Universidad de Costa Rica
  • Sobre Kérwá
  • Acceso Abierto
  • Cómo Depositar
  • Políticas
  • Contacto
    • español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   Kérwá Home
  • Investigación
  • Ingeniería
  • Computación e informática
  • View Item
  •   Kérwá Home
  • Investigación
  • Ingeniería
  • Computación e informática
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Empirical Validation of an Automated Genetic Software Effort Prediction Framework Using the ISBSG Dataset

contribución de congreso
Thumbnail
View/Open
Versión final (428.3Kb)
Date
2016-04
Author
Murillo Morera, Juan
Quesada López, Christian Ulises
Castro Herrera, Carlos
Jenkins Coronas, Marcelo
Metadata
Show full item record
Abstract
The complexity of providing accurate software effort prediction models is well known in the software industry. Several prediction models have been proposed in the literature using different techniques, with different results, in different contexts. Objectives: This paper reports a benchmarking study using a genetic approach that automatically generates and compares different learning schemes (preprocessing+attribute selection+learning algorithms). The effectiveness of the software development effort prediction models (using function points) were validated using the ISBSG R12 dataset. Methods: Eight subsets of projects were analyzed running a M×N-fold cross-validation. We used a genetic approach to automatically select the components of the learning schemes, to evaluate, and to report the learning scheme with the best performance. Results: In total, 150 learning schemes were studied (2 data preprocessors, 5 attribute selectors, and 15 modeling techniques). The most common learning schemes were: Log+ForwardSelection+M5-Rules, Log+BestFirst+M5-Rules, Log+LinearForwardSelection+SMOreg, ForwardSelection+SMOreg and ForwardSelection+ SMOreg, BackwardElimination+SMOreg, LinearForwardSelection+SMOreg, and Log+Best First+SMOreg. Conclusions: The results show that we should select a different learning schemes for each datasets. Our results support previous findings regarding that the setup applied in evaluations can completely reverse findings. A genetic approach that automatically selects best combination based on a specific dataset could improve the performance of software effort prediction models.
URI
https://hdl.handle.net/10669/73965
Collections
  • Computación e informática [203]



  • Repositorios universitarios

  • Repositorio del SIBDI-UCR
  • Biblioteca Digital del CIICLA
  • Repositorio Documental Rafael Obregón Loría (CIHAC)
  • Biblioteca Digital Carlos Melendez (CIHAC)
  • Repositorio de Fotografías
  • Colección de videos de UPA-VAS
  • Sitios recomendados

  • Buscador regional de LA Referencia
  • Buscador del Open ROAR
  • Scientific Electronic Library Online (SciELO)
  • Directory of Open Access Journals (DOAJ)
  • Redalyc
  • Redes sociales

  • facebook.com/repositoriokerwa
  • @Ciencia_UCR
  • Sobre Kérwá
  • Acceso Abierto
  • Cómo depositar
  • Políticas
Contact Us | Send Feedback
Repositorio Institucional de la Universidad de Costa Rica. Algunos derechos reservados. Este repositorio funciona con DSpace.
 

 

Browse

All of KérwáCommunities & CollectionsTitlesAuthorsSubjectsProcedenceTypeThis CollectionTitlesAuthorsSubjectsProcedenceType

My Account

LoginRegister

Statistics

View Usage Statistics

  • Repositorios universitarios

  • Repositorio del SIBDI-UCR
  • Biblioteca Digital del CIICLA
  • Repositorio Documental Rafael Obregón Loría (CIHAC)
  • Biblioteca Digital Carlos Melendez (CIHAC)
  • Repositorio de Fotografías
  • Colección de videos de UPA-VAS
  • Sitios recomendados

  • Buscador regional de LA Referencia
  • Buscador del Open ROAR
  • Scientific Electronic Library Online (SciELO)
  • Directory of Open Access Journals (DOAJ)
  • Redalyc
  • Redes sociales

  • facebook.com/repositoriokerwa
  • @Ciencia_UCR
  • Sobre Kérwá
  • Acceso Abierto
  • Cómo depositar
  • Políticas
Contact Us | Send Feedback
Repositorio Institucional de la Universidad de Costa Rica. Algunos derechos reservados. Este repositorio funciona con DSpace.