Universidad de Costa Rica
  • Sobre Kérwá
  • Acceso Abierto
  • Cómo Depositar
  • Políticas
  • Contacto
    • español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   Kérwá Home
  • Investigación
  • Ciencias básicas
  • Matemática
  • View Item
  •   Kérwá Home
  • Investigación
  • Ciencias básicas
  • Matemática
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A mixed-primal finite element approximation of a sedimentation–consolidation system

artículo científico
Thumbnail
View/Open
M. Álvarez, G.N. Gatica and R. Ruiz-Baier. A mixed–primal finite element approximation of a sedimentation–consolidation system. M3AS: Mathematical Models and Methods in Applied Sciences, vol. 26, 5, pp. 867-900, (2016). (2.456Mb)
Date
2016
Author
Álvarez Guadamuz, Mario Andrés
Gatica Pérez, Gabriel Nibaldo
Ruiz Baier, Ricardo
Metadata
Show full item record
Abstract
This paper is devoted to the mathematical and numerical analysis of a strongly cou- pled flow and transport system typically encountered in continuum-based models of sedimentation–consolidation processes. The model focuses on the steady-state regime of a solid–liquid suspension immersed in a viscous fluid within a permeable medium, and the governing equations consist in the Brinkman problem with variable viscosity, written in terms of Cauchy pseudo-stresses and bulk velocity of the mixture; coupled with a nonlinear advection — nonlinear diffusion equation describing the transport of the solids volume fraction. The variational formulation is based on an augmented mixed approach for the Brinkman problem and the usual primal weak form for the transport equation. Solvability of the coupled formulation is established by combining fixed point arguments, certain regularity assumptions, and some classical results concerning vari- ational problems and Sobolev spaces. In turn, the resulting augmented mixed-primal Galerkin scheme employs Raviart–Thomas approximations of order k for the stress andpiecewise continuous polynomials of order k + 1 for velocity and volume fraction, and its solvability is deduced by applying a fixed-point strategy as well. Then, suitable Strang- type inequalities are utilized to rigorously derive optimal error estimates in the natural norms. Finally, a few numerical tests illustrate the accuracy of the augmented mixed- primal finite element method, and the properties of the model.
URI
https://hdl.handle.net/10669/87625
External link to the item
10.1142/S0218202516500202
https://www.worldscientific.com/doi/abs/10.1142/S0218202516500202
Collections
  • Matemática [191]



  • Repositorios universitarios

  • Repositorio del SIBDI-UCR
  • Biblioteca Digital del CIICLA
  • Repositorio Documental Rafael Obregón Loría (CIHAC)
  • Biblioteca Digital Carlos Melendez (CIHAC)
  • Repositorio de Fotografías
  • Colección de videos de UPA-VAS
  • Sitios recomendados

  • Buscador regional de LA Referencia
  • Buscador del Open ROAR
  • Scientific Electronic Library Online (SciELO)
  • Directory of Open Access Journals (DOAJ)
  • Redalyc
  • Redes sociales

  • facebook.com/repositoriokerwa
  • @Ciencia_UCR
  • Sobre Kérwá
  • Acceso Abierto
  • Cómo depositar
  • Políticas
Contact Us | Send Feedback
Repositorio Institucional de la Universidad de Costa Rica. Algunos derechos reservados. Este repositorio funciona con DSpace.
 

 

Browse

All of KérwáCommunities & CollectionsTitlesAuthorsSubjectsProcedenceTypeThis CollectionTitlesAuthorsSubjectsProcedenceType

My Account

LoginRegister

Statistics

View Usage Statistics

  • Repositorios universitarios

  • Repositorio del SIBDI-UCR
  • Biblioteca Digital del CIICLA
  • Repositorio Documental Rafael Obregón Loría (CIHAC)
  • Biblioteca Digital Carlos Melendez (CIHAC)
  • Repositorio de Fotografías
  • Colección de videos de UPA-VAS
  • Sitios recomendados

  • Buscador regional de LA Referencia
  • Buscador del Open ROAR
  • Scientific Electronic Library Online (SciELO)
  • Directory of Open Access Journals (DOAJ)
  • Redalyc
  • Redes sociales

  • facebook.com/repositoriokerwa
  • @Ciencia_UCR
  • Sobre Kérwá
  • Acceso Abierto
  • Cómo depositar
  • Políticas
Contact Us | Send Feedback
Repositorio Institucional de la Universidad de Costa Rica. Algunos derechos reservados. Este repositorio funciona con DSpace.