Now showing items 21-31 of 31

    • Propuesta didáctica para la docencia universitaria de las ecuaciones polinomiales 

      Camacho Navarro, Catalina; Trejos Zelaya, Javier; Viquez Céspedes, Hernán (2017)
      En este artículo contiene los principales resultados obtenidos a partir del diseño, aplicación y evaluación de una propuesta didáctica para la enseñanza de las ecuaciones polinomiales, la cual se desarrolló durante el mes ...
    • Stora's fine notion of divergent amplitudes 

      Várilly Boyle, Joseph C.; Gracia Bondía, José M. (2016-11)
      Stora and coworkers refined the notion of divergent quantum amplitude, somewhat upsetting the standard power-counting recipe. This unexpectedly clears the way to new prototypes for free and interacting field theories of ...
    • Stratifications on the Moduli Space of Higgs Bundles 

      Zúñiga Rojas, Ronald Alberto; Beier Gothen, Peter (2016-11-02)
      The moduli space of Higgs bundles has two stratifications. The Bia lynickiBirula stratification comes from the action of the non-zero complex numbers by multiplication on the Higgs field, and the Shatz stratification arises ...
    • The asymptotic distribution of Andrews’ smallest parts function 

      Banks, Josiah; Barquero Sánchez, Adrián Alberto; Masri, Riad; Sheng, Yan (2015-12)
      In this paper, we use methods from the spectral theory of automorphic forms to give an asymptotic formula with a power saving error term for Andrews’ smallest parts function spt(n). We use this formula to deduce an asymptotic ...
    • The Chowla-Selberg formula for abelian CM fields and Faltings heights 

      Barquero Sánchez, Adrián Alberto; Masri, Riad (2016-03)
      In this paper we establish a Chowla-Selberg formula for abelian CM fields. This is an identity which relates values of a Hilbert modular function at CM points to values of Euler’s gamma function Γ and an analogous function ...
    • The Error in an Alternating Series 

      Villarino Bertram, Mark (2018-03)
      We present a new proof of Johnsonbaugh’s estimates for the error in an alternating series based on an idea of R. M. Young. We also use this same idea to prove the convergence of the Euler transform and a corresponding error ...
    • The Gromov’s centralizer theorem for semisimple Lie group actions 

      Rosales Ortega, José (2017-10)
      We give a new version of the Gromov’s centralizer theorem in the case of semisimple Lie group actions and arbitrary rigid geometric structures of algebraic type.
    • The pseudo-fundamental group scheme 

      Antei, Marco; Dey, Arijit (2019)
      Let X be any scheme defined over a Dedekind scheme S with a given section x ∈ X (S). We prove the existence of a pro-finite S-group scheme א (X,x) and a universal א (X,x)-torsor dominating all the pro-finite pointed torsors ...
    • The role of short-term immigration on disease dynamics: An SIR model with age-structure 

      Sánchez Peña, Fabio Ariel; Calvo Alpízar, Juan Gabriel (2019-02-18)
      We formulate an age-structured nonlinear partial differential equation model that features short-term immigration effects in a population. Individuals can immigrate into the population as any of the three stages in the ...
    • Uniform sparse bounds for discrete quadratic phase Hilbert transforms 

      Kesler, Robert; Mena Arias, Darío Alberto (2017-09)
      Consider the discrete quadratic phase Hilbert Transform acting on $\ell^{2}(\mathbb{Z})$ finitely supported functions $$ H^{\alpha} f(n) : = \sum_{m \neq 0} \frac{e^{i\alpha m^2} f(n - m)}{m}. $$ We prove that, ...
    • Vertical Transmission in a Two-Strain Model of Dengue Fever 

      Murillo, David; Holechek, Susan A.; Murillo, Anarina L.; Sánchez Peña, Fabio Ariel; Castillo Chávez, Carlos (2014)
      The role of vertical transmission in vectors has rarely been addressed in the study of dengue dynamics and control, in part because it was not considered a critical population-level factor. In this paper, we apply the ...