Show simple item record

dc.creatorBanks, Josiah
dc.creatorBarquero Sánchez, Adrián Alberto
dc.creatorMasri, Riad
dc.creatorSheng, Yan
dc.date.accessioned2019-01-24T19:48:25Z
dc.date.available2019-01-24T19:48:25Z
dc.date.issued2015-12
dc.identifier.citationhttps://link.springer.com/article/10.1007/s00013-015-0831-9es_ES
dc.identifier.issn1420-8938
dc.identifier.urihttp://hdl.handle.net/10669/76492
dc.description.abstractIn this paper, we use methods from the spectral theory of automorphic forms to give an asymptotic formula with a power saving error term for Andrews’ smallest parts function spt(n). We use this formula to deduce an asymptotic formula with a power saving error term for the number of 2-marked Durfee symbols associated to partitions of n. Our method requires that we count the number of Heegner points of discriminant −D < 0 and level N inside an “expanding” rectangle contained in a fundamental domain for Γ0(N).es_ES
dc.language.isoen_USes_ES
dc.rightsTodos los derechos reservados*
dc.sourceArchiv der Mathematik, vol.105(6), pp. 539–555.es_ES
dc.subjectDurfee symboles_ES
dc.subjectPartitiones_ES
dc.subjectSmallest parts functiones_ES
dc.titleThe asymptotic distribution of Andrews’ smallest parts functiones_ES
dc.typeinfo:eu-repo/semantics/acceptedVersiones_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.identifier.doi10.1007/s00013-015-0831-9
dc.description.procedenceUCR::Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Matemáticaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record