Show simple item record

dc.creatorVárilly Boyle, Joseph C.
dc.creatorGracia Bondía, José M.
dc.date.accessioned2022-04-20T19:22:26Z
dc.date.available2022-04-20T19:22:26Z
dc.date.issued1988-06-04
dc.identifier.citationhttps://aip.scitation.org/doi/10.1063/1.527984es_ES
dc.identifier.issn0022-2488
dc.identifier.urihttps://hdl.handle.net/10669/86467
dc.description.abstractThe topology of the Moyal *-algebra may be defined in three ways: the algebra may be regarded as an operator algebra over the space of smooth declining functions either on the configuration space or on the phase space itself; or one may construct the *-algebra via a filtration of Hilbert spaces (or other Banach spaces) of distributions. We prove the equivalence of the three topologies thereby obtained. As a consequence, by filtrating the space of tempered distributions by Banach subspaces, we give new sufficient conditions for a phase-space function to correspond to a trace-class operator via the Weyl correspondence rule.es_ES
dc.description.sponsorshipUniversidad de Costa Rica/[]/UCR/Costa Ricaes_ES
dc.language.isoenges_ES
dc.sourceJournal of Mathematical Physics, vol.29(4), pp.880-887.es_ES
dc.subjectQuantum mechanics in phase spacees_ES
dc.subjectTempered distributionses_ES
dc.subjectLocally convex spaceses_ES
dc.titleAlgebras of distributions suitable for phase‐space quantum mechanics. II. Topologies on the Moyal algebraes_ES
dc.typeartículo científicoes_ES
dc.identifier.doi10.1063/1.527984
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Matemáticaes_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record