Search
Now showing items 1-10 of 14
Stora's fine notion of divergent amplitudes
(2016-11)
Stora and coworkers refined the notion of divergent quantum amplitude, somewhat upsetting the standard power-counting recipe. This unexpectedly clears the way to new prototypes for free and interacting field theories of ...
The chirality theorem
(2018-03)
We show how chirality of the weak interactions stems from string independence in the string-local formalism of quantum field theory.
The Kirillov picture for the Wigner particle
(2018-06)
We discuss the Kirillov method for massless Wigner particles, usually (mis)named "continuous spin" or "infinite spin" particles. These appear in Wigner's classification of the unitary representations of the Poincaré group, ...
Correction to: The chirality theorem
(2018-10)
Algebras of distributions suitable for phase‐space quantum mechanics. I
(1988-06-04)
The twisted product of functions on R^2N is extended to a *-algebra of
tempered distributions which contains the rapidly decreasing smooth
functions, the distributions of compact support, and all polynomials,
and moreover ...
Algunas fórmulas útiles para productos torcidos
(1986)
Investigamos dos modificaciones del producto cuántico o torcido de
funciones sobre el espacio de fases, y proporcionamos una colección de
fórmulas útiles en el cálculo con estos productos. La primera
modificación es la ...
Sums over paths adapted to quantum theory in phase space
(1986)
The concept of phase space plays a decisive role in the study of the transition from classical to quantum physics. This is particularly the case in areas such as nonlinear dynamics and chaos, geometric quantization and the ...
Los grupos simplécticos y su representación en la teoría del producto cuántico. I. Sp(2,R)
(1987)
El álgebra de observables de la teoría cuántica encierra una
representación del grupo simpléctico. Esta puede usarse a su vez para
resolver problemas de caracterización de estados y síntesis espectral
en la formulación ...
On asymptotic expansions of twisted products
(1989-12)
The series development of the quantum-mechanical twisted product is
studied. The series is shown to make sense as a moment asymptotic
expansion of the integral formula for the twisted product, either
pointwise or in the ...
Nonnegative mixed states in Weyl–Wigner–Moyal theory
(1988-03-21)
We classify the gaussian Wigner functions corresponding to mixed states and show that, unlike the case of pure states, not all nonnegative mixed states are gaussian.