Show simple item record

dc.creatorJin, Hongxiao
dc.creatorKöppl, Christian Josef
dc.creatorFischer, Benjamin Michael Clemens
dc.creatorRojas Conejo, Johanna
dc.creatorJohnson, Mark S.
dc.creatorMorillas, Laura
dc.creatorLyon, Steve W.
dc.creatorDurán Quesada, Ana María
dc.creatorSuárez Serrano, Andrea
dc.creatorManzoni, Stefano
dc.creatorGarcia, Monica
dc.date.accessioned2021-11-24T16:36:05Z
dc.date.available2021-11-24T16:36:05Z
dc.date.issued2021-05-11
dc.identifier.citationhttps://www.mdpi.com/2072-4292/13/10/1866
dc.identifier.issn2072-4292
dc.identifier.urihttps://hdl.handle.net/10669/85327
dc.description.abstractMiniature hyperspectral and thermal cameras onboard lightweight unmanned aerial vehicles (UAV) bring new opportunities for monitoring land surface variables at unprecedented fine spatial resolution with acceptable accuracy. This research applies hyperspectral and thermal imagery from a drone to quantify upland rice productivity and water use efficiency (WUE) after biochar application in Costa Rica. The field flights were conducted over two experimental groups with bamboo biochar (BC1) and sugarcane biochar (BC2) amendments and one control (C) group without biochar application. Rice canopy biophysical variables were estimated by inverting a canopy radiative transfer model on hyperspectral reflectance. Variations in gross primary productivity (GPP) and WUE across treatments were estimated using light-use efficiency and WUE models respectively from the normalized difference vegetation index (NDVI), canopy chlorophyll content (CCC), and evapotranspiration rate. We found that GPP was increased by 41.9 ± 3.4% in BC1 and 17.5 ± 3.4% in BC2 versus C, which may be explained by higher soil moisture after biochar application, and consequently significantly higher WUEs by 40.8 ± 3.5% in BC1 and 13.4 ± 3.5% in BC2 compared to C. This study demonstrated the use of hyperspectral and thermal imagery from a drone to quantify biochar effects on dry cropland by integrating ground measurements and physical models.es_ES
dc.description.sponsorshipUniversidad de Costa Rica/[805-B8-606]/UCR/Costa Ricaes_ES
dc.language.isoenges_ES
dc.sourceRemote Sensing, vol.13 (10), pp.1-22.es_ES
dc.subjectUnmanned aerial vehicle (UAV)es_ES
dc.subjectHyperspectral and thermal imageryes_ES
dc.subjectGross primary productivity (GPP)es_ES
dc.subjectWater use efficiency (WUE)es_ES
dc.subjectBiochares_ES
dc.subjectUpland ricees_ES
dc.titleDrone-based hyperspectral and thermal imagery for quantifying upland rice productivity and water use efficiency after biochar applicationes_ES
dc.typeartículo científico
dc.identifier.doi10.3390/rs13101866
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Físicaes_ES
dc.description.procedenceUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones Geofísicas (CIGEFI)es_ES
dc.identifier.codproyecto805-B8-606


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record