Universidad de Costa Rica
  • Sobre Kérwá
  • Acceso Abierto
  • Cómo Depositar
  • Políticas
  • Contacto
    • español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   Kérwá Home
  • Publicaciones periódicas de la Universidad de Costa Rica
  • Revista de Matemática: Teoría y Aplicaciones
  • Revista de Matemáticas 19(2)
  • View Item
  •   Kérwá Home
  • Publicaciones periódicas de la Universidad de Costa Rica
  • Revista de Matemática: Teoría y Aplicaciones
  • Revista de Matemáticas 19(2)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Variants of the mixed postman problem solvable using linear programming

Variantes del problema del cartero mixto que se pueden resolver usando programación lineal

artículo científico
Thumbnail
View/Open
1334-2000-1-PB.pdf (129.4Kb)
Date
2012-07-01
Author
Zaragoza Martínez, Francisco Javier
López Bracho, Rafael
Metadata
Show full item record
Abstract
Given a connected mixed graph with costs on its edges and arcs, the mixed postman problem consists of finding a minimum cost closed tour of the mixed graph traversing all of its edges and arcs. It is well-known that this problem is NP-hard. However, under certain conditions, the problem can be solved in polynomial time using linear programming, in other words, the corresponding polyhedra are integral. Some of these conditions are: the mixed graph is series parallel or the mixed graph is even. Also, we show that if we add the constraint that each edge is traversed exactly once then the problem can be solved in polynomial time if the set of arcs forms a forest.Keywords: Mixed graph, postman problem, linear programming.Mathematics Subject Classification: 05C45, 90C35.
 
Dada una gráfica mixta y conexa con costos en sus aristas y arcos, el problema del cartero mixto consiste en encontrar un circuito cerrado de la gráfica mixta que recorra sus aristas y arcos a costo mínimo. Se sabe que este problema es NP-duro. Sin embargo, bajo ciertas condiciones adicionales, el problema se puede resolver en tiempo polinomial usando programación lineal, en otras palabras, los poliedros correspondientes son enteros. Algunas de estas condiciones son: la gráfica mixta es serie paralelo o la gráfica mixta tiene grado total par en todos sus vértices. Además, mostramos que si agregamos la restricción adicional de que cada arista se recorra exactamente una vez entonces el problema se puede resolver en tiempo polinomial si el conjunto de arcos forma un bosque.Palabras clave: Gráfica mixta, problema de cartero, programación lineal.Mathematics Subject Classification: 05C45, 90C35.
 
URI
https://hdl.handle.net/10669/13018
External link to the item
10.15517/rmta.v19i2.1334
http://revistas.ucr.ac.cr/index.php/matematica/article/view/1334
Collections
  • Revista de Matemáticas 19(2) [8]



  • Repositorios universitarios

  • Repositorio del SIBDI-UCR
  • Biblioteca Digital del CIICLA
  • Repositorio Documental Rafael Obregón Loría (CIHAC)
  • Biblioteca Digital Carlos Melendez (CIHAC)
  • Repositorio de Fotografías
  • Colección de videos de UPA-VAS
  • Sitios recomendados

  • Buscador regional de LA Referencia
  • Buscador del Open ROAR
  • Scientific Electronic Library Online (SciELO)
  • Directory of Open Access Journals (DOAJ)
  • Redalyc
  • Redes sociales

  • facebook.com/repositoriokerwa
  • @Ciencia_UCR
  • Sobre Kérwá
  • Acceso Abierto
  • Cómo depositar
  • Políticas
Contact Us | Send Feedback
Repositorio Institucional de la Universidad de Costa Rica. Algunos derechos reservados. Este repositorio funciona con DSpace.
 

 

Browse

All of KérwáCommunities & CollectionsTitlesAuthorsSubjectsProcedenceTypeThis CollectionTitlesAuthorsSubjectsProcedenceType

My Account

LoginRegister

Statistics

View Usage Statistics

  • Repositorios universitarios

  • Repositorio del SIBDI-UCR
  • Biblioteca Digital del CIICLA
  • Repositorio Documental Rafael Obregón Loría (CIHAC)
  • Biblioteca Digital Carlos Melendez (CIHAC)
  • Repositorio de Fotografías
  • Colección de videos de UPA-VAS
  • Sitios recomendados

  • Buscador regional de LA Referencia
  • Buscador del Open ROAR
  • Scientific Electronic Library Online (SciELO)
  • Directory of Open Access Journals (DOAJ)
  • Redalyc
  • Redes sociales

  • facebook.com/repositoriokerwa
  • @Ciencia_UCR
  • Sobre Kérwá
  • Acceso Abierto
  • Cómo depositar
  • Políticas
Contact Us | Send Feedback
Repositorio Institucional de la Universidad de Costa Rica. Algunos derechos reservados. Este repositorio funciona con DSpace.