Universidad de Costa Rica
  • Sobre Kérwá
  • Acceso Abierto
  • Cómo Depositar
  • Políticas
  • Contacto
    • español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   Kérwá Home
  • Docencia
  • Microbiología
  • View Item
  •   Kérwá Home
  • Docencia
  • Microbiología
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Set-theory based benchmarking of three different variant callers for targeted sequencing

artículo científico
Thumbnail
View/Open
s12859-020-03926-3.pdf (2.113Mb)
Date
2021
Author
Molina Mora, José Arturo
Solano Vargas, Mariela
Metadata
Show full item record
Abstract
Background: Next generation sequencing (NGS) technologies have improved the study of hereditary diseases. Since the evaluation of bioinformatics pipelines is not straightforward, NGS demands efective strategies to analyze data that is of paramount relevance for decision making under a clinical scenario. According to the benchmark‑ ing framework of the Global Alliance for Genomics and Health (GA4GH), we imple‑ mented a new simple and user-friendly set-theory based method to assess variant call‑ ers using a gold standard variant set and high confdence regions. As model, we used TruSight Cardio kit sequencing data of the reference genome NA12878. This targeted sequencing kit is used to identify variants in key genes related to Inherited Cardiac Conditions (ICCs), a group of cardiovascular diseases with high rates of morbidity and mortality. Results: We implemented and compared three variant calling pipelines (Isaac, Freebayes, and VarScan). Performance metrics using our set-theory approach showed high-resolution pipelines and revealed: (1) a perfect recall of 1.000 for all three pipe‑ lines, (2) very high precision values, i.e. 0.987 for Freebayes, 0.928 for VarScan, and 1.000 for Isaac, when compared with the reference material, and (3) a ROC curve analysis with AUC>0.94 for all cases. Moreover, signifcant diferences were obtained between the three pipelines. In general, results indicate that the three pipelines were able to recog‑ nize the expected variants in the gold standard data set. Conclusions: Our set-theory approach to calculate metrics was able to identify the expected ICCs related variants by the three selected pipelines, but results were completely dependent on the algorithms. We emphasize the importance to assess pipelines using
URI
https://hdl.handle.net/10669/85927
External link to the item
10.1186/s12859-020-03926-3
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-03926-3
Collections
  • Microbiología [15]



  • Repositorios universitarios

  • Repositorio del SIBDI-UCR
  • Biblioteca Digital del CIICLA
  • Repositorio Documental Rafael Obregón Loría (CIHAC)
  • Biblioteca Digital Carlos Melendez (CIHAC)
  • Repositorio de Fotografías
  • Colección de videos de UPA-VAS
  • Sitios recomendados

  • Buscador regional de LA Referencia
  • Buscador del Open ROAR
  • Scientific Electronic Library Online (SciELO)
  • Directory of Open Access Journals (DOAJ)
  • Redalyc
  • Redes sociales

  • facebook.com/repositoriokerwa
  • @Ciencia_UCR
  • Sobre Kérwá
  • Acceso Abierto
  • Cómo depositar
  • Políticas
Contact Us | Send Feedback
Repositorio Institucional de la Universidad de Costa Rica. Algunos derechos reservados. Este repositorio funciona con DSpace.
 

 

Browse

All of KérwáCommunities & CollectionsTitlesAuthorsSubjectsProcedenceTypeThis CollectionTitlesAuthorsSubjectsProcedenceType

My Account

LoginRegister

  • Repositorios universitarios

  • Repositorio del SIBDI-UCR
  • Biblioteca Digital del CIICLA
  • Repositorio Documental Rafael Obregón Loría (CIHAC)
  • Biblioteca Digital Carlos Melendez (CIHAC)
  • Repositorio de Fotografías
  • Colección de videos de UPA-VAS
  • Sitios recomendados

  • Buscador regional de LA Referencia
  • Buscador del Open ROAR
  • Scientific Electronic Library Online (SciELO)
  • Directory of Open Access Journals (DOAJ)
  • Redalyc
  • Redes sociales

  • facebook.com/repositoriokerwa
  • @Ciencia_UCR
  • Sobre Kérwá
  • Acceso Abierto
  • Cómo depositar
  • Políticas
Contact Us | Send Feedback
Repositorio Institucional de la Universidad de Costa Rica. Algunos derechos reservados. Este repositorio funciona con DSpace.