Show simple item record

dc.creatorBarquero Sánchez, Adrián Alberto
dc.creatorMantilla Soler, Guillermo
dc.creatorRyan, Nathan C.
dc.date.accessioned2021-09-02T14:11:35Z
dc.date.available2021-09-02T14:11:35Z
dc.date.issued2021-03-01
dc.identifier.citationhttps://link.springer.com/article/10.1007/s11139-021-00394-y#article-infoes_ES
dc.identifier.urihttps://hdl.handle.net/10669/84376
dc.description.abstractLet d and n be positive integers and let K be a totally real number field of discriminant d and degree n. We construct a theta series $\theta_K \in \mathcal{M}_{d, n}$ where $\mathcal{M}_{d, n}$ is a space of modular forms defined in terms of n and d. Moreover, if d is square free and n is at most 4 then $\theta_K$ is a complete invariant for K. We also investigate whether or not the collection of $\theta$-series, associated to the set of isomorphism classes of quartic number fields of a fixed squarefree discriminant d, is a linearly independent subset of $\mathcal{M}_{d, 4}$. This is known to be true if the degree of the number field is less than or equal to 3. We give computational and heuristic evidence suggesting that in degree 4 these theta series should be independent as well.es_ES
dc.language.isoenges_ES
dc.sourceThe Ramanujan Journal, pp.1-12es_ES
dc.subjectQuartic fieldses_ES
dc.subjectTheta serieses_ES
dc.titleTheta series and number fields: theorems and experimentses_ES
dc.typeartículo científicoes_ES
dc.identifier.doihttps://doi.org/10.1007/s11139-021-00394-y
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Matemáticaes_ES
dc.description.procedenceUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones en Matemáticas Puras y Aplicadas (CIMPA)es_ES
dc.identifier.codproyecto821-B8-285


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record