
Benchmarking AI-based plasmid annotation tools
for antibiotic resistance genes mining from

metagenome of the Virilla River, Costa Rica
Dorian Rojas-Villalta

Advanced Computing Laboratory
Costa Rica National High Technology Center (CeNAT)
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Abstract—Bioinformatics and Artificial Intelligence (AI) stand
as rapidly evolving tools that have facilitated the annotation
of mobile genetic elements (MGEs), enabling the prediction of
health risk factors in polluted environments, such as antibiotic re-
sistance genes (ARGs). This study aims to assess the performance
of four AI-based plasmid annotation tools (Plasflow, Platon,
RFPlasmid, and PlasForest) by employing defined performance
parameters for the identification of ARGs in the metagenome of
one sediment obtained from the Virilla River, Costa Rica. We ex-
tracted complete DNA, sequenced it, assembled the metagenome,
and then performed the plasmid prediction with each bioinfor-
matic tool, and the ARGs annotation using the Resistance Gene
Identifier web portal. Sensitivity, specificity, precision, negative
predictive value, accuracy, and F1-score were calculated for
each ARGs prediction result of the evaluated plasmidomes.
Notably, Platon emerged as the highest performer among the
assessed tools, exhibiting exceptional scores. Conversely, Plasflow
seems to face difficulties distinguishing between chromosomal and
plasmid sequences, while PlasForest has encountered limitations
when handling small contigs. RFPlasmid displayed diminished
specificity and was outperformed by its taxon-dependent work-
flow. We recommend the adoption of Platon as the preferred
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bioinformatic tool for resistome investigations in the taxon-
independent environmental metagenomic domain. Meanwhile,
RFPlasmid presents a compelling choice for taxon-dependent
prediction due to its exclusive incorporation of this approach. We
expect that the results of this study serve as a guiding resource in
selecting AI-based tools for accurately predicting the plasmidome
and its associated genes.

Index Terms—Plasmidome, Artificial Intelligence, ARGs pre-
diction, Horizontal Gene Transfer, Mobile Genetic Elements.

I. INTRODUCTION

Rivers are relevant water sources for human develop-
ment, providing recreation, tourism, agriculture, and electric-
ity, among other resources. However, anthropogenic activities
regarding sources exploitation and inadequate regulation and
treatment of wastewater have increased the contamination of
water bodies [1]. In Costa Rica, despite low efficiency, septic
tanks remain the primary sanitary method for wastewater
treatment; less than a quarter is connected to sewerage, and
only 15.5% of the total incoming is treated before being
discharged into rivers [2].

Previous studies have shown worse contamination near
areas with accelerated socio-economic development, due to
the lack of efficient wastewater treatment [3]. In this sense,
the Greater Metropolitan Area of Costa Rica (GAM) repre-
sents a potential source of water contamination as it contains
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the most significant industrial and commercial sector in the
country [4]. The Virilla River Basin drains this area, receiving
approximately 67% of the country’s wastewater and being
considered the most polluted river in Central America [4].
Among many pollutants, multi-residue analysis of samples
has shown the presence of pharmaceutical compounds in the
Virilla River (e.g. antibiotics: ofloxacin, cephalexin) [5]. These
compounds represent a clinical risk as they might promote the
dissemination of antibiotic resistance genes (ARGs) among
bacteria, including pathogenic species [6], [7].

At the same rate as the different -omics sciences are devel-
oped, the study of the occurrence, abundance, and diversity of
ARGs has been facilitated, especially through shotgun metage-
nomic sequencing [8], [9]. This approach has been extensively
used to evaluate ARGs in aquatic environments, showing an
advantage in comparison with culture-dependent techniques,
identifying the resistome (all ARGs in a microbial community)
composition of non-culturable microorganisms [9]–[13]. Many
bioinformatic tools are currently established for the anno-
tation of mobile genetics elements (MGEs), specifically the
plasmidome (all plasmids in a microbial community) as they
represent the main vector for horizontal gene transfer (HGT)
of ARGs and other traits [7]. However, recent algorithms
based on artificial intelligence (AI) and machine learning have
successfully improved metagenomic data analysis by favorable
precision and speed, including the annotation of MGEs [14].

Here, we provide a benchmarking analysis between four
different AI-based bioinformatic tools (Plasflow, Platon, RF-
Plasmid, and PlasForest) for plasmids annotation, based on
the performance for the identification of antibiotic resistance
genes in a sediment metagenome from the Virilla River (San
José, Costa Rica).

II. MATERIALS AND METHODS

A. Sample collection, DNA extraction, and sequencing

Sediment and surface water samples were collected from
Virilla River (San José, Costa Rica) on November 1st, 2021
(Coronado city, X=-83,943056; Y=9,985869, 2020 meters
ASML). For sediments, a sterile spoon was employed to
collect samples from the river’s shore under running water
at a depth of approximately 30 cm. The collected sample was
carefully placed into a sterile bag and subsequently sealed
within another sterile bag to maintain its integrity. Four liters
of surface water were collected using a sterile recipient. Both
types of samples were maintained in a cold environment
during transportation to the laboratory. Dissolved organic
carbon (DOC), fecal coliforms, and oxygen saturation were
analyzed to determine the surface water quality based on [15].
Also, a water quality index was calculated as [16] mentioned.
All assays were done in triplicate and obtained values were
averaged. For sediment samples, complete DNA was extracted
by Power Soil Pro Extraction Kit (QIAGEN), then sequenced
through a shotgun metagenomics approach using an Illumina
NovaSeq PE150 platform (Novogene; California, USA).

B. Metagenome assembly and data management

The quality assessment of raw Illumina reads was con-
ducted using FastQC v0.11.7 [17]. To eliminate low-quality
and unpaired reads, we applied Trimmomatic v0.36, [18]
considering Phred-33 quality scores with an average value
of 35. Subsequently, the filtered and paired raw reads were
subjected to assembly using metaSPAdes v3.12.1 [19] with
default parameters, employing K-mer values of 55, 65, and
75, and utilizing 72 threads for enhanced processing efficiency.
Following the plasmid annotation software’s suggestion, con-
tigs with a length of less than 1000 bp were excluded using the
”reformat.sh” function from bbmap v37.36 [20]. The quality
assessment of the filtered assembly was performed using
QUAST v4.6.0. [21].

C. Plasmid sequences annotation by AI-based tools

To benchmark the annotation of plasmid sequences in the
assembled metagenome, four bioinformatic programs leverag-
ing AI and machine learning were selected. Programs were
executed on the same environment and architecture, utilizing
nodes equipped with Intel Xeon processors having 36 cores
with 2 threads each @ 3.00 GHz and 1024 GB of RAM.
The benchmarked tools, namely PlasFlow v1.1 [22], Platon
v1.6 [23], RFPlasmid v0.0.18 [24], and PlasForest v1.2 [25],
implemented machine learning methods of TensorFlow, Monte
Carlos, and Random forest for the latter two, respectively. All
programs were run using their default parameters, with paral-
lelization across the available 72 threads. For RFPlasmid, we
employed the web portal version (https://klif.uu.nl/rfplasmid/),
and the ”Generic” species database was specified. Subse-
quently, the annotated plasmidomes’ quality was evaluated
using QUAST v4.6.0 [21].

D. Functional annotation for antibiotic resistance genes

To identify antibiotic resistance genes in the sample’s
plasmidome, we extracted and annotated plasmid sequences
using the Resistance Gene Identifier v6.0.1 web portal from
the Comprehensive Antibiotic Resistance Database v3.2.6
(CARD) (https://card.mcmaster.ca/analyze/rgi) [26]. The pro-
cess involved Open Reading Frame prediction with Prodigal,
homologs detection using DIAMOND, and strict significance
annotation based on the curated cut-off bitscores of CARD
[26]. Additionally, we used the whole metagenome as a posi-
tive control for benchmarking analysis. To ensure inclusivity,
we set the sequence quality and coverage to low, thereby
avoiding the exclusion of small plasmids (less than 20,000
bp) and some assembled contigs.

E. Performance analysis

To calculate performance statistics, we categorized antibi-
otic resistance genes (ARGs) found in plasmidomes as the
positive class, while ARGs exclusively predicted in the whole
metagenome were considered the negative class. Each AI-
based tool’s prediction for the annotated plasmidome was then
compared against the resistome of the entire metagenome.
Based on the comparison, resistance gene prediction results
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were assigned to the following categories: True Positive
(TP), plasmid-associated ARG predicted in both the eval-
uated plasmidome and the whole metagenome, True Neg-
ative (TN), chromosome-associated ARG predicted only in
the whole metagenome, False Positive (FP), chromosome-
associated ARG predicted in the plasmidome, and False
Negative (FN), plasmid-associated ARG not predicted in the
evaluated plasmidome. We then calculated the performance
parameters using the following formulas, considering ARGs
prediction as 1 when present and 0 when not found: Sensitivity
(TP / (TP + FN)), Specificity (TN / (TN + FP)), Precision
(TP / (TP + FP)), Negative Predictive Value (TN / (TN +
FN)), Accuracy ((TP + TN) / (TP + TN + FP + FN)),
and F1-score (2 × Sensitivity × Precision / (Sensitivity +
Precision)). ARGs association was determined according to
a literature review of previously reported presence in MGE
and chromosomal-integration events, mentioned in the second
results and discussion’s subsection.

III. RESULTS AND DISCUSSION

A. Asembled whole metagenome and annotated plasmidomes
through AI-based tools

Chemical and biological analysis of the water sample re-
vealed a 1.183 DOC value, 7.74 O2 mg/L, 288 MPN/100
mL for fecal coliforms, and NSFQI quality of 66 based on
[16]. These results indicate that pollution is moderate at this
sampling site at the Virilla River. The assembled metagenome
displayed a length of 106.5 Mbp, consisting of 45,471 contigs.
For the plasmidomes, PlasFlow annotated 22.9 Mbp (11,883
contigs), Platon identified 0.2 Mbp (55 contigs), RFPlasmid
revealed 0.5 Mbp (245 contigs), and PlasForest predicted 0.1
Mbp (88 contigs). Additional characteristics are provided in
Table I.

TABLE I
GENOMIC CHARACTERISTICS AND QUALITY PARAMETERS OF ASSEMBLED

WHOLE METAGENOME AND ANNOTATED PLASMIDOMES

Whole Plasflow Platon RFPlasmid PlasForest
Size 106 22.9 0.2 0.5 0.1

Contigs 45471 11883 55 245 88
N50 2592 1924 4374 2487 1475
L50 9672 3218 11 51 31

Size is presented in Mbp

The number of plasmids found in metagenomes varies
according to the sample source. In a swine manure treatment
plant sample, the alignment against a database built of all
plasmid sequences reported in the NCBI (National Center
for Biotechnology Information, July 2019), demonstrated the
presence of 59 to 440 plasmids [27]. While other authors
evidenced the presence of 5611 and 7184 plasmids from
two plasmidome water samples of Jeju Island (South Korea)
[28]. As mentioned, the Virilla River samples are considered
moderately polluted, therefore the number of plasmids might
be similar to those found in other polluted environments,
such as the treatment plant. Moreover, the size and number
of plasmids annotated by Plasflow are widely different from

those observed in other plasmidomes, which presume the
idea of possible chromosome contigs incorrectly identified as
plasmids by the bioinformatic tool, as previously demonstrated
[23].

B. Resistome annotation of whole metagenome and plas-
midomes predicted by AI-based tools

The whole metagenome annotation revealed the presence
of 21 antibiotic resistance genes (ARGs), including mainly
resistance against disinfecting and antiseptics agents, fluoro-
quinolone, tetracycline, glycopeptide, sulfonamide, and amino-
glycoside antibiotics (Supplementary Table I). This annotation
works as a positive control for what is expected to be encoded
in the benchmarked plasmidomes. In this sense, predicted plas-
mids showed divergence in their results regarding ARGs quan-
tity. Plasflow-, Platon-, RFPlasmid-, and PlasForest-annotated
plasmidomes presented six, four, three, and four of the total
ARGs annotated, respectively (Supplementary Table I). Re-
markably, three resistance genes had the highest similarities
to the matching region and were present in all annotations:
qacEdelta1 (100%), sul1 (99.64%), and APH(3”)-lb (99.25%).

We observed a remarkable number of ARGs regarding
disinfecting and antiseptics agents, and fluoroquinolone and
tetracycline antibiotics. In the past few years, quinolones
resistance has been an increasing problem due to the high
possibility of HGT demonstrated in conjugation studies [29],
[30]. Chemical analysis of water samples from Virilla River
showed the presence of residues of antibiotic compounds from
the fluoroquinolone family (ofloxacin) [5], which might incur
a selective pressure for HGT [31]. In addition, these ARGs
are known to be associated with sewage water bacteria [30].

However, most of these ARGs are not annotated in the
plasmidomes. Fluoroquinolone resistance genes are common
in the genome of pathogenic bacteria [32]. Integron analysis
revealed the association of these ARGs to genetic elements
possibly acquired by plasmids or other chromosomes [32]. The
resistance against aminoglycosides, macrolides, tetracycline,
and beta-lactam was also observed with a similar pattern
[32]. These results can indicate the possibility of our find-
ings regarding similar resistance genes to be integrated into
chromosomes of the metagenome, explaining their absence
in the plasmidomes. This hypothesis is supported by other
genomic studies where the ARGs related to fluoroquinolone
and tetracycline resistance are associated with the bacterial
chromosome [33], [34].

Moreover, annotated disinfecting and antiseptics agents, and
glycopeptide antibiotics resistance genes (mainly found in
the whole metagenome) are associated with a high rate of
horizontal transfer [35]. These ARGs have been demonstrated
to also be ubiquitous in the chromosomal genomes [36],
elucidating the idea of their integration into the chromosomes
of the metagenome. In addition, the presence of tetracycline
resistance could be associated with biocide-reduced suscep-
tibility [37], unifying the presence of both ARGs annotation
into metagenomic chromosomes and absence in plasmidomes.
Finally, the same pattern is reported for genes related to
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glycopeptide resistance, including those annotated in our
metagenome but not in the plasmidomes [38].

It has been proven that low concentrations of antibiotics
in the environment can promote resistance due to antibiotic
resistance genes [39]. As mentioned, traces of these pharma-
ceutical compounds such as ofloxacin and cephalexin have
been found in the Virilla River [5], representing a sanitary
risk for microbial communities, ecological relations, and major
organism aquatic organisms [40]–[42]. ARGs are commonly
mobilized between bacteria through MGEs, such as plasmids,
in processes of HGT (e.g., conjugation and transformation),
pathways related to environmental conditions [7], [43]. The
presence of pollutants and human contaminants in aquatic
environments is another factor involved in the aggravation of
ARGs’ dissemination [7], [44]. Therefore, the study of the
resistome present in the Virilla River is a relevant research
topic to elucidate the significant risk of inefficient wastewater
treatment methods and their effect on the worldwide clinical
antibiotic resistance crisis.

C. Performance evaluation of AI-based plasmid annotation
tools in terms of ARGs prediction

As for the benchmarking analysis of the plasmid annota-
tion tools, the presence of glycopeptide, fluoroquinolone, and
tetracycline antibiotics resistance genes are considered False
Positives due to the statements previously discussed. These
ARGs are mainly found in the chromosome of microorganisms
and were only observed in Plasflow- and PlasForest-annotated
plasmidome, therefore we evaluated them as a precision and
accuracy discrepancy between AI-based programs. The dis-
tribution of ARGs and score for each results category per
plasmidome sample is shown in Fig.1.

Fig. 1. Venn’s diagrams of the number of predicted ARGs per sample and
score for each results category per plasmidome annotated with AI-based tools.
TP=true positive, TN=true negative, FP=false positive, FN=false negative.

Platon presented the highest scores regarding the perfor-
mance metrics, followed by RFPlasmid and PlasForest (Ta-
ble II). Plasflow showed the lowest precision and accuracy
among the annotation tools, which correlates with previous
studies that indicate an imprecise differentiation between

bacterial chromosomal sequences from plasmids [23]. These
results explain the False Positive ARGs found in the resistome,
as well as the size and number of contigs differences of
the Plasflow-annotated plasmidome in comparison with the
other annotation tools, stated in the first subsection. Moreover,
PlasForest has been reported to have less sensitivity and
precision for plasmids identification when working with small
contigs (less than 2 Kbp), being surpassed even by Plasflow
[25]. As the whole metagenome was filtered to 1000 bp as
the minimum contigs length, the false positives outputted by
PlasForest might be a result of its difficulty to annotate small
sequences.

TABLE II
PERFORMANCE METRICS FOR PLASFLOW, PLATON, RFPLASMID, AND
PLASFOREST PLASMIDOMES ANNOTATION BASED ON PREDICTION OF

ANTIBIOTIC RESISTANCE GENES

Metric AI-based plasmid annotation tools
Plasflow Platon RFPlasmid PlasForest

Sensitivity (%) 100 100 75 100
Specificity (%) 88.23 100 100 94.44
Precision (%) 66.67 100 100 75

NPV (%) 100 100 94.44 100
Accuracy (%) 90.47 100 95.23 95.23
F1-score (%) 80 100 85.71 85.71

Bold text represents the highest value. NPV=Negative Predictive Value

RFPlasmid metrics evidence the lowest sensitivity. Al-
though presenting an accuracy within the acceptable range,
the “Generic” model (taxon-independent workflow) used for
predicting has been reported to be outperformed by its taxon-
dependent workflow in various studies [24], [45]. All the
bioinformatic tools here evaluated used a taxon-independent
approach, therefore, usage of RFPlasmid under this agnostic
model for metagenomic exploratory research could incur in-
complete plasmidomes annotation and inaccurate results [45].
While undergoing literature revisions, we found a lack of in-
formation regarding the benchmarking of AI-based annotation
tools. However, previous research involving the performance
evaluation of plasmids prediction tools, including those here
inspected, showed similar performance metrics patterns. De-
spite presenting the lowest number of contigs, Platon had
the highest scores (near 100%) in comparison with other
examined tools, while Plasflow remained the least precise and
accurate program for plasmidome annotation in environmental
metagenomic datasets [45], [46].

For contigs characterization, Platon integrates heuristics
parameters for a higher-level classification, including the de-
tection of antimicrobial resistance genes [23]. This might
explain the high performance of this study as it incurs over-
fitting of the identification process of the tool and the data
analyzed for performance evaluation. In addition, the Platon
dataset for training is based on purely processed plasmid
sequences, different from other programs (Plasflow: complete
bacterial chromosomes and plasmids, RFPlasmid: complete
chromosome and plasmids from only 19 bacterial genera, and
PlasForest: processed complete chromosome sequences; all
extracted from the NCBI) [22]–[25]. The dataset selection,
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combined with plasmid-specific heuristics parameters, might
confer Platon a more detailed detection capacity of plasmid
sequences.

This eludes that Platon differentiates chromosomal and
plasmid sequences with more accuracy, especially when ARGs
are present; therefore outputting the smallest, but more precise,
plasmidome [23]. PlasForest presented similar metrics, though
is outperformed by Platon when working with small contigs.
We recommend Platon for resistome research with exploratory
objectives as it presented the best performance in plasmids
prediction, while RFPlasmid could represent a better suit for
species-specific research due to its taxon-dependent workflow,
unique among the evaluated tools. Plasmids play a crucial role
in bacterial genetics, facilitating the mobilization of genetic
elements for microorganisms’ adaptation to the environment,
including antibiotic resistance genes. We explored the presence
of ARGs as well as their mobilization by HGT. Despite their
relevance and the variety of methods for the annotation of
plasmids, there is no standard method to compare the accuracy;
leading to a lack of judgment regarding which programs suit
better for each study objective [47]. We expect our study
benefits researchers to understand functionality differences
between the evaluated AI-based plasmid annotation tools, in
the light of artificial intelligence as a novel, helpful, and fast-
developing software programming method.

IV. CONCLUSIONS

Our results expose Platon had the best performance among
the analyzed plasmid prediction software based on artificial
intelligence. We consider that research in the environmental
metagenomic area could greatly benefit from the sensitivity,
precision, and accuracy of Platon. Nonetheless, RFPlasmid
represents a good less-sensitive alternative for plasmidomes
annotation in metagenomes datasets and might be helpful
in taxon-dependent prediction, which has been reported to
outperform the generic approach here studied. Moreover,
ARGs prediction indicated the presence of genes encoding
resistance against a wide range of antimicrobial compounds,
including some which have been previously reported to be
present in Virilla River through chemical annotation, indicat-
ing an ecological and clinical risk. For future research, the
performance analysis of AI-based and regular annotation tools
might uncover a more dense and precise comparison between
bioinformatic workflows. Also, the typification and mobility
evaluation of plasmids with bioinformatic tools such as MOB-
suite [48] can evaluate the similarity among prediction tools
output. Finally, the study of more metagenomic samples of the
Virilla River will provide insights into a more trustful plas-
midome composition, considering the difference annotated.
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