Show simple item record

Métodos de superficie Multirespuesta: Un Estudio Comparativo

dc.creatorde la Vara Salazar, Román
dc.creatorDomínguez Domínguez, Jorge
dc.date.accessioned2015-05-19T18:28:06Z
dc.date.available2015-05-19T18:28:06Z
dc.date.issued2011-04-29 00:00:00
dc.identifier.citationhttp://revistas.ucr.ac.cr/index.php/matematica/article/view/209
dc.identifier.issn
dc.identifier.urihttps://hdl.handle.net/10669/12850
dc.description.abstractThe simultaneous optimization problem may not to have a complete satisfactory solution from the point of view of the individual responses, in the sense that individual optimums are different respect to global optimum; but always it is possible to say that it exists the process operation conditions (point in the factors space) where the responses fit “in the best way” to their specification limits and target values. It is always possible to obtain a compromise solution, which look for the best balancebetween the responses. This paper discusses several methods that have been proposed for analyzing multi-response data, and it is shown that the graphical method can raise the best solution compared with the analytical methods. The performance of the methods is compared in the context of one example. Finally, in two of the methods we suggest alternative weighting of the responses in order to improve the results.
dc.description.abstractEl problema de optimización simultánea de varias respuestas puede no tener una solución completamente satisfactoria desde la perspectiva de cada respuesta individual, en el sentido de que, generalmente, los ´optimos individuales no coinciden con el óptimo global; aunque siempre podemos decir que existe el punto de operación del proceso en el que todas las variables cumplen con los requerimientos "de la mejor manera posible". Así pues, típicamente se obtiene una solución de compromiso, que busca balancear de manera adecuada la importancia relativa de las respuestas. El tema de multirrespuesta es relevante en procesos industriales puesto que al determinar un óptimo común permitirá mejorar la calidad de un producto. En este artículo se presentan algunos métodos que se han expuesto hasta ahora para resolver dicho problema y se propone el método gráfico como alternativa adecuada para abordar la optimización simultánea. Se realiza un estudio comparativo del desempeño de los métodos al aplicarlos a los mismos datos experimentales. Finalmente, se discuten las ventajas y desventajas de cada método y se presentan mejoras en dos de ellos ponderando las respuestas.
dc.format.extent47-65
dc.relation.ispartofRevista de Matemática: Teoría y Aplicaciones Vol. 9 Núm. 1 2011
dc.titleMétodos de superficie Multirespuesta: Un Estudio Comparativo
dc.titleMétodos de superficie Multirespuesta: Un Estudio Comparativo
dc.typeartículo científicoes_ES
dc.date.updated2015-05-19T18:28:06Z
dc.language.rfc3066es
dc.identifier.doi10.15517/rmta.v9i1.209


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record