Investigación
URI permanente para esta comunidad
Examinar
Examinando Investigación por Materia "(U)HPLC-APCI-QTOF-MS"
Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
Ítem Mastering analytical challenges for the characterization of pentacyclic triterpene mono- and diesters of Calendula officinalis flowers by non-aqueous C30 HPLC and hyphenation with APCI-QTOF-MS(2016-01-25) Nicolaus, Christoph; Sievers Engler, Adrian; Murillo Masís, Renato; D’Ambrosio, Michele; Lämmerhofer, Michael; Merfort, IrmgardPentacyclic triterpene mono- and diesters have been isolated from Calendula officinalis flowers. GC–MS, APCI-Exactive Orbitrap HR-MS and NMR allowed to identify the triterpene skeleton in various samples (different triterpene mixtures from Calendula n-hexane extract). NMR provided evidence that triterpene diesters are present in the samples as well. However, the corresponding quasi-molecular ions could not be detected by APCI-Exactive Orbitrap HR-MS. Instability of triterpene diesters and loss of a fatty acid residue, respectively, in the ion-source made their MS detection challenging. Thus, a set of new APCI-QTOF-MS methods (using the TripleTOF 5600+ mass spectrometer) were developed which made it eventually possible to solve this problem and confirm the diester structures by MS via quasi-molecular ion [M + H]+ detection. Direct infusion APCI-QTOF MS experiments in MS/MS high sensitivity scan mode with low collision energy and multi-channel averaging acquisition (MCA) allowed the detection of quasi-molecular ions of triterpene diesters for the first time and unequivocally confirmed the presence of faradiol 3,16-dimyristate and -dipalmitate, as well as the corresponding mixed diesters faradiol 3-myristate,16-palmitate and faradiol 3-palmitate,16-myristate. Preferential loss of the fatty acid in 16-position made it possible to distinguish the mixed diesters by MS/MS spectra. Their chromatographic separations turned out to be challenging due to their bulkiness and extended molecular dimensions. However, separation could be achieved by an uncommon non-aqueous RPLC mode with an in-house synthesized C30 phase. Finally, two (U)HPLC-APCI-QTOF-MS methods with C18- and C30-based non-aqueous RPLC provided suitable, sensitive assays to monitor the presence of monoesters and diesters of various triterpenes (faradiol, maniladiol, arnidiol, arnitriol A and lupane-3β,16β,20-triol esters) in the n-hexane extract of C. officinalis with high mass resolution and good mass accuracy.