluid, over 

topography with small amplitude. In what follows the 

topography will be described by ( )z h x y= , . Let denote 

the perturbations to the background wind, pressure, and 
density fields by the symbols, u´, p´, ρ ´. After linearising 

the momentum and continuity equations Smith found the 
following set of equations: 
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where x,y,z are the downstream, cross-stream and 

vertical coordinates; u´, v´, w´, ρ′ , p´, η are the 

perturbation velocity components, the density perturbation, 
pressure perturbation and vertical displacement, 
ρ ρo u d d z, , , are the background mean density, wind 

speed and vertical density gradient. 
Using the kinematic condition for steady flow and taking 

u as a constant Smith was able to reduce the system of 
equations (1), (2), (3), (4), (5) to a single equation for 

( )η x y z, , , the vertical displacement  for a fluid parcel or a 

density surface about its undisturbed level. 
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 is a measure of the stratification of the flow. In order to 

find a solution to (6) Smith represented η as a double 

Fourier integral, 
 

η η( , , ) $( , , ) ( )x y z k l z e dk dli kx l y= ∫∫ +         (8) 
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substituting (8) onto (6) the following result can be obtained, 
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If N 2  is taken as a constant the solution to (9) is found 
to be 

 
 

( ) ( ) ( )$ , , $ , , ,η ηk l z k l e im k l z= 0          (11) 

 

When k N u2 2 2> , the positive imaginary root of 

(10) must be selected to eliminate the non-physical growth of 
the disturbance amplitude with height. In the case of  

k N u2 2 2< the sign of m needs to be chosen to be the 

same as the sign of k, in order to satisfy the radiation 
condition aloft, that is, for westerly flow the phase-lines need 
to be tilted towards the west. The orography used by Smith 
was 
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the same type of orography was chosen by Crapper (1959) 
because of its simple Fourier transform which is: 
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 is 

the module of the horizontal wavenumber vector. One can 
further simplify the problem by using the hydrostatic 
approximation in which the vertical acceleration of air 
parcels is taken to be equal to zero. I  

 
The hydrostatic assumption reduces (10) to 
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It is found that this approximation is valid for Fourier 

components with k such that k N u<  and is valid for the 

entire flow field if the mountain is broad enough that it 
creates only small k components. This is valid when 

 
Na u >> 1             (14). 

 

This last expression can be rewritten as 
a

u N
>> 1  

which implies that the horizontal scale of the mountain, a, 
must be much larger than u N ; the distance travelled by an 

air parcel during the time needed to produce a buoyancy 
oscillation. 

The choice of common atmospheric values of 

u ms= −10 1 , N s= −001 1.  Smith found that condition 

(13) is satisfied when the horizontal scale is much greater 
than 1 km; say, between 5 km to 50 km. No investigation on 
the effect of background rotation on the flow is shown in this 
paper, nevertheless it is expected that for flow past 
mountains broader than 50 km subject to the effect of 
background rotation will suffer the influence of the Coriolis 
force. 

 
Low level flow- Linear theory 

It can be seen, Smith (1980), that in hydrostatic flow, the 
horizontal structure scales on “a” whereas the vertical 
structure scales on the length u N . Smith found that close 

to the ground the pattern of vertical displacement resembles 
the surface topography. This is needed in order to satisfy the 
linear lower boundary condition, 

 

 

Figure 1: θ′  at 900 metres above level ground. Integration time 20 
hours. Fr=200. 
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( )η x y z h x y, , ( , )= =0            (15) 

 
as one moves upward, there is development of a region of 
downward displacement over the lee slope of the mountain. 
Higher up, the region of down motion divides itself and 
becomes wider forming a U-shaped area. 

 
Low level flow – Numerical simulations 

The orography used in the calculations shown in this 
paper corresponds to a bell shaped mountain like that used 
by Smith in his calculations dealing with linear theory. 

The results of a 20-hour integration are shown in figure 

1, which shows the θ′  (perturbation potential temperature) 
field at a height of 0.9 km, that is, close to the orography. 
This result indicates that when close to the mountain the 
perturbation to the flow is such that there is a region of 
negative θ′  located on the upstream side of the orography 

where air is moving upwards and a region of positive θ′  of 
descending air located on the lee of the orography. It is 
important to point out here that the model used is a non-
linear numerical model. But given that the flow investigated 
has a high Froude number the non-linear model is able to 
simulate linear flow behaviour such as that predicted by 
Smith´s linear theory. 

Figure 2 shows the structure of the flow at higher 

altitude. This figure shows the θ′  field at 1.5 km above 
level ground. It can be seen that the area of air moving 
downwards has become wider, which agrees with the 
prediction of linear theory. 

It is important to notice the general upstream shift of the 
regions where the air parcels oscillate is consistent with the 
radiation condition aloft which implies there is westward 
tilting of the phase lines. This is shown in figure 3 where a 
cross-section of the flow is presented. The abscissa 
represents the zonal direction and the ordinate represents 
height. This figure clearly shows how phase lines tilt 
upstream which explains the generation of pressure 
perturbations that will produce a surface pressure drag. The 
field shown in this figure is the vertical velocity field. 

In order to evaluate the surface pressure field one may 

combine the expression ( )ηρ dzdp −='  with the 

hydrostatic form of the relation 

gzpxwuo ''' ρρ −∂∂−=∂∂ .  

 
Integrating vertically yields, 
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where the perturbation pressure far away from the obstacle is 
taken to be nil, one finds, 
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since 0<x  on the upstream side of the mountain 0' >p  

which means high pressure is found on the windward side of 

the orography. On the lee side of the obstacle 0>x and 
consequently 0' <p , that is, low pressure exists on the 

downstream side of the orography. This surface pressure 
dipole pattern is bound to create surface pressure drag. 

 
 
It can be shown Miranda (1990) that in the hydrostatic, 

non-rotating, limit when ( )22 UkN >> , then  

 

2

4 oolinear NUahDrag ρπ=       (18) 

This quantity can be used in order to see how good linear 
theory is to describe the flow investigated here. Since one 
can compare the evolution of the normalised surface pressure  

 
 
 
 

Figure 2: θ′  at 1500 metres above level ground. Integration time 20 
hours. Fr=200. 
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drag defined as linearnorm DDD =  with respect to the 

evolution of the surface pressure drag predicted by linear 

theory. Differences between normD  and 1 will mean the 

behaviour of the flow been simulated is not purely linear. 
The flow in the Reading Model is started impulsively, 

this causes strong fluctuations at the beginning of the 
simulation and after five hours of simulation a steady-state is 
reached in which case Dn is very close to one. This can be 
seen in figure 4. 

In the Reading Model the drag exerted by the atmosphere 
on the mountain is computed by the expression, 

 

∫∫ ∇−== dxdyyxhpDDD yx ),('),(
rr

  (19) 

 
where the surface integral is computed over the whole 

physical domain of the model (symmetric), 'p  is the surface 

pressure perturbation and ),( yxh is the orography. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
The negative sign in (19) refers to the fact that it is the 

force acting on the atmosphere that is considered. 
Sometimes, the surface pressure drag associated with 
mountain ranges is also called mountain drag. 

In geophysical flows, there are many mechanisms that 
can possibly contribute to pressure differences along the 
sides of a mountain and therefore to pressure drag. The 
responsible mechanisms are physically distinct but a 
combination can be possible depending on the scale of the 
mountain and the atmospheric conditions. These mechanisms 
may include, see Athanassiadou (1998), 

 
-Flow separation 
-Vertically propagating internal gravity waves 
-Trapped (resonant) internal gravity waves 
 
When the rotation of the earth is included in the study of 

orographic flows, there is additional pressure force acting on 
the mountain due to the background pressure gradient 
associated with the mean flow. The mountain finds itself in a 
pressure field, and according to Archimedes principle, 

Figure 3: Zonal cross-section of  the vertical velocity field passing through the centre of the    orography. Integration time 20 hours. Fr=200. 
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experiences a force given by the mountain volume, mountV , 

times the background pressure gradient: 

 
 
 

)( gomountmount ufkVpVG
rrrr

ρ×−=∇=  

 

where go up r
,, ρ  are the mean horizontal pressure, mean 

density and mean geostrophic wind respectively. This force 
always acts at a right angle to the mean flow and for that 
reason is occasionally referred to as “lift” force. 

When there is no bacground rotation, 0=f , and hence 

the lift force on the mountain is nil. This is the case of the 
numerical experiment discussed in this paper. This result is  

seen in figure 4 where the meridional component of the 
drag is the line having a constant value of zero. 

 
High-level flow – Linear theory 

It is possible to show, Smith (1980), that far away from 
the mountain on the upstream side of the orography, 0<x , 
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where 2ˆˆˆ yxz=β . Written in dimensional form the 

previous equation becomes, 
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with  
2Uy

Nzax=β . 

 
 
As pointed out by Smith (1980) the amplitude factor 

ββ −e  has a maximum at  

 

( ) 21 UyNzax==β    (23) 

 
 Since wave energy is proportional to the square of the 

amplitude of the wave this implies that wave energy will be 
concentrated in regions where the above condition is met or 
at least approximately satisfied. 

For a given height z , equation (23) represents a parabola 
whose vertex is located at the origin, that is, at the centre of 
the orography and trails downstream. As is easily seen in 
(23) the parabola becomes wider as the height z  increases. 
It is possible to see this behaviour in figures 3 and 5 
discussed in next section. 

 

Figure 5: θ′  at 3000 metres above level ground. Integration 
time 20 hours. Fr=200. 

Figura 4. Normalised surface pressure drag componnts. 
Integration time 20 hours. Fr=200. 
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High-level flow---Numerical calculations 

It is possible to confirm the behaviour predicted by linear  
theory discussed in the previous section by looking at the 
results of numerical calculations which are shown in the 
sequence of figures below. Figure 5 shows the perturbation 
potential temperature at a height of 3 km above level ground 
and figure 6 shows the same field at a height of 10 km above 
level ground. It is obvious the lee side of the flow has a 
parabolic shape which increases with height as predicted by 
equation 23. 

 
 
 
The region of ascending flow on the lee of the orography 

depicted in figure 6 is due to the ascending part of a 
mountain wave. It is easier to have an idea about the three-
dimensional nature of the flow by looking at a vertical cross-
section of the atmosphere. The vertical cross section shown 
in figure 3 corresponds to a vertical plane passing through 
the centre of the orography along the zonal direction.  

The field shown in figure 3 is the vertical velocity. It is 
possible to see a set of four distinct regions in which air 
ascends (continuous line) and then descends (broken line). 
Note that the phase lines of the mountain waves are tilted 
toward the west which is the direction of the upcoming flow. 
This agrees with the results of linear theory.  

It is now easy to identify the three regions of descending-
ascending-descending air of figure 6 with the three parts of 
the mountain wave, shown in figure 3. 

Figure 7 shows the vertical cross section of the vertical 
velocity field. This time the plane passes through the centre 
of the orography along the meridional direction. It depicts a 
cross-section of the mountain wave where the lower half of 
the figure shows a region of descending air (the descending 

part of the wave) and the upper half shows the ascending part 
of the mountain wave. 

 
Conclusions 

Smith’s linear theory has been tested by means of a non-
linear, three-dimensional computer model run with flow 
parameters such that the Froude number is equal to 200. It is 
found that linear theory’s predictions are in good agreement  
with the numerical calculations for a simulation time of 
twenty hours. 

The parabolic region located at low levels on the lee-side 
of the orography predicted by linear theory has been found to 
be generated in the simulations. It is also seen that, in 
accordance with linear theory the parabola opens it branches 
at higher levels in the flow. 

Also in agreement wth linear theory consecutive regions 
of ascending-descending air are found at even higher levels 
of the flow. These patterns are seen in horizontal cross 
section of the flow which corresponds to an upward 
propagating mountain wave. Vertical cross sections of the 
flow along the zonal and meridional axes allow a better view 
of this orographic mountain wave. 

Surface pressure perturbations are found to be   

 
 
 

generated and create a surface pressure drag whose 
computed value is very close to the linear prediction. In 

Figure 6: θ′  at 10000 metres above level ground. Integration 
time 20 hours. Fr=200. 

Figure 7: Meridional cross section of the vertical velocity field 
passing through the centre of the Orography. Integration time 20 
hours. Fr=200. 
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absence of background rotation in the flow the meridional 
component of the surface pressure drag is found to be nil.   

Resumen 

Se investiga la generación de ondas de montaña al 
interactuar el viento con orografía aislada en el caso de flujo 
con alto número de Froude. Las simulaciones numéricas 
fueron realizadas con un modelo numérico tridimensional y 
no lineal que fue corrido en una estación de trabajo Sun del 
Laboratorio de Investigaciones Geofísicas de la Universidad 
de Costa Rica. Se encuentra que la generación de ondas de 
montaña en los cálculos numéricos concuerda con la 
predicha por la teoría lineal de Smith. También se encuentra 
que el cálculo del arrastre para esta simulación da un 
resultado muy similar al predicho por la teoría lineal. 
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