Now showing items 85-104 of 113

    • Semimartingales on Duals of Nuclear Spaces 

      Fonseca Mora, Christian A. (2020-03-26)
      This work is devoted to the study of semimartingales on the dual of a general nuclear space. We start by establishing conditions for a cylindrical semimartingale in the strong dual Φ′ of a nuclear space Φ to have a Φ′-valued ...
    • Sparse bounds for Bochner–Riesz multiplers 

      Lacey, Michael T.; Mena Arias, Darío Alberto; Reguera, Maria Carmen (2019)
      The Bochner–Riesz multipliers are shown to satisfy a range of sparse bounds. The range of sparse bounds increases to the optimal range, as δ increases to the critical value, even assuming only partial information on the ...
    • Sparse bounds for the discrete spherical maximal functions 

      Kesler, Robert; Lacey, Michael T.; Mena Arias, Darío Alberto (2020)
      We prove sparse bounds for the spherical maximal operator of Magyar, Stein and Wainger. The bounds are conjecturally sharp, and contain an endpoint estimate. The new method of proof is inspired by ones by Bourgain and ...
    • Stark units and special Gamma values 

      Barquero Sánchez, Adrián Alberto; Masri, Riad; Tsai, Wei-Lun (2021)
      In this paper we develop an effective procedure for expressing Stark units in real quadratic extensions of totally real fields as values of the Barnes multiple Gamma function at algebraic points. This procedure is used to ...
    • Stora's fine notion of divergent amplitudes 

      Várilly Boyle, Joseph C.; Gracia Bondía, José M. (2016-11)
      Stora and coworkers refined the notion of divergent quantum amplitude, somewhat upsetting the standard power-counting recipe. This unexpectedly clears the way to new prototypes for free and interacting field theories of ...
    • Stratifications on the Moduli Space of Higgs Bundles 

      Zúñiga Rojas, Ronald Alberto; Beier Gothen, Peter (2016-11-02)
      The moduli space of Higgs bundles has two stratifications. The Bia lynickiBirula stratification comes from the action of the non-zero complex numbers by multiplication on the Higgs field, and the Shatz stratification arises ...
    • Stratifications on the Nilpotent Cone of the moduli space of Hitchin pairs 

      Beier Gothen, Peter; Zúñiga Rojas, Ronald Alberto (2020)
      We consider the problem of finding the limit at infinity (corresponding to the downward Morse flow) of a Higgs bundle in the nilpotent cone under the natural C ∗ -action on the moduli space. For general rank we provide ...
    • String chopping and time-ordered products of linear string-localized quantum fields 

      Cardoso, Lucas T.; Mund, Jens; Várilly Boyle, Joseph C. (2018-03)
      For a renormalizability proof of perturbative models in the Epstein-Glaser scheme with string-localized quantum fields, one needs to know what freedom one has in the definition of time-ordered products of the interaction ...
    • Sur l’existence du schéma en groupes fondamental 

      Antei, Marco; Emsalem, Michel; Gasbarri, Carlo (2020-06-06)
      Soient S un schéma de Dedekind, X un S-schéma connexe localement de type ni et x 2 X(S) une section. L’objet du présent papier est d’établir l’existence du schéma en groupes fondamental de X lorsque X est à bres réduites ...
    • Teoría de grupos en cuantización 

      Várilly Boyle, Joseph C. (Centro de Investigación y de Estudios Avanzados del IPN, México, DF, 1992, 1992-02-15)
      Esta monografía es un curso doctoral impartido en el CInvEstAv del Instituto Politécnico Nacional en México, DF, durante el año académico 1991-92 (con licencia sabática de la UCR) y luego redactado como publicación ...
    • Teorías y propiedades universales de una teoría de anillos real cerrados (Informe Final Proyecto B9128) 

      Guier Acosta, Jorge Ignacio (2021)
      Sea $T^\ast$ la teor\'{\i}a de los subanillos reticulados que son convexos en los $f$-anillos von Neumann regulares real cerrados, y que adem\'as no tienen elementos idempotentes minimales (no-cero) y que son divisible-p ...
    • The asymptotic distribution of Andrews’ smallest parts function 

      Banks, Josiah; Barquero Sánchez, Adrián Alberto; Masri, Riad; Sheng, Yan (2015-12)
      In this paper, we use methods from the spectral theory of automorphic forms to give an asymptotic formula with a power saving error term for Andrews’ smallest parts function spt(n). We use this formula to deduce an asymptotic ...
    • The chirality theorem 

      Gracia Bondía, José M.; Mund, Jens; Várilly Boyle, Joseph C. (2018-03)
      We show how chirality of the weak interactions stems from string independence in the string-local formalism of quantum field theory.
    • The Chowla-Selberg formula for abelian CM fields and Faltings heights 

      Barquero Sánchez, Adrián Alberto; Masri, Riad (2016-03)
      In this paper we establish a Chowla-Selberg formula for abelian CM fields. This is an identity which relates values of a Hilbert modular function at CM points to values of Euler’s gamma function Γ and an analogous function ...
    • The Error in an Alternating Series 

      Villarino Bertram, Mark (2018-03)
      We present a new proof of Johnsonbaugh’s estimates for the error in an alternating series based on an idea of R. M. Young. We also use this same idea to prove the convergence of the Euler transform and a corresponding error ...
    • The Gromov’s centralizer theorem for semisimple Lie group actions 

      Rosales Ortega, José (2017-10)
      We give a new version of the Gromov’s centralizer theorem in the case of semisimple Lie group actions and arbitrary rigid geometric structures of algebraic type.
    • The Kirillov picture for the Wigner particle 

      Gracia Bondía, José M.; Lizzi, Fedele; Várilly Boyle, Joseph C.; Vitale, Patrizia (2018-06)
      We discuss the Kirillov method for massless Wigner particles, usually (mis)named "continuous spin" or "infinite spin" particles. These appear in Wigner's classification of the unitary representations of the Poincaré group, ...
    • The pseudo-fundamental group scheme 

      Antei, Marco; Dey, Arijit (2019)
      Let X be any scheme defined over a Dedekind scheme S with a given section x ∈ X (S). We prove the existence of a pro-finite S-group scheme א (X,x) and a universal א (X,x)-torsor dominating all the pro-finite pointed torsors ...
    • The role of short-term immigration on disease dynamics: An SIR model with age-structure 

      Sánchez Peña, Fabio Ariel; Calvo Alpízar, Juan Gabriel (2019-02-18)
      We formulate an age-structured nonlinear partial differential equation model that features short-term immigration effects in a population. Individuals can immigrate into the population as any of the three stages in the ...
    • Theta series and number fields: theorems and experiments 

      Barquero Sánchez, Adrián Alberto; Mantilla Soler, Guillermo; Ryan, Nathan C. (2021-03-01)
      Let d and n be positive integers and let K be a totally real number field of discriminant d and degree n. We construct a theta series $\theta_K \in \mathcal{M}_{d, n}$ where $\mathcal{M}_{d, n}$ is a space of modular forms ...