Logo Kérwá
 

A mixed-primal finite element approximation of a sedimentation–consolidation system

dc.creatorÁlvarez Guadamuz, Mario Andrés
dc.creatorGatica Pérez, Gabriel Nibaldo
dc.creatorRuiz Baier, Ricardo
dc.date.accessioned2022-11-08T20:57:22Z
dc.date.available2022-11-08T20:57:22Z
dc.date.issued2016
dc.description.abstractThis paper is devoted to the mathematical and numerical analysis of a strongly cou- pled flow and transport system typically encountered in continuum-based models of sedimentation–consolidation processes. The model focuses on the steady-state regime of a solid–liquid suspension immersed in a viscous fluid within a permeable medium, and the governing equations consist in the Brinkman problem with variable viscosity, written in terms of Cauchy pseudo-stresses and bulk velocity of the mixture; coupled with a nonlinear advection — nonlinear diffusion equation describing the transport of the solids volume fraction. The variational formulation is based on an augmented mixed approach for the Brinkman problem and the usual primal weak form for the transport equation. Solvability of the coupled formulation is established by combining fixed point arguments, certain regularity assumptions, and some classical results concerning vari- ational problems and Sobolev spaces. In turn, the resulting augmented mixed-primal Galerkin scheme employs Raviart–Thomas approximations of order k for the stress andpiecewise continuous polynomials of order k + 1 for velocity and volume fraction, and its solvability is deduced by applying a fixed-point strategy as well. Then, suitable Strang- type inequalities are utilized to rigorously derive optimal error estimates in the natural norms. Finally, a few numerical tests illustrate the accuracy of the augmented mixed- primal finite element method, and the properties of the model.es_ES
dc.description.procedenceUCR::Sedes Regionales::Sede de Occidentees_ES
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Matemáticaes_ES
dc.description.sponsorshipUniversidad de Chile (project Anillo ACT1118 ANANUM)es_ES
dc.description.sponsorshipUniversidad de Concepción (Centro de Investigación en Ingeniería Matemática)es_ES
dc.description.sponsorshipSwiss National Science Foundationes_ES
dc.identifier.citationhttps://www.worldscientific.com/doi/abs/10.1142/S0218202516500202es_ES
dc.identifier.doi10.1142/S0218202516500202
dc.identifier.issn1793-6314
dc.identifier.urihttps://hdl.handle.net/10669/87625
dc.language.isoenges_ES
dc.rightsacceso embargado
dc.sourceMathematical Models and Methods in Applied Sciences, 26(5), p. 867-900.es_ES
dc.subjectBrinkman equationses_ES
dc.subjectNonlinear transport problemes_ES
dc.subjectAugmented mixed-primal formulationes_ES
dc.subjectFixed point theoryes_ES
dc.subjectSedimentation–consolidation processes_ES
dc.subjectFinite element methodses_ES
dc.subjectA priori error analysises_ES
dc.subjectMATEMÁTICASes_ES
dc.titleA mixed-primal finite element approximation of a sedimentation–consolidation systemes_ES
dc.typeartículo originales_ES

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
M. Álvarez et al. A mixed-primal approximation of a sedimentation-consolidation system. Mathematical Models and Methods in Applied Sciences, (2016).pdf
Size:
2.46 MB
Format:
Adobe Portable Document Format
Description:
M. Álvarez, G.N. Gatica and R. Ruiz-Baier. A mixed–primal finite element approximation of a sedimentation–consolidation system. M3AS: Mathematical Models and Methods in Applied Sciences, vol. 26, 5, pp. 867-900, (2016).

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.5 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections